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Abstract

Background: One of the central interests of Virology is the identification of host factors that contribute to virus

infection. Despite tremendous efforts, the list of factors identified remains limited. With omics techniques, the focus

has changed from identifying and thoroughly characterizing individual host factors to the simultaneous analysis of

thousands of interactions, framing them on the context of protein-protein interaction networks and of transcriptional

regulatory networks. This new perspective is allowing the identification of direct and indirect viral targets. Such

information is available for several members of the Potyviridae family, one of the largest and more important

families of plant viruses.

Results: After collecting information on virus protein-protein interactions from different potyviruses, we have

processed it and used it for inferring a protein-protein interaction network. All proteins are connected into a

single network component. Some proteins show a high degree and are highly connected while others are

much less connected, with the network showing a significant degree of dissortativeness. We have attempted

to integrate this virus protein-protein interaction network into the largest protein-protein interaction network

of Arabidopsis thaliana, a susceptible laboratory host. To make the interpretation of data and results easier, we

have developed a new approach for visualizing and analyzing the dynamic spread on the host network of

the local perturbations induced by viral proteins. We found that local perturbations can reach the entire host

protein-protein interaction network, although the efficiency of this spread depends on the particular viral proteins.

By comparing the spread dynamics among viral proteins, we found that some proteins spread their effects fast and

efficiently by attacking hubs in the host network while other proteins exert more local effects.

Conclusions: Our findings confirm that potyvirus protein-protein interaction networks are highly connected, with

some proteins playing the role of hubs. Several topological parameters depend linearly on the protein degree. Some

viral proteins focus their effect in only host hubs while others diversify its effect among several proteins at the first step.

Future new data will help to refine our model and to improve our predictions.

Keywords: Amplification of perturbations, Network biology, Potyvirus, Protein interaction network, Systems biology,

Virology

Background

Potyvirus is the mayor genus in the Potyviridae family,

accounting for 30% of all known plant viruses, with

more than 180 members. Many potyviruses are import-

ant pathogens of agricultural crops. They are able to

infect a wide range of mono- and dicotyledonous plant

species [1], causing symptoms that severely reduce the

yield and quality of crops. The economic impact of these

viruses on agriculture is well-documented [2]. Some ex-

amples of potyviruses are Plum pox virus (PPV), Soybean

mosaic virus (SMV), Turnip mosaic virus (TuMV), and

Tobacco etch virus (TEV) [3].

Potyvirus virions are flexuous and rod-shaped, 680 to

900 nm long and 11 to 15 nm wide [4]. Potyviruses have a

single-stranded, positive-sense RNA genome of approxi-

mately 10 kilobases (kb). They contain two open reading

frameworks (ORF). The first one is a long ORF which is

translated into a large polyprotein, which subsequently

self-processes into 10 mature functional proteins: P1, a
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serine protease also involved in enhancement of polypro-

tein translation; HC-Pro, a protease with RNA silencing

suppressor activity that also mediates aphid transmission;

P3, which play a role in cell-to-cell movement; 6 K1, a

small peptide that links the replication complexes to ER

membranes; CI, an RNA helicase with ATPase activity;

6 K2, another small peptide of unknown function; VPg,

linked to the 5′ end of the genome; NIaPro, the mayor

protease; NIb, the RNA-dependent RNA polymerase; and

CP, the capsid protein [5]. The second ORF is a small one

embedded within the P3 coding region and results

from +2 frame-shift [6,7]. This recently discovered ORF en-

codes the eleventh protein, P3N-PIPO, also involved in

cell-to-cell movement. Much research in the last two de-

cades has focused on understanding the functions of the

different potyvirus proteins during the virus life cycle.

Rapid rise of academic interest in this topic followed the

complete sequencing of the first two potyviruses: TEV [8]

and Tobacco vein mottling virus (TVMV) [9]. Many excel-

lent reviews have been published since then [4,10]; some

addressing particular issues such as protein function [11],

polyprotein processing [12,13], cellular localization [14]

and genome structure [1].

During the last decade there has been an increasing

number of studies of protein-protein interactions (PPIs)

and the effect that these interactions cause on a wide

range of biological processes [15]. PPIs are defined as

physical contacts that take place in cells through mo-

lecular docking [16]. Proteins work typically linked to

other molecules including lipids, nucleic acids or other

proteins [17]. Biological activity usually arises from the

association of several proteins, which form protein com-

plexes. In viruses, interactions between proteins play

vital roles in many processes during infection such as

virus trafficking between the nucleus and the cytoplasm,

formation of replication complexes, assembly of virions,

or virus transmission to other cells. Traditionally, PPIs

have been studied using methods such as coimmunopre-

cipitation or chromatography [18]. However, over the

past decade two experimental strategies have been used

to detect these interactions: yeast two-hybrid (Y2H)

[17,19,20] and affinity purification coupled with mass

spectrometry (AP-MS) [21]. Additionally, bimolecular

fluorescence complementation (BiFC) [22,23] has grown

in popularity during the last few years because it allows

PPI visualization in living cells, which is a key aspect to

understand their cellular functions.

PPIs form networks of linked proteins which are called

consequently protein-protein interaction networks (PPINs)

[16]. PPINs can be seen as a visual representation of the

complete map of interactions that a system (pathway, cell,

living organism) establishes in a particular moment and

for a certain time window. Detection methods (specially

Y2H) opened the possibility to tackle protein-protein

interactions on a genome wide scale, producing complete

PPINs, which have been called interactomes [24-27]. Viral

PPINs have also been developed [28,29], revealing quite

useful biological information.

The analysis of viral PPINs presents interactions be-

tween two proteins of the virus (VVPIs) or interactions

between viral proteins and host proteins (VHPIs). These

PPINs illustrate a fundamental property of viral proteins:

their multifunctionality. Viral proteins usually perform

different functions at different stages of the infection

cycle. Moreover, their role changes along with the infec-

tion process. Thus, detecting VHPIs provides valuable

insight into viral mechanisms and processes. VHPIs are

responsible of channeling the effect of the virus into

the plant. In addition, interactions between host proteins

(HHPIs) are also fundamental in order to understand the

interplay between virus and host, and the biological conse-

quences once the virus effect starts to propagate across

the host PPIN [30].

PPINs, as any other network, may be described and

studied from a complex systems point of view. Over the

past fifteen years many researchers have focused on de-

veloping tools and frameworks to study, categorize and

understand networks [31-34]. Some work has been done

applying network theory to biological networks, develop-

ing a new discipline or approach called Network Biology

[35-38]. An excellent and updated review on topology of

interaction networks may be found in [39]. Some studies

have dealt with the topological properties and features of

PPINs [33,40-42], however just a few have focused on viral

PPINs [5,29,43]. Viral infection is a complex process and

it requires a systems approach to be fully described. A

more detailed and systematic understanding of how viral

proteins interact with each other, and with host proteins,

might allow developing new drugs and treatments that

block the viral replication in a more efficient and durable

manner. Unfortunately, there remains a need for a much

deeper understanding of viral PPINs using the topological

tools and methods developed by complex systems and

network science.

Following this major current approach, in this study

we present a topological analysis of the potyvirus PPIN

constructed by integrating data from several different

species of potyvirus. We also study the VHPIs using the

complete Arabidopsis thaliana PPIN. Furthermore we de-

scribe and quantify the effect that the viral network and

each of its components has on the host interactome. Fi-

nally, we propose new ways to visually represent the VHPI

network (VHPIN).

Methods

Data collecting

All currently available potyvirus VVPI datasets were gath-

ered as a first step. These data were obtained from six
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different articles published over the last decade [44-49].

This initial dataset, shown in Additional file 1, is the start-

ing point of the subsequent analysis. An overview of the

data is shown in Table 1. 681 PPIs were tested and 194

PPIs were detected among the 11 viral proteins from eight

different viruses: Plum pox virus (PPV), Soybean mosaic

virus (Pinellia ternate isolate, SMV-P), Shallot yellow strip

virus (onion isolate, SYSV-O), Potato virus A (PVA), Pea

seed-borne mosaic virus (PSbMV), Soybean mosaic virus

(G7H strain, SMV-G7H) and Clover yellow vein virus

(CIYVV). Some of the Y2H original studies included in-

formation about the relative intensity of each interaction,

represented by a higher or lower number of colonies

appearing after an incubation time. However, integrating

the intensity data is not straightforward because it depends

on some experimental variables such as sampling schemes,

growth variables or environment conditions. Furthermore,

differences in normalization methods, categorization and

batch effects also contribute to make comparisons difficult.

Especially problematic was the inclusion of the P3N-PIPO

protein. This protein was discovered and characterized

only recently and, therefore, it was not included in some of

the studies in which we grounded our work. However, the

statistical standardization of the data allows an appropriate

representation of P3N-PIPO interactions (see Results and

Discussion section, Interaction relevance subsection).

The second basic source of data was the A. thaliana

interactome formed by 12654 interactions and 5127 pro-

teins published in [50] plus the most recently discovered

HHPIs (Additional file 2). Although some studies have

analyzed the changes produced by virus infection in nat-

ural hosts, A. thaliana is the standard model host used

with viruses belonging to different taxonomic families

[5]. The final data source was the group of VHPIs de-

tected between proteins from potyviruses and A. thaliana

published originally in [5] and later updated (Additional

file 3). Therefore the data covers all possible protein inter-

actions: virus-virus (VVPI), virus-host (VHPI) and host-

host (HHPI).

Data integration: interactions, matrices and networks

Integrating data from different sources in a common frame-

work required of statistical standardization and preprocess-

ing. First, each interaction tested in the original studies was

collected. Some of them were able to test more interactions

than others. In some studies it was not possible to produce

enough quantity of a certain protein to test its interactions

with the others. In other cases proteins had not been yet

discovered when the studies took place so they are obvi-

ously absent. Additionally, not all interactions tests resulted

in a positive interaction being detected. All detected inter-

actions were collected as well. Tested and detected inter-

actions across all sources were grouped in two common

pools (Additional file 4).

The molecular methods used to detect the interactions

have an inherent directionality. Experimentally, it is com-

mon to swap the fused tags among the pair of proteins to

avoid possible structural problems that may interfere with

the detecting methods (e.g., Y2H and BiFC). Original stud-

ies tested all interactions in two directions, for instance

P1 ~HC-Pro and HC-Pro ~ P1. This produces a problem

when only one direction was detected. Since the PPI

itself has no directionality (it is a molecular docking

phenomenon between two molecules) the disagreement

comes from the molecular methods used. Some combina-

tions of fused and viral proteins may be less stable or may

block the docking of other proteins. To overcome this, it

was assumed that an interaction was valid if it was de-

tected in any of the two directions or in both. This

produces symmetry in complementary interactions (P1 ~

HC-Pro and HC-Pro ~ P1) representing the real process

of interacting in a clearer and more truthful way.

The next step was to determine which interactions

were relevant and which ones were fair representations

of the Potyvirus genus topology. Given the variability

among studies (e.g., virus species and experimental con-

ditions) it is not surprising that some interactions were

detected only in one or few studies, while other were

pervasive across the entire dataset. On the other hand,

the relative scarcity of the data (only 194 interactions de-

tected) made difficult and somewhat useless a more de-

tailed statistical analysis. Even a confidence interval for

each interaction with only eight independent values (cor-

responding to the eight viruses) is not reliable enough.

Therefore, a relevance coefficient (RC) between the num-

bers of detected and tested interactions for each pair of

proteins was defined. It is reasonable to assume that RC is

a measure of biological importance. In other words, the

more times an interaction has been detected, the higher

the probability that this particular interaction is important

for the virus to complete its infectious/replication cycle.

However, considering the particularities of each method,

we weighted percentages for Y2H and BiFC. The latter is

closer and much more biologically coherent to natural

Table 1 Potyvirus interactions initial dataset

Reference Virus Interactions Method

Tested Detected

[44] PPV 105 54 BiFC

[45] SMV-P 100 39 Y2H

SYSV-O 100 45 Y2H

[46] PVA 80 16 Y2H

PSbMV 56 10 Y2H

[47] PRSV-P 100 16 Y2H

[48] SMV-G7H 100 9 Y2H

[49] CIYVV 40 5 Y2H

It contains data from six different studies and eight different viruses.
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conditions where potyvirus interactions take place. There-

fore, we decided to overweight the only study in which

this method was used [44]. Thus, RC takes the form

RC = 100 × (2[BiFC] + [Y2H])/(T +1), where T is the

number of times that a particular interaction was tested

(from 0 to 8), [BiFC] is the number of times that a given

interaction was detected using the BiFC method (from 0

to 1 because only one study used BiFC) and [Y2H] corre-

sponds to the number of times that an interaction was de-

tected using the Y2H methodology (from 0 to 7). The

factor of 2 multiplying the [BiFC] term is a simple way to

overweight this method against the Y2H. Doubling its im-

portance was a compromise solution between being truth-

ful to the particularities of each method and still gathering

all the relevant information. RC can range then from 0%

(the interaction was not detected in any of the studies)

to 100% (was detected in every single study). We decided

to establish the RC threshold for each interaction at the

minim value where all nodes were part of a single con-

nected network, which occurred at RC = 44%. This choice

has biological meaning because is based on the fact that

all Potyvirus genomes encode for the eleven proteins and

that all these proteins have been reported to interact at

least once with each other. Therefore, it is only possible to

study this particular system assuming only one connected

network, which appears at RC = 44%. We decided to set

the threshold at this value to include all information con-

sidered relevant from our approach. This threshold is

data-dependent and therefore can change from network

to network. Even with the same dataset it may be changed

to satisfy a particular research objective. For instance, set-

ting a higher RC makes the analysis focus on the most fre-

quent interactions, which may be interesting in a specific

situation. However, lower RC than 44% results in a discon-

nected network with various components. Using the rele-

vant interactions we constructed an interaction matrix

with the eleven viral proteins as rows and columns, and

the RC values for the interactions in each position. Finally,

we displayed this matrix visually in a PPIN.

Network topology

After integrating the data, an exhaustive topological ana-

lysis was carried out. First, the protein connectivity as-

pects of the network were studied: protein degree, RC

relation with protein degree and assortativity. Then a group

of topological parameters (clustering coefficient, closeness

centrality, betweenness centrality, and topological coeffi-

cient) was calculated for the viral PPIN and its nodes.

Finally we carried out an analysis of these topological pa-

rameters: their relation with the degree and their cumula-

tive distributions.

The topological analysis of the viral PPIN and its nodes

was repeated for those individual virus networks with

enough interactions detected to form a complete topology

(Table 1): PPV, SMV-P and SYSV-O. All the networks

were constructed and the parameters calculated using the

software Cytoscape [51] and its network analyzer tool.

Virus-host interactome

The purpose of the analysis between the virus proteins

and the host ones is to achieve an overall better under-

standing of their relationships and integration, which is

pivotal to grasp the infection process. For this, we used

an approach to quantify the importance that each viral

protein has over the host network. The first order con-

nectivity that each viral protein has with the host pro-

teins can be extracted directly from the data. Starting

from each viral protein, and following the host interac-

tome, we calculated how many steps (consecutive inter-

actions) are needed to reach each host protein. At the

end, it is possible to map the consecutive steps from the

viral protein to the last host protein. This was repeated

for all viral proteins and the propagation trajectories

produced were plotted.

Several considerations are here in due, starting from the

concept of “distance” in a graph. In this paper we used the

simplest distance measure possible, which is the shortest

path between two nodes, which comes directly from the

adjacency matrix (see Additional file 2) and the cross-

interactions or VHPIs (see table in Additional file 3). The

minimal measure of distance is called here step. The dis-

tance between two proteins interacting directly is one

step. The distance between two proteins that interact with

another common protein is two steps (Figure 1). From

this simple distance we used a metric to qualify the

interaction-profile similarity of the viral proteins. None-

theless, much more complex similarity coefficients [52]

can be used as kernels on graphs (e.g., exponential diffu-

sion kernel, Laplacian exponential diffusion kernel, or the

commute time kernel).

The similarity of the spreading trajectories was com-

pared for every pair of viral proteins with a similarity co-

efficient or index [53]. The total amount of interactions

is 66 (combinations of eleven proteins taken by pairs).

Viral proteins

Host proteins

Step 1

Step 2

A B

Figure 1 Examples of steps of interactions. Step is the measure

used to define distance between proteins. In this example A would

establish 2 interactions in step 1 and 4 in step 2. B has 3 in step 1

and 3 in step 2.
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We chose the Simpson index (SI), which is commonly

used in systems biology and network science. It is de-

fined as the proportion of shared nodes relative to the

degree of the least connected node: SI(A,B) = |N(A)∩N

(B)|/min(|N(A)|,|N(B)|). SI changes in each step so the

similarity evolves along the whole host interactome. This

index offers a quick and insightful way of quantifying

the similarity that two viral proteins show in their rela-

tionship with the host network.

Results and discussion

As outlined in the Background section, the aim of this

study is to describe and characterize the PPIN of poty-

viruses using tools and techniques from network science.

As mentioned earlier, the study starts from three differ-

ent datasets: VVPIs, VHPIs and HHPIs. VVPIs allowed

us to study the topology of the network, composed ex-

clusively by 11 viral proteins. Next, we evaluated VHPIs

and HHPIs and used them to describe and quantify the

integration of the viral PPIN within the larger interac-

tome of the host plant.

VVPI network analysis

In this subsection different aspects of the topology of

the network were studied in detail. Y2H and BiFC ana-

lysis and Y2H intensity subsections deal with the differ-

ences between the detection methods and the nature

of the information they provide and the possible con-

sequences for the study. VVPI network construction and

visualization subsection shows how the network was

visually defined and the last three (Interaction relevance,

Protein connectivity and Topological analysis) focus

on several aspects of the topological properties of the

network.

Y2H and BiFC analysis

In this subsection, we compared the results inferred from

data generated using the two detection methods. The aim

of this comparison was to find out whether a method

tends to detect some interactions but not others or, on the

contrary, the main interactions were evenly detected by

both methods. Interactions detected by both methods will

be more reliable than those detected by only one method.

The number of observed interactions was classified ac-

cording to the detection method (Table 1). Some direct

remarks can be made just from this simple classification.

First, there are 5.4 times more data available from Y2H

than from BiFC, which reflects the more recent techno-

logical development of BiFC but also introduces a bias

towards Y2H-based studies. Despite the lower number

of interactions studied using BiFC, the number of posi-

tive cases is significantly larger for this technique than

for Y2H (Fisher’s exact test p-value <0.001), thus proving

that BiFC is a more sensitive method. Moreover, BiFC

preserves the biological relevance of the interactions

detected, since this technique seeks for interactions in

plant rather than detect heterologous expression of pro-

teins in yeast cells.

Y2H is an older method, widely used because of its

simplicity, speed and its ability to generate interactions

at genome level. Y2H also provides a rough measure of

interaction intensity given by the number of colonies

that grow in each experiment and usually distributed in

several ranges (from 1 to 5, from 5 to 10, etc.). Alterna-

tively, BiFC does not provide a quantitative value. Some

particularities arise when they are compared. The inter-

action between CI and P3N-PIPO was only tested and

detected by BiFC (due to the recent discovery of the

P3N-PIPO protein). Interestingly, the most common in-

teractions are detected by both methods and appear in

both networks; out of the 26 most relevant interactions

(displayed in Table 2) only three were detected by Y2H

but not by BiFC (HC-Pro ~ HC-Pro, HC-Pro ~NIaPro

and HC-Pro ~ VPg). This implies that both methods, al-

though different in scope and sensitivity, offer highly

consistent results. This consistency validates our ap-

proach of integrating data from both techniques into a

single dataset.

Y2H intensity

We used the intensity data (whenever available) and tried

to correlate it with the frequency of each interaction. We

grouped together all the data from Y2H studies and plot-

ted the intensity against the overall frequency of all in-

teractions (data not shown). We found no correlation

(r = 0.249, 45 d.f., p-value = 0.172) between intensity

and frequency for any of the seven potyvirus studied with

Y2H. This leads to the conclusion that the biological im-

portance of an interaction (related with the frequency with

which it is detected) is not function of its intensity. In

other words, interactions with lower intensity can be as

vital to virus development as the more intense.

VVPI network construction and visualization

As it was explained in the Methods section, we set a thresh-

old of 44% in the RC to separate relevant interactions

from the rest. With this constraint, only 26 out of the 66

possible interactions were considered as relevant. With

those interactions the global interaction matrix (GLIM)

was built (Table 2).

The network defined by GLIM shows the proteins as

nodes and the interactions as edges. It represents the

VVPIs detected in the studies with a RC >44%. Addition-

ally, to increase the visual information the width of the

edges was made proportional to the RC of the interac-

tions. The resulting network (Figure 2) is the global inter-

action network (GLIN).
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Interaction relevance

The starting point for the topological analysis is the

computation of the RC for every interaction (with

RC >44%) experimentally detected (Figure 3). Some inter-

esting information arises from this representation. The

most common interactions have a RC in the range 80% -

90% (with exception of the CI ~ P3N-PIPO). P3N-PIPO

was tested only in one of the studies [44] and only against

three proteins: itself, CP and CI. The positive hit of

the CI ~ P3N-PIPO interaction produces a RC = 100% for

this particular interaction. However, it is reasonable to as-

sume that after P3N-PIPO is tested against all viral pro-

teins in future studies, this RC value will decrease. Core

interactions involve proteins CI, VPg, NIaPro and NIb.

Out of the 66 possible interactions, 26 were considered

relevant representing a striking 39.3%. This shows clearly

that the intraviral network is highly connected. It is gener-

ally accepted that viral proteins are multifunctional, so this

high connectivity was expected. Another interesting con-

clusion drawn from Figure 3 is that there is no specific RC

threshold dividing the interactions between the most com-

mon and the rarest. In other words, there are interactions

detected across all the RC range (from 100% to the estab-

lished limit of 44%).

Protein connectivity

In a PPIN, the degree of each node matches the number

of different interactions in which each protein is in-

volved but only if there is no self-interaction. If there is,

the protein degree equals the number of interactions

Table 2 Global interaction matrix

P1 HC-Pro P3 6 K1 CI 6 K2 VPg NIaPro NIb CP P3N-PIPO

P1 57% 63%

HC-Pro 78% 44% 44% 44%

P3 56% 67%

6 K1 44%

CI 57% 56% 56% 50% 100%

6 K2 44% 44%

VPg 89% 56% 56% 44%

NIaPro 78% 78% 44%

NIb 44% 56%

CP 88%

P3N-PIPO

All interactions with a RC >44% are displayed in a matrix form.

CI

NIaPro

CP

P1

6K1

6K2

P3

VPg

HC-Pro

P3N-PIPO

NIb

Figure 2 Global interaction network. Visual representation of the most relevant protein-protein interactions in the Potyvirus genus.

Bosque et al. BMC Systems Biology 2014, 8:129 Page 6 of 15

http://www.biomedcentral.com/1752-0509/8/129



plus one (see Figure 4). Supporting the idea that viral

PPINs are highly connected, Figure 4A shows that the

degree of most proteins is in a narrow range (2–10).

However, a clear distinction can be made between high

and low connected proteins. Low connected proteins are

P1, P3, 6 K1, 6 K2, and P3N-PIPO, and they have a de-

gree in the low range of 1–2. Highly connected ones are

HC-Pro, CI, VPg, NIaPro, NIb, and CP, with a degree

of 5–10.

Furthermore, we investigated whether there is some

relation between interactions relevance and protein de-

gree. It seemed that interactions with the highest RC

were formed by proteins with a high degree. To check

this we performed a correlation study, and we found no

relation between RC and degree (r = −0.034, 24 d.f.,

p-value = 0.871). In spite of that, it is noteworthy that

the five most relevant interactions (VPg ~ VPg, CP ~ CP,

NIaPro ~NIb, NIaPro ~NIaPro and HC-Pro ~HC-Pro)

are formed by proteins with a high degree (without con-

sidering the CI ~ P3N-PIPO interaction).

It is also interesting to study the assortativity [54] of

the network. Assortative mixing is the preference for the

nodes of a network to attach to others that are similar.

This is commonly examined in terms of a node’s degree.

In PPINs, consists of studying whether high degree

proteins tend to establish interactions with other high

degree proteins. One way to capture the assortative behav-

ior of a network is to examine the average neighbor con-

nectivity. The connectivity of a node is the number of

its neighbors. The neighborhood connectivity of a

node is defined as the average connectivity of all its

neighbors. The neighborhood connectivity distribution

gives the average of the neighborhood connectivities

of all nodes with k neighbors for k = 0, 1… If this func-

tion is increasing, the network is assortative, since it

shows that nodes of high degree connect, on average,

to nodes of high degree. On the other hand, if the func-

tion is decreasing, the network is dissortative, since nodes

of high degree tend to connect to nodes of lower degree.

Average neighbor connectivity distribution for the GLIN

is shown in Figure 4B (Additional file 5). The values of

the parameter decrease with the number of neighbors,

therefore the GLIN shows a dissortative behavior. This

agrees with previous studies that stated the dissortative

nature of biological networks [54]. However, biological in-

terpretation of this fact remains unclear. Hierarchical

structures in biological networks may result in dissortativ-

ity. Regulatory genes or transcription factors influence

many particular genes or proteins with specific biological

functions. Therefore, hubs correspond to regulators and

less connected nodes to actuators, dividing the network in

several hierarchical levels. Among the 11 nodes in the

PPIN, HC-Pro is the most highly connected component,

interacting with all other nodes. Therefore, dissortativity

in this network emerges as a simple consequence of

the limited number of nodes and that the most con-

nected one interacts with all other nodes, regardless their

specific connectivity.

Topological analysis

As it was mentioned in the Methods section, a complete

topological analysis of the GLIN and all its nodes was

carried out. First, a set of general topological parameters

was calculated for the entire GLIN (Table 3). The cluster-

ing coefficient is high and the characteristic path length is

lower than two, emphasizing the fact that GLIN is highly
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Figure 3 Relevance coefficient of all interactions of the global interaction network.
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connected. The number of self-loops is quite high (six

out of 11 possible), meaning that most proteins inter-

act with themselves for carrying out some of the bio-

logical functions.

In addition, four topological parameters were com-

puted for each protein in the GLIN. This topological in-

formation is displayed in Figure 4C (Additional file 6).

Some parameters contain related information such as

centralities and the clustering and topological coeffi-

cients. NIaPro, VPg and CI have the highest centralities

and the lowest clustering and topological coefficients. A

similar conclusion can be drawn from the low clustering

and topological coefficients of 6 K1 and P3N-PIPO

because they do not form any 3-loop in the network.

P3N-PIPO is only linked to CI and 6 K1 only to NIaPro.

Therefore their topological parameters are quite different

from the highly connected rest of proteins (especially the

clustering and topological coefficients, which are based on

common neighbors). An identical analysis was performed

for PPV, SMV-P and SYSV-O, since they were the only

ones with enough interactions detected to construct a

complete topology (see Additional file 6).

It is important to remark that these parameters are in

part influenced by the degree of each protein (Figure 4A).

In general, the clustering and topological coefficients

increase with degree while closeness and between cen-

trality decreases (Figure 4D). The least connected proteins

have an extreme clustering coefficient (0 or 1) while the

most connected ones have intermediate values. Both cen-

tralities are higher for high degree proteins, which is to be

expected. HC-Pro is located somewhere in the middle. It

has a high degree but its centralities are low and its topo-

logical coefficient is high. It also has an extreme clustering

coefficient. Clustering and topological coefficients have

the worst fitting to a linear regression due to the low

degree of 6 K1 and P3N-PIPO, which was already dis-

cussed. Complete statistical description of the regressions

(p-value, d.f. and R2) can be found in Additional file 7. It

is worth noting that non-linear models have a better fit in

the betweenness centrality data.

Finally, the topological distributions of the different pa-

rameters were determined, displayed and studied. Topo-

logical distributions compute the probability that a node

in a network presents a particular value in some param-

eter. For instance, the probability of a node to have a

degree of three. Although informative, they are more use-

ful when computed as cumulative distributions. Following

the example, the probability of a node to have degree

lower than or equal to three. Cumulative distributions of

degree and other topological parameters were calculated

for the GLIN (Figure 4E and F, data in Additional file 5).

The cumulative degree distribution for the GLIN shows a

quasi-linear behavior. Obviously, the probability increases

with the degree. The other cumulative distributions also

tend to be linear.

VHPI network analysis

In this second subsection of the Results, integration of

the virus network and the host network (through VHPIs

and HHPIs) was studied. VHPI network construction

and visualization subsection focuses on the difficulty of

the faithfully representation of networks of this size. Ef-

fect propagation deals with the effect of specific viral

proteins along the HHPIN and Similarity analysis fo-

cuses on the comparing the patterns of propagation of

pairs of viral proteins.

VHPI network construction and visualization

Potyvirus proteins establish interactions with a large un-

known number of host factors, disrupting the normal

development of the plant. These VHPIs channel the

harmful effect of the virus and point to the vital nodes of

the PPIN and transcriptional regulatory network of the

host [30]. The effect propagates from those direct VHPIs

through the entire network of HHPIs. Visualization of the

A. thaliana interactome is impossible in practical terms. It

has 5127 nodes (proteins) and 12624 edges (interactions)

and therefore any attempt to visually represent the

(See figure on previous page.)

Figure 4 Protein connectivity and topological analysis of the global interaction network (GLIN). (A) Degree of each potyvirus protein.

(B) Average neighborhood connectivity distribution. (C) Topological parameters of each protein. (D) Topological parameters of proteins related

with their degree. 6 K1 and P3N-PIPO data for the clustering and topological coefficients were removed from the representation (commented in

the text). (E) Degree cumulative probability distribution. It shows the probability that a protein has a determined degree or lower. (F) Cumulative

probability distribution of topological parameters.

Table 3 General topological parameters of the global

interaction network

Clustering coefficient 0.605

Connected components 1

Network diameter 3

Network radius 2

Network centralization 0.533

Characteristic path length 1.745

Average number of neighbors 3.636

Number of nodes 11

Network density 0,364

Network heterogeneity 0,634

Number of self-loops 6
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network as a whole is not going to provide useful in-

formation. Instead, we chose to illustrate the 11 potyvirus

proteins surrounded by two levels or steps of plant in-

teractions [5]. This Potyvirus-A. thaliana VHPI network

(VHPIN) (Figure 5) provides a quick overview of the

anchor points that the virus uses to hijack the plant net-

work. It is clear that the virus hits many proteins in the

first step. However, the interactions vary in number and

connectivity. For instance, proteins P3 and VPg hit two

host proteins that are network hubs while HC-Pro directly

interacts with more than 10 different proteins and then di-

versifies its effect to all the interactions of these proteins.

The VHPIN does not show any information of the interac-

tions happening in successive next steps (step 3, 4 and

so on).

Effect propagation

To study the potential effect that the viral proteins have

on the network, the 11 viral proteins were taken as start-

ing point and used the A. thaliana interactome as a map

to draw the complete tree of interactions that appear

until no more interactions are possible. The first two

steps are represented in the VHPIN but beyond that it is

not practical to visualize the interactome as a network il-

lustration, so we have to rely on mathematical description.

For instance, the protein P1 establishes only one inter-

action with a plant protein (step 1), then this protein estab-

lishes two interactions with other plant proteins (step 2,

the VHPIN displays the protein relationships up to this

point) but the network keeps growing; these two pro-

teins link with 13 proteins (step 3), these 13 link with 110

(step 4) and so on. We repeated these calculations for the

11 viral proteins and the results are displayed in Figure 6

and Additional file 8 (note that both the table and the

figure show the cumulated number of interacting pro-

teins). Some information may be directly extracted from

the illustration. Hence, 6 K1, CI, 6 K2, and P3N-PIPO es-

tablish virtually no interactions with the host. We envision

three possible explanations for this lack of interactions.

(i) These proteins function only by interacting with other

viral proteins but not with host factors. (ii) These proteins

may interact with host proteins via other viral proteins or

via other host elements such as RNA, DNA, lipids or car-

bohydrates. And (iii) the lack of reported interactions does

not necessarily means these interactions do not exist,

reflecting the need of additional work. This is the obvious

case for the recently described P3N-PIPO.

The other seven proteins are able to reach essentially

the whole A. thaliana network (around 93%). Full speed

propagation starts in step two and ends around step

eight. Some small sections of the network are unreachable

because they are not connected to the main module. Of

course, this does not mean that the effect of those seven

proteins is relevant and significant in the whole plant net-

work. The effect may loss its biological importance after a

few steps of interactions unless the affected proteins are
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Figure 5 Potyvirus-A. thaliana VHPI network (VHPIN). Proteins and their host neighbors are grouped by colors. White color is assigned to

host proteins connected to several viral proteins during the same step. For instance, host protein At2G23350 (located just below VPg

protein) is represented white because is linked directly to two different viral proteins: VPg and NIb.
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transcription factors that may function as hubs in the glo-

bal regulatory network. In such case, the perturbation will

be efficiently transmitted along the entire network. In all

other instances, viral proteins will affect the host network

only to a certain extent and possibly circumscribe their ac-

tion to specific branches or modules. However, a global

analysis is still useful to compare the viral proteins with

one another. Some proteins such as P3 or VPg propagate

their action through the network remarkably faster than

others like CP or P1. This may indicate the sequential

order in which the effect of the proteins crosses the net-

work during the virus cycle. This measure of steps can be

seen as a temporal variable. The effect of one viral protein

is likely to be noticed earlier in a host protein located two

steps away than other located six steps away. It seems rea-

sonable to assume that, in spite of the enormous diversity

and relevance of host interactions, some viral proteins act

earlier than others during the infection cycle and that this

kind of propagation analysis is a reasonable approach to

study them.

Similarity analysis

Effect propagation analysis does not evaluate how simi-

lar two viral proteins are in their relationship with the

host; whether they hit the same host proteins and in the

same or similar number of steps. Some measure of simi-

larity in effect propagation among viral proteins is thus

needed. For example, let us assume that P1 reaches five

host proteins while HC-Pro reaches 10 at a determined

step, and that one of those host proteins (HP1) is com-

mon for both viral proteins. Two groups are formed: P1-

group (with five members) and HC-Pro-group (with 10
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Figure 6 A. thaliana interactome coverage. It shows the protein-protein interactions occurring from each potyvirus protein and going across

the whole plant network.
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each step representing how it varies while the protein pair effect propagates through the network.
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members) having one member (HP1) belonging to both

groups at the same time. It is possible to quantify the

similarity of those two groups using a similarity coeffi-

cient such as the SI. It varies from 0 to 1 and expresses

the similarity between two groups of proteins. We calcu-

lated it for every pair of viral proteins (55) and for all

the steps (12) (Additional file 9). The SI was calculated

as an accumulative variable. This way each value gives

an idea of similar behavior up to that step. Plotting its

evolution over the steps produces dynamical coinciding

patterns. It tends to increase in the mid-steps because

at that point the viral effects are propagating at full

speed, and those interactions are usually common to most

viral proteins.

A

B

C

D

Step 1 Step 2 Step 3

Step 4 Step 5 Step 6

Step 7 Step 8 Step 9-12

Step 4

Step 1

Step 9

P1~HC-Pro P1 HC-Pro

Step 1

Step 9

Figure 8 Voxel representation of the Simpson index. (A) Voxel representation of the Simpson index for the viral proteins across the HHPIN.

(B) Consecutive pixel representations of the SI for the twelve steps that form the HHPIN. (C) Pixel representation for step 4. Viral proteins are

shown in X and Y axes and relevance coefficient color legend is displayed on the right side vertical axis. (D) Evolution of the SI for the P1 ~ HC-Pro

interaction across the entire HHPIN. A schematic cone of possible interactions is displayed as well to visually represent the networks growing from the

viral proteins (step 1) until the end of the HHPIN.
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Different features can be illustrated through SI graphs

quite easily. We show in Figure 7 the SI for all proteins

paired with HC-Pro. This allows us to point out interest-

ing specific behaviors. The most common behavior for

a couple of proteins is that similarity starts at zero and

begins to increase around step 2–3 until it reaches its

maximum at step 7–9. The first and main difference is

speed; some pairs reach a high SI much faster (e.g., HC-

Pro ~ P3) than others (HC-Pro ~ P1). However, there are a

few cases in which the SI for a pair of proteins decreases

at some steps (HC-Pro ~ VPg, steps 2–3). This is some-

how surprising, since the index is calculated with accumu-

lated proteins in each step. Therefore, the networks are

always increasing their size in each step. However, in some

interactions (and for some steps) the networks of both

proteins increase but the common host proteins to both

viral proteins in that steps does not increase proportion-

ally. Consequently there is an absolute decrease in similar-

ity. Nonetheless, SI always end up increasing until a value

of almost one because the seven viral proteins that propa-

gate their effect all reach the entire host network.

The information drawn from this similarity analysis

complements the effect propagation study shown before.

However, even for pairs of proteins, representing visually

similarity is not trivial. Similarity evolution for a specific

pair of proteins can be easily plotted but displaying all of

them at the same time, while retrieving useful biological

information, is much more difficult. To tackle this we

used voxel-based representations. We constructed a 3-

dimensional matrix called voxel to visually represent the

evolution of the SI over the host-host protein interaction

network (HHPIN). The first two dimensions represent

the eleven viral proteins; this creates a grid that assigns a

pixel to each pair of viral proteins. The main diagonal

has no biological meaning because the similarity of a

protein with itself is always one. Furthermore, the infor-

mation is repeated twice in the grid (P1 ~HC-Pro pixel

contains obviously the same information as the HC-Pro ~

P1 pixel). The color of the pixel represents the value of

the SI for that particular combination. The third dimen-

sion is the distance (measured in steps) from the original

viral pair of proteins to any particular point in the HHPIN.

This representation (Figure 8) allows any viewer to find

quickly the spaces of interest: which viral proteins link

with the host, in which steps the SI changes the most,

which pairs of proteins follow a determined evolution, etc.

Additionally the projection of each pixel over the steps

(Figure 8D) reveals the particular evolution of the SI for

that pair of proteins.

Conclusions

Topological properties of the potyvirus PPIN were studied

in great detail. Data was collected from different sources

and was processed and integrated in the intraviral network

representation GLIN. Our findings confirm the idea that

intraviral network of potyvirus is highly connected and

core interactions involve proteins NIaPro, VPg, CI, CP,

and NIb. The four topological parameters studies seem to

depend on the protein degree. Moreover, the cumulative

distributions of these parameters and the degree increase

in a quasi-linear way. BiFC and Y2H offer similar results

and detect the most common interactions. Y2H data led

us to affirm that interactions with lower intensity can be

as vital to virus development as the more intense ones.

In the study of host-virus interaction, VHPIN results

an accurate representation of the plant-host interactome.

Proteins P3 and VPg focus their effect in only one hub

while HC-Pro diversifies its effect among several pro-

teins through direct interactions. Viral proteins differ in

the efficiency in which their perturbations are transmit-

ted throughout A. thaliana HHPIN. Proteins P3 and

VPg are the fastest to propagate their effects while pro-

teins CP and P1 are the slowest ones. The similarity among

viral proteins in their patterns of perturbation transmission

was analyzed using the evolution of the Simpson index (SI)

along propagation steps. This analysis highlighted common

patterns of action between NIaPro, NIb, VPg, and P3.

This study opens new research avenues. This topology

can be used as a base for a much more in-depth analysis

of virus development with the addition of biological

meaningful measures such as virus growth or fitness. On

the other hand, the VHPIN analysis can be further ex-

plored using more complex metrics, graph kernels or in-

tegrating more biological information available such as

sub-cellular localization or biological function. Addition-

ally, when more studies start to use the BiFC method

and the pool of reliable intravirus interactions tested and

detected increases, the topology here determined can be

slightly modified to meet the new data.

Additional files

Additional file 1: Initial potyvirus proteins interaction dataset

(VVPIs). Dataset of potyvirus proteins interactions gathered from six

different sources.

Additional file 2: A. thaliana interactome (HHPIs).

Additional file 3: Dataset of potyvirus-A. thaliana interactions

(VHPIs).

Additional file 4: Common pool of potyvirus protein-protein

interactions (VVPIN). The first sheet shows the complete original

dataset grouped in the different interactions. The second sheet

presents the dataset once it has been symmetrized as it is explained

in the main text.

Additional file 5: Cumulative topological distributions for the

global interaction network (GLIN). It contains the distributions for

degree, clustering coefficient, topological coefficient, closeness centrality,

betweenness centrality and average neighborhood connectivity.

Additional file 6: Topological parameters of the global interaction

network (GLIN) and other three viruses networks. It contains general
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parameters for the entire networks and for each particular protein in

each network.

Additional file 7: Statistical description of the regressions and

correlations performed in the study.

Additional file 8: A. thaliana interactome coverage. Starting from

each viral protein the table shows how many interactions they reach in

each step.

Additional file 9: Simpson index evolution for each pair of viral

proteins.
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