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Abstract
Weprove that if a topology on the real line endows it with a topological group structure
(additive) for which the interval (0,+∞) is an open set, so this topology is stronger
than the usual topology. As a consequence we obtain characterizations of the usual
topology as group topology and as ring topology. We also proved that if a topology on
the real line is compatible with its usual lattice structure and is T1, so this topology is
stronger than the usual topology, and as a consequence we obtain a characterization
of the usual topology as lattice topology.

Keywords Usual topology on the real line · Topological group · Topological ring ·
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1 Introduction

On many occasions the field R of real numbers appears as a subspace (subgroup,
subring, sublattice, . . . ) of a topological space (group, ring, lattice, . . . ), and in such
cases it is natural to askwhether there is any relationship between the induced topology
in R and the usual topology of R. To try to answer the previous question, it can be
very useful to know in some way the different topologies that exist on R. In the
paper [1], its authors study “how many” topologies there are on R that endow it
with a topological group structure (R with its sum), and they obtain that there are
many (perhaps too many). They prove that there are even an infinite number of
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non-homeomorphic connected compact Hausdorff group topologies on R. Almost
forty years before, Halmos showed in [4] thatRmay be endowedwith a compact group
topology. In this brief work we prove that the number of different ring topologies onR
is significantly less than that of group topologies. For example, there is no a topology
on R with which it is a compact Hausdorff topological ring.

In 1936,Ward characterised in [5] the real numbers topologically among the metric
spaces. He showed that every metric space that is separable, connected and locally
connected, and inwhich each point is a strong cut point (its complementary has exactly
two components) is homeomorphic to R. In 1970, Franklin and Krishnarao proved
in [2] that this characterization remains valid for regular spaces: every regular space
that is separable, connected and locally connected, and in which each point is a strong
cut point is homeomorphic to R. And, in 1971, they proved in [3] that a separable,
connected, locally compact Hausdorff space in which each point is a strong cut point
is homeomorphic to the real line.

At the end of [1], its authors give a characterization of the usual topology of R as a
topological group. Similarly, at the endofSect. 2 of thisworkwegive a characterization
of the usual topology of R as a ring topology.

In Sect. 3 we consider topologies on R for which “supremum” and “infimum”
operations are continuous (lattice topologies). We prove that if one of these topologies
is T1, then that topology is stronger than the usual topology of R, and as consequence
we obtain a characterization of the usual topology of R as a lattice topology.

2 Group topologies and ring topologies

Definitions 1 By a topological group we shall mean a (additive) group G endowed

with a topology such that the group sumG×G
+−→ G and the involutivemapG → G,

x �→ −x , are continuous.
By a topological ringwe shall mean a commutative ring A endowedwith a topology

such that the ring sum A × A
+−→ A and the ring multiplication A × A

.−→ A are
continuous.

Let A be a topological ring, in which case (A,+) is also a topological group. We
will denote by C0 the connected component of 0 in A.

Remark For unitary topological rings, it is common to require that the map a �→ a−1

is continuous on the set of invertible elements. In the definition that we have given in
this work we do not demand the continuity of such application because we will not
use it.

Lemma 2 Let A be a topological ring. The connected component C0 of 0 is an ideal.

Proof On the one hand, for every a ∈ A, the map A
a+−−→ A, that sends b to a + b, is

an homeomorphism, so that the connected component of a is a+C0. So, if a, b ∈ C0,
then a + C0 = C0 and a + b ∈ C0. On the other hand, let us consider a ∈ A and
b ∈ C0. The continuity of the map A

a·−→ A implies that a · C0 is a connected set
containing 0, so a · C0 ⊆ C0 and a · b ∈ C0. ��
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Corollary 3 If a topological ring is a field, then it is connected or totally disconnected.

Proof Let A be a topological ring that is a field, in which case the only ideals of A
are 0 and A. If C0 = 0, then the connected component of any element a ∈ A is
a + C0 = {a}. Obviously, if C0 = A, then A is connected. ��
Corollary 4 If a topological ring is a field and it is not connected, then it is Hausdorff.

Proof Let A be a topological ring that is a field. If A is not connected, then it is totally
disconnected, and since the connected components are always closed subsets, every
one point subset is closed. It is well-known that if the topological group (A,+) is a
T1-space, then it is Hausdorff. ��
Corollary 5 If a topological ring is a field, and is not connected and locally connected,
then it is endowed with its discrete topology.

Notation Given an element x ∈ R, x+ := max{x, 0} is its positive part.
Lemma 6 The map x �→ x+ is continuous at x = 0 for any topology on R.

Proof If U is an open subset containing 0, then 0 ∈ U ⊆ (x+)−1(U ). ��
Lemma 7 Let τ be a topology on the real line such that the map R → R, x �→ −x, is
continuous (and hence is homeomorphism). We have:

(i) If the set (0,+∞) is open, then the map x �→ x+ is continuous.
(ii) If the topology τ is Hausdorff and the map x �→ x+ is continuous, then the set

(0,+∞) is open.

Proof (i) If the set (0 + ∞) is open, then also is open the set (−∞, 0). As the map
x �→ x+ is continuous at x = 0 (Lemma 6), it is enough to prove that this map is
continuous onR\{0} = (−∞, 0)∪ (0,+∞), which is clear: on the open set (−∞, 0)
the map is constant, and on the open set (0,+∞) the map is the identity.

(ii) When the topology τ is Hausdorff the set {0} is closed. If in addition the map
x �→ x+ is continuous, then the set (x+)−1

({0}) = (−∞, 0] is closed, and hence
(0 + ∞) is an open set. ��
Lemma 8 Let τ be a topology on the real line such that (R,+) is a topological group.
The following conditions are equivalent:

(i) the set (0,+∞) is open;
(ii) the topology τ is stronger than the usual topology of R.

Proof Let us suppose that the set (0,+∞) is open. Since the translation maps and
the map x �→ −x are homeomorphisms, we have: given a, b ∈ R, the sets (−∞, b)
and (a,+∞) are open, and therefore (a, b) = (−∞, b)∩ (a,+∞) is also open when
a < b. ��
Corollary 9 Let τ be a topology on the real line such that (R,+) is a topological
group. If τ is Hausdorff, then the following conditions are equivalent:
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(i) the map x �→ x+ is continuous;
(ii) the topology τ is stronger than the usual topology of R.

Proof It follows from Lemma 7 and Lemma 8. ��
According to [1, Theorem 6], there are exactly ℵ0 non-isomorphic compact Haus-

dorff groups topologies on R. We have:

Lemma 10 Let τ be a topology on the real line such that (R,+) is a topological group.
If the map x �→ x2 is continuous, then the topology τ is not compact Hausdorff.

Proof Let us suppose that τ is a compact Hausdorff topology on the real line such that
(R,+) is a topological group. If themap x �→ x2 is continuous, then its image [0,+∞)

is a compact subset of R, and hence [0,+∞) is closed (because τ is Hausdorff).
Applying Lemma 8 we obtain that the topology τ is stronger than the usual topology
of R, and as consequence the usual topology is also compact, which is false. ��
Corollary 11 There is no compact Hausdorff topology on the real line such that R is
a topological ring.

Definition 12 A subset X of R is said to be semi-bounded when it is bounded below
or above for the usual order of R, i.e., when there is a ∈ R such that X ⊆ (−∞, a] or
X ⊆ [a,∞).

Theorem 13 Let τ be a topology on the real line such thatR is a topological ring. The
following conditions are equivalent:

(i) there exists a non empty open subset in τ which is semi-bounded;
(ii) the topology τ is stronger than the usual topology of R.

Proof Clearly, it is only necessary to prove that (i) implies (ii). The map R → R,
x �→ −x , is an homeomorphism that transforms bounded below sets in bounded above
sets and conversely, so it is enough to consider the bounded below case. Moreover,
since the translation maps are also homeomorphisms, we can suppose that there exists
a non empty open subset U such that U ⊆ [a,+∞) for some a > 0. By Lemma
8, it is enough to prove that the set (0,+∞) is open. Suppose, on the contrary, that
there exists λ > 0 such that λ ∈ (−∞, 0] (= the closure of the set (−∞, 0]). For any
α > 0, the homeomorphism R → R, x �→ α

λ
x , sends λ to α and transforms (−∞, 0]

in itself, so α ∈ (−∞, 0]. Then, (−∞, 0] = R. But, it is not possible because we have
supposed that U ∩ (−∞, 0] = ∅, so we conclude that (0,+∞) is an open set in τ . ��

Part (i) of the following result, easy to prove, can be obtained as a particular case
of [1, Theorem 11], whose proof is quite elaborate.

Proposition 14 Let τ be a locally connected topology on the real line such that (R,+)

is a topological group and the set (0,+∞) is open. We have:

(i) if τ is connected, then τ is the usual topology of R;
(ii) if τ is not connected, then τ is the discrete topology of R.
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Proof Let us denote byRu the real line endowedwith its usual topology.As the identity
map (R, τ ) → Ru is continuous (Lemma 8), if X is a non empty connected subset for
τ , then X is also connected in Ru , and therefore X is an interval. Hence, every point
of R has a basis of τ -neighborhood formed by intervals. Recall that if U is a basis of
τ -neighborhood of 0, then, for each α ∈ R, α + U := {α + U : U ∈ U} is a basis
of τ -neighborhood of α. Moreover, if an interval I is a τ -neighborhood of 0, then −I
also is so. We distinguish two cases.

First case: for each b > 0, the interval [0, b) is not a τ -neighborhood of 0. Then,
the intervals of type (a, b) with a < 0 < b are a basis of τ -neighborhood of 0, and
therefore τ is the usual topology of R.

Second case: There exists b > 0 such that [0, b) is a τ -neighborhood of 0. Then
(−b, 0] is a τ -neighborhood of 0 and therefore {0} = (−b, 0] ∩ [0, b) is as well. Then
the set {0} is open for τ , and τ is the discrete topology of R. ��

For a ring topology onR, in the above proof the first case is the connected case, and
the second is the totally disconnected case (see Corollary 3 and Corollary 5). Hence,
apply Theorem 13 we obtain the following characterization:

Theorem 15 Let τ be a topology on the real line such that R is a topological ring. If
τ is connected, locally connected, and has a non empty semi-bounded open subset,
then τ is the usual topology of R.

3 Lattice topologies

Definitions 16 A lattice is a non empty set X endowed with an order relationship
“≤” for which every non empty finite subset has supremum and infimum. As usual,
the supremum and the infimum of a subset {x1, . . . , xn} of X will be denoted by
x1 ∨ · · · ∨ xn and x1 ∧ · · · ∧ xn , respectively.

By a topological lattice we shall mean a lattice X endowed with a topology for

which the maps X × X
∨−→ X and X × X

∧−→ X are continuous.

Examples 17 (a) The real lineRwith its usual order is a lattice. It is well known that
the usual topology on R is a “lattice topology”, i.e., R with the usual topology is
a topological lattice. Also, it is clear that the discrete topology of R is a lattice
topology. Note that the above two topologies are locally connected andHausdorff.
The usual topology is connected, but the discrete topology is not.

(b) Let us consider on R the topology τ whose open sets are R, the empty set, and
the collection of intervals

{
(a,+∞) : a ∈ R

}
. It is easy to see that τ is a lattice

topology.

Lemma 18 Let τ be a lattice topology on R. If (R, τ ) is a T1-space (i.e., every point
of R is τ -closed), then τ is stronger than the usual topology of R. In particular, τ is
Hausdorff.
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Proof Given b ∈ R, let us consider the map f : R → R, f (x) := x ∧b. As the set {b}
is τ -closed and the map f is continuous, we obtain that the set [b,+∞) = f −1(b)
is τ -closed, and therefore the interval (−∞, b) is τ -open. Similarly it is proved that
for each a ∈ R, the interval (a,+∞) is τ -open. So, given a, b ∈ R with a < b, the
interval (a, b) = (a,+∞) ∩ (−∞, b) is also τ -open. ��
Theorem 19 Let τ be a lattice topology on R. If (R, τ ) is a locally connected and
connected T1-space, then τ is the usual topology of R.

Proof Let us denote byRu the real line endowedwith its usual topology.As the identity
map (R, τ ) → Ru is continuous (Lemma 18), if X is a non empty connected subset
for τ , then X is also connected in Ru , and therefore X is an interval. Hence, every
point of R has a basis of τ -neighborhood formed by intervals.

Let us suppose that τ is not the usual topology. Then there are a point a ∈ R and
an interval I of R, such that I is a τ -neighborhood of a and I is not neighborhood
of a for the usual topology. Under these conditions, one of the following equalities
must necessarily occur: (i) I = {a}; (ii) I = [a,+∞); (iii) I = (−∞, a]; (iv)
I = [a, b) with a < b; (v) I = (b, a] with b < a. It is easy to see that in any of the
five previous cases we obtain that there is a τ -neighborhood of a in R that is open,
closed and different from R, which can not be because τ is connected. Therefore τ is
the usual topology of R. ��
Example 20 The lattice topology τ of Example 17 (b) is locally connected and con-
nected, but (R, τ ) is not a T1-space.
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