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Topology Adaptive Interface Tracking Using the Deformable
Simplicial Complex

MAREK KRZYSZTOF MISZTAL and JAKOB ANDREAS BÆRENTZEN

Technical University of Denmark, Department of Informatics and Mathematical Modelling

We present a novel, topology adaptive method for deformable interface

tracking, called the deformable simplicial complex (DSC). In the DSC

method, the interface is represented explicitly as a piecewise linear curve

(in 2D) or surface (in 3D) which is a part of a discretization (triangula-

tion/tetrahedralization) of the space, such that the interface can be retrieved

as a set of faces separating triangles/tetrahedra marked as inside from the

ones marked as outside (so it is also given implicitly). This representation

allows robust topological adaptivity and, thanks to the explicit representa-

tion of the interface, it suffers only slightly from numerical diffusion. Fur-

thermore, the use of an unstructured grid yields robust adaptive resolution.

Also, topology control is simple in this setting. We present the strengths of

the method in several examples: simple geometric flows, fluid simulation,

point cloud reconstruction and cut locus construction.
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1. INTRODUCTION

Deformable interfaces are useful in a great many applications, such
as fluid dynamics where we need to track the interface between
fluids, 3D modelling where the interface is the surface of the object,
and image analysis where such methods are used in segmentation
and object recognition.

Topological adaptivity – meaning that interface components may
split and merge – is crucial to many applications of deformable in-
terface methods, and whenever this is the case, Eulerian methods,
such as the well known level set method and its numerous varia-
tions are often employed. While many of these methods are pow-
erful, they tend to work by sampling a function whose 0-level set
represents the interface on a regular grid. This sampling tends to
introduce numerical diffusion and cannot represent fine-scale de-
tails. In this project, it has, therefore, been our goal to avoid regular
grids altogether but without loosing the most important advantages
of the Eulerian outlook.

The main contribution of this paper is that we introduce the de-
formable simplicial complex, DSC, a generic method for tracking
deformable interfaces which combines many of the advantages of
Eulerian and Lagrangian mehods. In particular, the method suf-
fers from little numerical diffusion, allows for transparent topol-
ogy changes, and provides an explicit triangle mesh (in 3D) rep-
resentation of the interface which changes only where needed be-
tween time steps. We investigate several applications: fluid dynam-
ics, point cloud reconstruction and cut locus construction.

2. RELATED WORK

Traditionally, methods for deformable interface tracking fall into
two categories: explicit (Lagrangian) and implicit (Eulerian). Tra-
ditional Lagrangian methods, such as active contours or snakes,
parametrize the interface and apply the deforming velocity field (u)
directly to the interface points (p):

dp

dt
= u(p).

This approach leads to trouble once the topology of the interface
changes. An efficient collision detection mechanism is needed to
detect self-intersections of the interface, and once it happens, costly
reparametrisation is needed, along with surgical cuts (as in [Glimm
et al. 1995], although in recent work by [Brochu and Bridson 2009]
this problem is mitigated by not allowing self-intersections). Those
problems do not occur in Eulerian methods, such as the level set
method (LSM, [Osher and Fedkiw 2002]). LSM represents a n-
dimensional interface as the 0-level set of a (n + 1)-dimensional
function ϕ(x1, . . . , xn, xn+1) (signed distance function is usually
the choice), defined on the nodes of a regular grid. The evolution
of the interface due to the velocity field u is then described by the
following partial differential equation, also known as that level set
equation:

∂ϕ

∂t
+ u · ∇ϕ = 0.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



2 • M. K. Misztal and J. A. Bærentzen

Fig. 1: Interface representation in the deformable simplicial complex (2D on the left, 3D on the right). Exterior triangles (tetrahedra) are light
gray, interior – blue. Simplices belonging to the interface (edges and vertices in 2D; faces, edges and vertices in 3D) are highlighted in dark
blue. On the left, the red arrow indicates where a topological change takes place. Note also the difference in scale between the largest and the
smallest triangles.

This approach provides trivial and robust topological adaptivity.
However, the basic LSM also exhibits several drawbacks: it is
bound to a certain scale, it suffers from significant numerical dif-
fusion for features near the sampling rate irrespective of discretiza-
tion, it does not allow explicit interface representation, it does not
support multiple phases and it relies on calculations in one dimen-
sion greater than the interface itself. Some of the drawbacks of the
LSM have been successfully mitigated by numerous methods built
on top of the LSM mechanism, at the expense of the method’s sim-
plicity.

In order to address the disadvantages of purely Lagrangian or
Eulerian methods, several hybrid methods emerged. The particle
level set method (PLSM) by Enright et al. [2002] uses Lagrangian
particles around the interface and advects them with the flow. Char-
acteristics obtained this way are used to compensate for numerical
diffusion in basic LSM, which results in significantly lower vol-
ume loss and preservation of sharp details. Losasso et al. [2006]
used PLSM to successfully simulate multiple interacting fluids.

Some methods are based on triangle meshes, but use voxel grids
to resolve topological changes. One of the earliest examples is
the topologically adaptive snakes method by McInerney and Ter-
zopoulos [2000]: the interface is represented with a triangle mesh,
but a voxel grid is used to resolve topological changes, leading to
many of the issues of Eulerian methods and, moreover, movement
of the interface is restricted to pure expansion or contraction. In
more recent work, Wojtan et al. [2009] use a Lagrangian approach
and voxel grid-based method only to locally resolve topological
changes (and simplify complex areas). Since the changes are only
local and as needed, the method is able to pass the Enright test [En-
right et al. 2002] with no visible changes to the rotating geometry.
However, the method does require building a signed distance field
each time step and the scale of the voxel grid affects the results.

A different, semi-Lagrangian approach has been presented by
Bargteil et al. [2006]. Instead of advecting a triangle mesh with the
flow, it is reconstructed at every time-step but the correspondence
between interface points before and after the advection step is re-
trieved, allowing to track surface characteristics, such as texture
coordinates.

Some authors detect intersections using collision detection and
resolve topology changes using mesh transformations. Lachaud
and Montanvert [1999] propose a method where violation of an
edge length constraint indicates an intersection or self-intersection,
and a so-called axial transformation is used to create a tunnel if two

components merge, and, if a component splits, an annular transfor-
mation is used to disconnect the pieces. Zaharescu et al. [2007;
2011] propose a method where self-intersections are removed from
an evolving triangle mesh at each time step using a method that
greatly resembles Boolean operations on meshes.

The work most directly related to ours is the method due to Pons
and Boissonnat [2007a]. The authors proposed a method that is
based on a triangle mesh representation of the interface, but once
the vertices have been moved, a restricted Delaunay tetrahedraliza-
tion of the interface is performed. A test is performed on each of
the new tetrahedra in order to label them as interior or exterior. If
a vertex is found to be shared only by identically labeled tetrahe-
dra, it is removed. This method shares a number of advantages with
our method. In particular, it can be extended to multi-phase simu-
lations, however, Delaunay remeshing of the point cloud at every
time step does not allow one to handle small, sharp features prop-
erly, unless the sampling of the surface is very dense. Furthermore,
there is no detection of what happens between time steps. Arguably
a small object could pass through a thin wall if the time step was
not properly tuned, and the precise points where interface collisions
occur are not detected. Lastly, it would be difficult to extend their
method to do topology control which is simple with our approach.
Another paper by the same authors ([Pons and Boissonnat 2007b])
presents a 2D version of the algorithm. It shows similarity to our
2D method (no remeshing takes place, edge swaps are performed to
improve the quality of the embedding mesh) however, the authors
do not utilize Steiner vertex insertion, which is possibly the rea-
son why they failed to generalize the method to 3D. Moreover, the
method is limited to domains which are topologically equivalent to
a disk.

A recent paper by Wicke et al. [2010] shows a new method for
FEM simulation built on top of kinetic tetrahedral mesh used to
discretize an elastoplastic material. The mesh improvement routine
bears resemblance to our method but it does not allow changes in
the topology of the interface other than fractures, which are pro-
duced through fracture simulation built on top of their simulation
framework rather than on the mesh improvement level. In particu-
lar, their method does not support merging of volumes of the ma-
terial. In contrast, the DSC method allows all kinds of interface
topology changes and, like in the level set method, they are pro-
duced automatically, requiring no surgical cuts or user interaction.
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3. DEFORMABLE SIMPLICIAL COMPLEX

Like the level set method [Osher and Fedkiw 2002], DSC is a
method for dealing with deformable interfaces. In the DSC method,
the interface is represented explicitly as a set of faces of simplices
belonging to a simplicial complex one dimension higher. These
simplices belong either to the object or the exterior. Simplices never
straddle object boundaries. Thus, in 2D, the computational domain
is divided into triangles, and the deforming interface is the set of
line segments which divide interior triangles from exterior trian-
gles. Similarly, in 3D, the interface is the set of triangles dividing
interior tetrahedra from exterior tetrahedra. Both the 2D and 3D
case are illustrated in Figure 1.

The interface deformation is performed by moving the vertices,
and this means that the method preserves the advantages of the La-
grangian methods: it suffers from little numerical diffusion, and
there is an explicit representation of the interface which, further-
more, does not change gratuitously between time steps. Moreover,
the simplicial complex does not have to be regular meaning that we
can allow details of significantly different scale in the same grid
(c.f. Figure 1 left).

On the other hand, our approach also shares what we perceive
as the biggest advantage of the Eulerian methods. Whenever the
interface moves, the triangulation is updated to accommodate the
change. If two different interface components collide, this change
causes them to merge. Thus, topology is allowed to change trans-
parently to the user—although with our method it is also possible
to disallow topological changes.

3.1 Method description

We will first describe the DSC method in 2D. In each time step, we
iteratively move points toward their destinations (in arbitrary order,
without inverting any triangles), and then improve the mesh until
all vertices reach their final destinations. If the displacement of a
vertex does not invert any triangle in its star (1-ring) then it is per-
formed. Otherwise, it is moved as far as possible along a straight
line connecting the old and the new destination. When all vertices
have moved, we perform a mesh improvement routine and the dis-
placement of the vertices to their final positions is continued in the
next substep, taking as many substeps as required to reach the end
of the time step.

The mesh improvement step aims at improving the quality of the
mesh in order to decrease the likelihood of situations where the
displacement of a vertex to its final position is not possible and to
remove the degenerate triangles created when such situations occur.
The following operations are used in the 2D mesh improvement
routine:

—Mesh quality improvement: moving vertices tends to introduce
degenerate triangles and it almost invariably reduces the quality
of the simplices. Consequently, we need to improve the quality
– both because poorly shaped triangles are the most likely to be
inverted as we move the interface vertices (and hence we can-
not displace them in one go) and also because we often want
to use the mesh as a computational grid and the quality of ele-
ments might significantly affect the accuracy of the results. We
perform Laplacian smoothing of the non-interface vertices. Edge
flips are performed for all non-Delaunay edges (determined us-
ing the empty circumcircle property) in the mesh which are not
interface edges.

—Interface topology changes: edge flips are also performed when
an interface edge is the longest edge of a cap (nearly degener-
ate triangle with its obtuse angle greater than a certain threshold

value θcap, cos θcap = −0.99) and if the vertex of the cap oppo-
site to this edge (cap tip) lies on the interface as well; the newly
created triangles are labeled according to the other triangle adja-
cent to the flipped edge (see Figure 1 left).

—Detail control: in order to make the mesh improvement effective,
we need some degrees of freedom – extra non-interface vertices,
also known as Steiner vertices. We add Steiner vertices by in-
serting vertices in the barycenters of needles (triangles with one
extremely small angle θneedle = 0.01π and longest to shortest
edge length ratio greater than 10). This will produce two trian-
gles with even smaller angles, but these are removed by edge
flips. However, we must also make sure that we do not introduce
too many vertices, otherwise the complexity of the mesh might
grow dangerously high. Non-interface edges are removed if this
can be done without changing the interface and without intro-
ducing degenerate triangles or triangles with a minimum angle
smaller than a threshold 0.1π. This also removes a non-interface
vertex.

—Degeneracy removal: whenever we move a vertex as far as it is
possible without inverting the triangles in the mesh, we introduce
degenerate triangles (area of which is close to 0). Hence we have
to remove triangles with one of the angles smaller than a cer-
tain threshold angle θdegenerate = 0.005π or with area smaller
than adegenerate = 0.5ē2 sin θdegenerate (where ē is the aver-
age edge length in the original interface) through edge collapse
of the shortest edge, if it produces a valid mesh.

3.2 3D deformable simplicial complex

The pseudocode of the 3D version of DSC is shown in Algorithm
1–3. It follows the main steps of the 2D algorithm, however, some
of the tools useful in the 2D case exhibit mediocre performance in
3D. Laplacian smoothing may produce inverted tetrahedra in 3D
despite working quite well in 2D. Likewise, while in the 2D case
Delaunay meshes are usually high quality, in 3D they often contain
numerous, nearly-flat tetrahedra (called slivers), which easily get
inverted due to a small displacement of their vertices and introduce
significant errors in finite element computations [Shewchuk 2002].

To overcome the first difficulty, we use smart Laplacian smooth-
ing (moving a vertex towards the barycenter of its neighbors only
if it improves mesh quality locally) supported by L. Freitag’s op-
timization based smoothing, [Freitag et al. 1995]. Also, Delau-
nay tetrahedralization is used only to create the initial tetrahe-
dralization of the domain (using TetGen [Si 2004]), which then
undergoes mesh improvement (analogous to the mesh improve-
ment algorithms described in [Freitag and Ollivier-Gooch 1997]
and [Klingner and Shewchuk 2007], see Algorithm 3). Instead
of using the Delaunay quality measure of a tetrahedron (mini-
mum solid angle) in our mesh quality improvement operations,
we aimed for a quality measure which would penalize both slivers
and long, needle-shaped tetrahedra, characterized by near-zero vol-
ume despite the fact that the distances between their vertices (edge
lengths) might be large. We decided to use the volume-length ratio
[Parthasarathy et al. 1994]:

Q(σ) = 6
√
2
V (t)

l3rms

,

where V (t) is the oriented volume of a tetrahedron t, and lrms is
the average (root-mean-squared) of the lengths of its edges:

lrms =

√

l212 + l213 + l214 + l223 + l224 + l234
6

.
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This function is scale-invariant and measures how different a tetra-
hedron is from the regular tetrahedron (it equals 1 for the regular
tetrahedron, and it is close to 0 for slivers and needles). This is of
course not the only quality measure having those properties (for
other options see [Hansen et al. 2009; Shewchuk 2002]), we chose
it for its simplicity and smoothness.

In 3D we support both volumetric and surface mesh improve-
ment operations.

3.2.1 Volumetric Mesh Improvement. Analogously to the 2D
case, the tetrahedral mesh used in the 3D DSC needs to be improved
after each step of the deformation. The following operations are
used in the mesh improvement step:

—Mesh quality improvement.

—Smart Laplacian smoothing of the non-interface vertices and
optimization-based smoothing, which moves the vertex v in a
way that maximizes the minimal quality of the tetrahedra in its
coboundary (this is clearly a non-smooth optimization prob-
lem, for the details see [Freitag et al. 1995]). Optimization-
based smoothing is computationally expensive and we only
use it if smart Laplacian smoothing fails to improve the mini-
mum quality Q in the 1-ring of v above 0.05.

—Likewise, we perform topological operations on the 3D
meshes (generalizations of the edge flip in the 2D case): edge
remove, multi-face remove, multi-face retriangulation (shown
in Figure 2, for more detail see [Freitag and Ollivier-Gooch
1997; Klingner and Shewchuk 2007; Misztal et al. 2009]) if
they improve minimal quality locally. Since the topological
operations are computationally expensive, we only perform
them for tetrahedra of quality less than 0.1 (if an applica-
tion calls for higher quality meshes, this parameter can be set
higher, at the cost of increase in computation time).

—Interface topology changes: topology changes occur when ver-
tices from one component of the interface touch another part of
the interface. In this case the two interface parts will be separated
only by one or more degenerate tetrahedra. Those tetrahedra are
either re-labelled (switched from inside to outside, or the other
way round) or removed as a part of the degeneracy removal (dis-
cussed below).

—Tetrahedron re-labelling: one can generalize the 2D cap-flip to
the 3D case by re-labelling a nearly flat tetrahedron t (quality
lower than qrelabel = 0.01) trapped between two parts of an
interface. This is a case when the largest face f of t lies on
the interface and the vertex v opposite to f also lies on the
interface and its orthogonal projection onto f lies within f ’s
hull. In order to improve the interface mesh we also re-label t
if Q(t) < qrelabel

2
and the change of label would decrease the

total area of the interface. Since, in some way, re-labelling acts
like “combinatorial surface tension”, qrelabel might be relaxed
in some applications, such as fluid simulation.

—Detail Control. Non-interface edges are collapsed if their end-
points do not lie on the interface or the DSC mesh boundary
and if the collapse does not produce degenerate, inverted or low-
quality (less than a threshold qcollapse = 0.25 in our experi-
ments) tetrahedra. Edges which do not belong to the interface
are split if they either connect the domain boundary with the
interface or two interface vertices and if they are longer than
a threshold lsplit = 4ē, where ē is the average edge length in
the original interface mesh. This ensures that the interface has
enough freedom to move. The aforementioned parameters are
somewhat arbitrary and could be modified. The values we have

selected are rather aggressive, aimed at avoiding increase in the
complexity of the mesh.

—Degeneracy removal: the topology of the interface changes when
vertices from one part of the interface collide with another part
of the interface. This introduces degenerate tetrahedra, and when
these are removed as described below, the topology changes oc-
cur. Tetrahedra: if a tetrahedron’s vertices are nearly coplanar
(e.g. if the tetrahedron’s quality is smaller than a value qmin =
5 ·10−3) its largest face is found and a tetrahedron removal strat-
egy is chosen accordingly to the position of its opposite vertex
by “flattening” the tetrahedron and replacing it with a set of 2, 3
or 4 faces. Faces: if a face contains an angle smaller than θmin,
cosmin = 0.999, it can be either a cap or a needle. If the ra-
tio of the longest edge to the second longest edge in the face is
greater than 1.03, the longest edge is split at the projection of the
vertex opposite to it and the edge connecting the new vertex and
the cap tip is collapsed; otherwise, the face is a needle and the
edge opposite to the smallest angle is collapsed (both collapses
are performed if they produce a valid mesh). Edges: finally, we
collapse edges shorter than a threshold value lmin = 0.5emin

(where emin is the length of the shortest edge in the input inter-
face mesh) if it produces a valid mesh.

Algorithm 1 3DDSC(M,u)
{M is a tetrahedral mesh conforming to the initial interface}
{u is a velocity function for the interface vertices}

1: t⇐ 0
2: while t < T do
3: for each marked (interface) vertex pi do
4: compute final vertex position

p̃i ⇐ pi + u(pi) ·∆t
5: end for
6: flip interface edges
7: complete⇐ false
8: counter ⇐ 0
9: while not complete do

10: counter ⇐ counter + 1
11: complete⇐ MOVEVERTICESSTEP(M, {p̃i})
12: relabel valid degenerate tetrahedra
13: T ← set of tetrahedra adjacent to vertices displaced

in the previous step
14: smooth all non-interface vertices in T
15: if complete and counter ≡ 0 (mod 4) then
16: IMPROVEMESHSTEP(M,T )
17: else
18: smooth all non-interface vertices
19: reconnection step (lines 3-10 in Algorithm 3)
20: remove degenerate tetrahedra
21: remove degenerate faces
22: remove degenerate edges
23: end if
24: end while
25: t⇐ t+∆t {∆t is a time-step}
26: end while

3.2.2 Surface Mesh Improvement. The success of a La-
grangian method often depends on the quality of the triangulation
of the interface [Brochu and Bridson 2009], especially when the ve-
locity field computation depends on the geometry of the interface.
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Fig. 2: Topological operations (swaps) used for mesh reconnection in 3D DSC. Each operation is performed only if it improves the minimum
quality locally.

Algorithm 2 MOVEVERTICESSTEP(M, {p̃i})
{{p̃i} is a set of the new positions of the interface vertices}

1: complete⇐ true
2: for each marked vertex pi do
3: if ‖pi − p̃i‖ > 0 then
4: compute the intersection t0 of the ray pi+t·(p̃i−pi)

with the link of the vertex pi

5: if t0 > 1 then
6: pi ⇐ p̃i

7: else
8: move the vertex pi to the intersection point pi+

t0 · (p̃i − pi)
9: complete⇐ false

10: end if
11: end if
12: end for
13: return complete

Algorithm 3 IMPROVEMESHSTEP(M,T )

1: split long non-interface edges
2: smooth all non-interface vertices in T
3: for each tetrahedron t ∈ T , such that Q(t) < 0.1 do
4: for each non-interface face f of t do
5: attempt to remove f using MFRT and MFR
6: end for
7: for each non-interface edge e of t do
8: attempt to remove e using edge removal
9: end for

10: end for
11: collapse valid non-interface edges

Moreover, the quality of the tetrahedralization benefits from bet-
ter shaped triangles in the interface [Chew 1997; Shewchuk 1998].
However, even if we start with a high quality triangular mesh, it
might quickly deteriorate as we advect the interface. To prevent
this we include several interface improvement operations which do
not significantly alter the geometry of the interface:

—Null-space smoothing [Jiao 2007]: moving each interface, mani-
fold vertex only in the null space of its local quadric metric ten-
sor. This way it does not change the geometry of the interface

mesh. However, in our implementation we allow slight changes
to the geometry in smooth regions (we treat the neighborhood of
a vertex as flat, if the ratio between the second greatest eigen-
value of the quadric metric tensor to the greatest eigenvalue is
smaller than the aggressiveness factor of 0.025).

—Edge flip of the interface, non-manifold edge e: performed if e’s
adjacent interface triangles do not fulfill 2D Delaunay criterion,
if e is not a feature edge (measured by the angle θflip between
the normals to its adjacent faces, θflip < 5◦). Interface edge flip
is in fact a restricted case of the edge removal (swap) operation
in the embedding tetrahedral mesh.

—Edge split for edges longer than a selected threshold value (usu-
ally 2 times the average edge length in the original surface mesh).

The aforementioned operations are an optional part of the 3D
DSC algorithm. They are all used in the fluid simulation method.

In order to quantify the error introduced by our surface mesh im-
provement procedures, we have performed an experiment, in which
we applied 100 iterations of our surface mesh improvement pro-
cedures (with null-space smoothing aggressiveness factors of 0.2,
0.025 and 0.003125) to a Stanford dragon model. The results of
our experiment are presented in Table I. For our choice of aggres-
siveness factor, the final mesh shows significant triangle quality im-
provement while there is no visible volume or detail loss.

3.3 Implementation

The 2D DSC implementation is built on top of the half-edge data
structure [Mäntylä 1988] available in the GEL library [Bærentzen
2010].

The 3D DSC implementation relies on our own C++ implemen-
tation of the Incidence Simplicial data structure for 3D simplicial
complexes by de Floriani et al. [2010]; we have also implemented
all mesh operations used in the algorithm. In its current form, the
3D DSC algorithm requires a triangle mesh as an input. This tri-
angle mesh is then normalized (its barycenter is moved to (0, 0, 0)
and all vertices are scaled down by 2.5 · r where r is the radius of
the minimal sphere centered at (0, 0, 0), containing the whole in-
terface mesh) and tetrahedralized on the inside and on the outside
using TetGen [Si 2004] (the outside mesh is bounded by a sparsly
subdivided (−1,−1,−1)× (1, 1, 1) box).

We are currently working on making the code available to the
wider public.
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aggressiveness max. distance avg. distance volume loss

2 · 10−1 0.332 0.0221 8.47 · 10−3 %

2.5 · 10−2 0.132 0.0138 7.76 · 10−3 %

3.125 · 10−3 0.106 0.00375 8.77 · 10−3 %

Table I. : Surface mesh improvement results. The first image from the top

shows the original mesh, the second one – the same mesh after 100 it-

erations of surface mesh improvement with the aggressiveness factor of

0.025. The third row shows the signed distances (relative to the average

edge length in the original mesh) of vertices in improved meshes from the

original mesh, from left to right: 100 iterations with aggressiveness of 0.2,

0.025 and 0.003125. The table at the bottom shows the maximum abso-

lute distance, the average absolute distance and volume loss for each of

the experiments (the dragon model is courtesy of the Stanford 3D scanning

repository http://graphics.stanford.edu/data/3Dscanrep/).

4. APPLICATIONS

4.1 Simple Geometric Flows

The benchmark tests for deformable models are simple geometric
flows: rotation, mean curvature flow, offsetting (motion in the nor-
mal direction) and the Enright test [Enright et al. 2002; Osher and
Fedkiw 2002].

4.1.1 Rotation. Rotation with an angular velocity ω around an
axis e is performed by multiplying the interface vertices’ positions
by a rotation matrix R(e,∆θ) (where ∆θ = ω · ∆t, ∆t is the
time step) in every time-step. This simple geometric flow poses a
challenge for level set method, as the numerical diffusion causes
the interface to lose sharp details and volume [Osher and Fedkiw
2002] and requires elaborate fixes to prevent it. Deformable simpli-
cial complex, like Lagrangian methods, does not suffer from such
problems, as can be seen in Figure 3.

4.1.2 Mean Curvature Flow. We compute the mean curvature
of the interface using the cotangent formula [Pinkall and Polthier
1993]. The results are shown in Figure 4.

4.1.3 Offsetting. Motion in the normal direction is performed
using face offsetting [Jiao 2007]. Displacing the triangle mesh ver-
tices by constant distance in the normal direction gives incorrect
results. Instead, we offset the planes containing faces of the trian-
gular mesh in the normal direction and find new vertices’ positions
from the intersections of these planes. The results are presented in
Figure 5.

4.1.4 The Enright test. Enright deformation [Enright et al.
2002] is given the following velocity field:

u(x, y, z) =

(

2 cos(πt) sin2(πx) sin(2πy) sin(2πz)
− cos(πt) sin(2πx) sin2(πy) sin(2πz)
− cos(πt) sin(2πx) sin(2πy) sin2(πz)

)

,

for t ∈ (0, 2). Since it brings the interface back to the original
shape at t = 1 and t = 2, it is commonly used to evaluate the
amount of numerical diffusion (volume and detail loss) introduced
by the interface tracking method. The results of the Enright test
in the DSC framework (with null-space smoothing switched off),
presented in Figure 6, show minimal numerical diffusion.

4.2 Cut Locus Construction

We utilize the possibility to preserve the topology of a front and to
give the domain other topology than that of a disk in our cut locus
construction method for Riemannian 2-manifolds, described in de-
tail in [Misztal et al. 2011]. The cut locus of a point p in a manifold
(M,g) is essentially a set of all those points which are connected
to p by more than one minimizing geodesic [Sakai 1996]. This can
also be seen as a set of those points, where equidistance circles
centered at p form cusps and self-intersect. Our algorithm utilizes
the second approach. We advect the circle centered at p along the
geodesics connecting its points with p with constant speed. The
advection takes place in the coordinate chart (parametric domain,
(u, v)-space) discretized using 2D deformable simplicial complex
and the 2D DSC mesh is given torus topology. Whenever the front
is about to collide with itself (when this happens, degenerate tri-
angles appear in the mesh) the interface stops, as shown in Figure
8. Some examples of cut locus construction results for tori are pre-
sented in Figure 7.
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Fig. 3: Rotation in the DSC framework. Changes to the interface mesh are minimal; vertices have been added to the interface in order to relax
the DSC mesh.

Fig. 4: Mean curvature flow quickly erases high frequency details of the surface. Note an important property of the DSC – the interface mesh
only changes in the regions where it is needed, in order to accomodate the deformation. One can notice that most of the triangulation remains
essentially unchanged between the frames, except for the ears, where the triangulation changes a lot (since this part of the mesh is affected
the most by the mean curvature flow). The bunny model is courtesy of the Stanford 3D scanning repository.

4.3 Point Cloud Reconstruction

In order to demonstrate adaptive resolution of the DSC method, we
implemented a simple, topology adaptive point cloud reconstruc-
tion method. Our method is inspired by the algorithm proposed by
Hoppe et al. [1993], which is not topology adaptive. The initial in-
terface is the triangulation of a bounding sphere of the point cloud.
In every time step we compute a new desired configuration for each
face f :

—if the vicinity of the face does not contain any point from the
point cloud, we offset it in the normal direction, inwards;

—if the vicinity of the face contains points from the point cloud
(and f is the closest face for these points), we compute their
least squares minimizing plane;

The plane computed for a given face f is pushed to all vertices inci-
dent on f , and a new vertex position is computed as the intersection
of all the planes pushed from incident faces. Whenever the plane
containing f does not approximate the points assigned to it ac-
curately enough, we subdivide it. This extremely simple approach
turns out to give decent results: it handles the sharp features cor-
rectly, unlike Poisson reconstruction [Kazhdan et al. 2006] or early
approaches based on Radial Basis Functions [Turk and O’brien
2002] (unless normal constraints are used [Shen et al. 2004]). Fur-
thermore, mesh subdivision occurs only when needed (see Figure
9).

4.4 Fluid Simulation

One of the main applications of deformable models is to track the
free surface in fluid simulations. The free surface of a fluid un-
dergoes drastic deformation and frequent changes in topology, so
robust topological adaptivity is crucial. Traditionally, the level set
method has been used alongside regular grid-based Navier-Stokes
equation solvers [Bridson 2008]. This approach has proven to be
extremely successful and is widely used in multiple practical ap-
plication, but it has its limitations. Many of them, such as volume
loss or difficulty handling curved solid boundaries have been ad-
dressed by numerous, often very elaborate patches. The lack of ex-
plicit interface representation makes it quite difficult to simulate
surface phenomena and incorporating them in a fluid simulation
framework requires fairly complex operations on the sub-grid scale
meshes used for tracking fluid’s surface [Wojtan et al. 2010; Thürey
et al. 2010].

In [Misztal et al. 2010; Erleben et al. 2011] we present a com-
pletely new, finite element method based approach to fluid simula-
tion, utilizing the DSC method for tracking the free surface of the
fluid and using the DSC mesh as a FEM grid with linear elements.
Our solver reformulates the incompressible Euler equations (invis-
cid flow equations) as an optimization problem and allows to cou-
ple them with the surface energy term explicitly incorporated into
the objective function. In addition, the method automatically han-
dles collisions with arbitrary planar and curved solid boundaries.

A few examples are shown in Figures 10, 11, 12. Figure 10 shows
the surface mesh. Applying a single iteration of Loop subdivision
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Fig. 5: Interface offsetting, from the top: 2D case; close-up on the area affected by collision of two expanding spheres; Stanford bunny
expanding in the normal direction; Dragon model shrinking in the normal direction (the bunny and dragon models are courtesy of the
Stanford 3D scanning repository http://graphics.stanford.edu/data/3Dscanrep/).

to the interface mesh allows to create plausibly looking animations
(as shown in Figures 11, 12).

4.5 Scalability and Performance

The complexity of all the mesh improvement operations used in
the 3D DSC algorithm is approximately linear with respect to the
number of tetrahedra in the mesh. Our experiments also suggest
that the number of tetrahedra in the DSC mesh is at most a quasi-

linear function of the number of the interface triangles. Additional
tests performed during the simple geometric flow examples have
shown that the DSC mesh is dominated by tetrahedra adjacent to
the interface (around 70% of all tetrahedra in all DSC meshes in
our experiments are adjacent to the interface). In most of our ex-
periments, the ratio of the total number of tetrahedra to the number
of interface triangles fluctuates between the values 5 and 6.

Although low quality tetrahedra occasionally appear in the DSC
mesh, dihedral angles from outside 6◦–171◦ range constitute less
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Fig. 6: The full cycle of the Enright deformation for decimated Armadillo model, at t = 0, 0.5, 1, 1.5 and 2 (the interface comes back to the
original shape at t = 1 and t = 2). The armadillo model is courtesy of the Stanford 3D scanning repository.

Fig. 7: 2D DSC-based cut locus construction algorithm results for tori: left and middle – cut loci of a standard torus of revolution with circular
generator r1(u, v) = ((2 + cos(v)) cos(u), (2 + cos(v)) sin(u), sin(v)), for points (u, v) = (0, 0) and (0, 0.1π)); middle and right – cut
locus of a standard torus of revolution with elliptic generator r2(u, v) = ((2 + cos(v)) cos(u), (2 + cos(v)) sin(u), 2 sin(v)), for a point
(u, v) = (0, 0.1π).

than 0.1% of all dihedral angles in the tetrahedral mesh throughout
all iterations (see Table II). This is sufficiently good for some ap-
plications, including those where DSC mesh is not used for FEM
computation, as well as FEM simulations for visualization purposes
only, however high accuracy FEM simulations might require a nar-
rower range of dihedral angles.

Single iteration time might depend on the size of the displace-
ment. If the displacements are large compared to the interface mesh
edge size, several collisions might need to be resolved and bringing
all interface vertices to their final positions might require more than
just one or two executions of the main loop in Algorithm 1. Com-
pare the results for the bunny example in Table II: in the offsetting
example the velocity vector length does not vary much from vertex
to vertex, and for sufficiently small time steps, the average iteration
time is as low as 5 seconds, while in the mean curvature motion
example the displacement values can be very large in the high cur-
vature regions (where the triangles are also appropriatelly smaller)
resulting in almost three times higher average iteration time.

On average, for similar flows, the computation time seems to
scale linearly with respect to the number of tetrahedra in the mesh.
All experiments were run on 64-bit Intel R© Core R© i7 CPU X980
@ 3.33 GHz, 24 GB RAM).

5. CONCLUSIONS AND FUTURE WORK

Our results show that the deformable simplicial complex can be
an interesting addition to an existing deformable models toolbox.
It shares the main advantage of the level set method: robust topo-
logical adaptivity, while suffering from little to no numerical dif-
fusion and naturally supports adaptive resolution. Likewise, DSC

method’s intrinsic collision detection mechanism makes topology
control natural and simple, and the domain can have topology other
than a disk, as demonstrated by the cut locus application. Moreover,
the DSC mesh can be used for finite element computations.

While the speed of the DSC is comparable to other tetrahedral
mesh-based method [Wicke et al. 2010], it is slower than the level
set method. However, there is an untapped potential for paralleliz-
ing computations in the DSC method which we intend to explore.
Moreover, for some applications, we can improve speed by per-
forming operations only locally where changes to the interface oc-
cur. Note also that in many cases FEM computations take signifi-
cantly more time than interface advection.

In order to use the DSC in FEM simulations requiring more accu-
racy, we would first have to further improve the DSC mesh quality
(in terms of both extreme dihedral angles and mesh refinement),
possibly by introducing Klinger’s and Shewchuk’s vertex insertion
algorithm [Klingner and Shewchuk 2007; Wicke et al. 2010] into
the repertoire of tetrahedral mesh operations used in the DSC al-
gorithm. Furthermore, the results could benefit from higher-order
time-step integration and from computing exact collision time and
using it to determine the ordering of vertex displacements in a sin-
gle DSC iteration.

The DSC method in its current form allows for non-manifold
configurations in the surface mesh. While this sort of generality
can be desirable, some applications require the surface mesh to be
2-manifold. In order to enforce that, we could try to construct a
tunnel-like structure around a non-manifold vertex or edge, when-
ever it is introduced — however, we have yet to analyse this prob-
lem.
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Fig. 8: A few steps of the cut locus construction algorithm for a standard torus of revolution. An equidistant front (highlighted in red) is
propagating along geodesics (highlighted in blue) in the (u, v)-plane. Whenever the front collides with itself it stops (highlighted in green).

Fig. 9: Reconstruction of an artificial point cloud – a box with a cylindrical tunnel.

We would also like to continue working on the applications men-
tioned in Section 4.
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Fig. 10: An example of fluid simulation using 3D DSC: Stanford bunny deformed by surface tension forces alone (the bunny model is
courtesy of the Stanford 3D scanning repository http://graphics.stanford.edu/data/3Dscanrep/).

Fig. 11: An example of fluid simulation using 3D DSC: two droplets colliding obliquely (the interface mesh was subdivided once using Loop
subdivision and ray traced as a post process).
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THÜREY, N., WOJTAN, C., GROSS, M., AND TURK, G. 2010. A multi-

scale approach to mesh-based surface tension flows. In SIGGRAPH ’10:

ACM SIGGRAPH 2010 papers. ACM, New York, NY, USA, 1–10.

TURK, G. AND O’BRIEN, J. F. 2002. Modelling with implicit surfaces that

interpolate. ACM Trans. Graph. 21, 4, 855–873.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



12 • M. K. Misztal and J. A. Bærentzen

Fig. 12: An example of viscous fluid simulation using 3D DSC: Armadillo splashing inside a spherical bowl (the interface mesh was subdi-
vided once using Loop subdivision and ray traced as a post process). The armadillo model is courtesy of the Stanford 3D scanning repository.

example #surf. triangles #total tets #inside tets min/max dih. angles dih. angle distrib.
time per
iteration

GENUS2 1536 10609 2963 7.38◦–164.42◦
       

rotation 1552 6781 2864 4.83◦–164.36◦
       

0.32 s

TWO SPHERES 3240 17773 6509 7.01◦–163.61◦
       

offsetting 2910 11166 6037 2.87◦–171.69◦
       

0.81 s

BUNNY 13932 88659 40763 3.86◦–172.46◦
       

offsetting 13444 57257 32477 1.15◦–177.93◦
       

5.07 s

mean curv. flow 12060 61609 27776 5.12◦–170.95◦
       

13.94 s

DRAGON 87840 518043 249142 4.55◦–172.7◦
       

offsetting 65528 355321 156149 0.52◦–178.4◦
       

36.22 s

Table II. : Statistics for the simple geometric flows. For each experiment we present mesh data before and after the simulation. From the
left to the right, the following statistics are shown: the number of the interface triangles; the total number of tetrahedra in the DSC mesh;
the number of the tetrahedra marked inside; minimum and maximum dihedral angles among the inside tetrahedra; the histogram of dihedral
angles distribution in the inside mesh; average iteration time.
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