
18

Topology Analysis of Software Dependencies

MARTIN P. ROBILLARD

McGill University, Canada

Before performing a modification task, a developer usually has to investigate the source code of a
system to understand how to carry out the task. Discovering the code relevant to a change task is
costly because it is a human activity whose success depends on a large number of unpredictable
factors, such as intuition and luck. Although studies have shown that effective developers tend to
explore a program by following structural dependencies, no methodology is available to guide their
navigation through the thousands of dependency paths found in a nontrivial program. We describe
a technique to automatically propose and rank program elements that are potentially interesting
to a developer investigating source code. Our technique is based on an analysis of the topology
of structural dependencies in a program. It takes as input a set of program elements of interest
to a developer and produces a fuzzy set describing other elements of potential interest. Empirical
evaluation of our technique indicates that it can help developers quickly select program elements
worthy of investigation while avoiding less interesting ones.

Categories and Subject Descriptors: D.2.6 [Software Engineering]: Programming Environments;
D.2.7 [Software Engineering]: Distribution, Maintenance, and Enhancement

General Terms: Algorithms, Experimentation, Human Factors

Additional Key Words and Phrases: Software evolution, software change, feature location,
separation of concerns, static analysis, program understanding, software navigation

ACM Reference Format:

Robillard, M. P. 2008. Topology analysis of software dependencies. ACM Trans. Softw. Engin.
Method. 17, 4, Article 18 (August 2008), 36 pages. DOI = 10.1145/13487689.13487691 http://doi.
acm.org/10.1145/13487689.13487691

1. INTRODUCTION

Software projects typically go through multiple iterations during their lifetime
[Kruchten 2000], with many iterations involving a number of modifications to

This article is a revised and extended version of a paper presented at ESEC/FSE 2005 in Lisbon,
Portugal.
This research was supported by a McGill University start-up package, by the Natural Sciences and
Engineering Research Council of Canada (NSERC), and by IBM.
Author’s address: M. P. Robillard, School of Computer Science, McGill University, 3480 University
Street, McConnell Engineering Building no. 318, Montreal, QC, Canada, H3A 2A7; email: martin@
cs.mcgill.ca.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 1049-331X/2008/08-ART18 $5.00 DOI 10.1145/13487689.13487691 http://doi.acm.org/
10.1145/13487689.13487691

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 4, Article 18, Pub. date: August 2008.

18:2 • M. P. Robillard

the source code. As part of most modification tasks, a developer must investigate
the source code associated with the task prior to modifying it [Boehm 1976].
Ensuring that developers investigate source code efficiently is a challenging
problem for software development organizations because it is an inherently
human activity, whose success depends on a large number of unpredictable
factors, such as intuition and luck.

In a previous empirical study of program investigation [Robillard et al. 2004],
we observed that a distinctive characteristic of effective developers was their
tendency to investigate source code by following structural dependencies. Al-
though this practice can help make program investigation more systematic, it
does not provide a complete strategy for software investigation. Indeed, in any
nontrivial software system, the number of structural dependencies to follow is
much too large to be completely covered by a developer. As a result, developers
must rely on their intuition to determine where to look. In the case of expert de-
velopers working on a well-known system, intuition will generally do the trick.
However, novice developers or developers working on an unfamiliar system may
easily get stuck in irrelevant code and fail to notice important program func-
tionality, leading to low-quality software modifications [Robillard et al. 2004].

This problem can be mitigated through a number of code searching tools
and approaches (see Section 3). This paper provides a contribution to this cor-
pus by investigating the hypothesis that the topology of structural program
dependencies contains clues that can help identify elements that are likely to
be more worthy of investigation than others. In other words, that patterns in
the structural dependencies of a software system can indicate sections of code
worthy of investigation, independently of the semantics of the program. Our
motivation for investigating the potential of static dependency analysis is to
develop a technique that can be used on incomplete or incorrect programs, and
that is inexpensive enough to be used in a highly iterative fashion.

As part of our investigation, we developed an algorithm for a static analysis
that identifies program elements likely to be of interest to a developer. Our
algorithm takes as input a fuzzy set describing methods or fields of interest to
a developer, and produces a fuzzy set containing methods and fields that are of
potential interest. The degree of potential interest for each suggested element
is obtained by analyzing two characteristics of the dependencies to elements
in the set of interest: specificity and reinforcement. Informally, an element is
specific if it is related to few other elements, whereas an element is reinforced
if it is related to other elements of interest.

We implemented support for using our algorithm on Java systems in a tool
called Suade. We report on two case studies and one experiment to evaluate the
suggestions produced by our approach. Our results show that the algorithm
produces suggestions that can significantly improve a developer’s chances of
identifying program elements associated with a task while avoiding code that
is not relevant.

In the rest of this article, we first motivate the problem with a concrete sce-
nario (Section 2) and present an overview of techniques previously proposed to
help developers investigate source code (Section 3). We then present our algo-
rithm (Section 4), and describe its current implementation for Java (Section 5).

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 4, Article 18, Pub. date: August 2008.

Topology Analysis of Software Dependencies • 18:3

We report on empirical evaluations of our technique in Sections 6 and 7, and
conclude in Section 8.

2. MOTIVATION

We illustrate how our proposed technique can assist developers with a concrete
scenario of software investigation. In this scenario, a developer is asked to
modify the MARKERS feature of jEdit. jEdit is a programmer’s text editor written
in Java.1 The MARKERS feature allows users to “bookmark” individual lines in
a text file, and to navigate to marked lines though user-defined shortcut keys.
In jEdit, the implementation of the MARKERS feature is far from trivial, and
involves interactions between fields and methods scattered throughout at least
10 classes [Robillard 2006].

A developer unfamiliar with the code of jEdit might attempt to locate the
implementation of the MARKERS feature through the time-tested strategy of
searching the source code text for matches to a regular expression [Sillito et al.
2006]. Unfortunately, in our case, a search for the string “marker” through
only the Java files of jEdit produces 517 matches. As a second attempt, let
us assume that the developer proceeds with a more constraining query, and
uses an advanced search tool that looks only for class declarations that begin
with the string “marker.” This strategy produces four results: classes Marker,
MarkerHighlight, MarkersMenuItem, and MarkersProvider. After a brief inspec-
tion, the developer determines that all four of these classes indeed implement
part of the MARKERS feature, and thus form a good starting point for investigat-
ing the rest of the code.

Where does the developer look next? The classes identified implement but
a small piece of a complex puzzle. The developer needs to explore more of the
code. But how to proceed? Our previous empirical work on software investiga-
tion provided evidence that effective developers tend to explore the source code
by following structural dependencies [Robillard et al. 2004]. In our case, this
would involve using a cross-reference tool to search for the parts of the pro-
gram using or used by members of the four classes identified. Because our four
starting-point classes define a total of 24 elements, searching for dependencies
and managing the results promises to be difficult. Even with sophisticated tools
capable of producing the desired results with a few simple queries, the devel-
oper still needs to inspect a list of results containing 68 entries,2 with some re-
sults being very relevant (e.g., Buffer.getMarkerInRange(int,int)) and some,
much less so (e.g., VFSFileChooserDialog.VFSFileChooserDialog(. . .)). By in-
specting all of the results manually, the developer would eventually identify
getMarkerInRange as relevant and proceed to discover that an important part
of the MARKERS feature is implemented in the Buffer class.

The technique we present in this paper is intended to facilitate the task of
inspecting a large number of software dependencies to identify the results wor-
thy of detailed investigation, at any point of the modification task. Applying

1www.jedit.org. This scenario is based on the code of release 4.2-final.
2Corresponding to all the fields and methods that are directly related to the 24 initial elements
through method calls or field accesses.

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 4, Article 18, Pub. date: August 2008.

18:4 • M. P. Robillard

our technique to the case described above, a developer will obtain, in a single
step taking just a few seconds, a list of the 68 elements related to the elements
defined in the four starting-point classes. Furthermore, the list of results will
be ordered, with elements determined the most likely to be relevant appear-
ing at the top, and vice-versa. In this specific case, the top and bottom results
are the two elements mentioned above (Buffer.getMarkerInRange(int,int))
and VFSFileChooserDialog.VFSFileChooserDialog(. . .), respectively). Using
this technique whenever required while exploring and modifying the code, de-
velopers should be able to spend more time understanding source code and
less time examining long lists of search results. Indeed, anecdotal evidence col-
lected by Sillito et al. documents how professional programmers quickly aban-
doned the inspection of search results “because the list was large and provided
no way for the participants to differentiate the results (i.e., no information in
the result list indicated what was relevant)” [Sillito et al. 2006, Section 5.2].
Our proposed technique directly addresses this issue by providing a ranking
that can help developers focus on elements determined more likely to be rel-
evant. Later sections of this paper will revisit the scenario described in this
section to provide additional details about how the ranking is done, and why it
works.

3. RELATED WORK

The goal of our topology analysis approach is to facilitate searching the source
code of a software system at any point during investigation and modification
tasks. As such, this technique presents an innovation in the line of code search-
ing techniques typically proposed as part of integrated development environ-
ments (IDEs). However, our approach also can be used to complement a variety
of approaches that have been proposed to help developers identify the source
code related to high-level concepts. Such approaches usually come under the
banner of concept, concern, or feature location approaches, and use a wide range
of analysis techniques. We put our work in context by offering both a review of
the historical development of code-searching techniques, as well as providing
an overview of the feature location techniques they complement.

3.1 Code Searching Techniques

Support for code investigation and understanding was initially developed in
the form of stand-alone lexical search tools (e.g., grep [Aho 1980]) and pro-
gram databases (e.g., CIA [Chen et al. 1990], XREFDB [Lejter et al. 1992]).
Basic program search and cross-referencing tools have also been provided as
part of integrated development environments for many decades (e.g., in In-
terlisp [Sanella 1983], Smalltalk [Goldberg 1984], and Eclipse [Object Technol-
ogy International, Inc. 2001]). More advanced techniques have also been pro-
posed by the research community to experiment with different ways to exploit
structural dependencies to help developers navigate source code. For example,
the JQuery browser [Janzen and De Volder 2003] allows developers to browse
and visualize software dependencies according to customized queries. Another
potential way to reduce the effort and time associated with code navigation

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 4, Article 18, Pub. date: August 2008.

Topology Analysis of Software Dependencies • 18:5

is to perform searches in the background. The Mylar system generates
automatic searches for dependencies of elements currently active in an inte-
grated development environment [Kersten and Murphy 2005]. In the space of
purely static-analysis-based code-searching techniques, the novelty of our re-
search lies in the analysis of the topology of program dependencies, and its use
to produce results ranked by degree of potential interest to a developer.

3.2 Program Slicing

Program slicing is a type of analysis intended to identify the parts of a pro-
gram that may affect, or be affected by, the values computed at some point
of interest [Tip 1995]. Slicing was originally defined as a static analysis tech-
nique [Weiser 1984], but dynamic variants have since been developed. For soft-
ware evolution activities, slicing can be used to help determine the impact of
changes [Gallagher and Lyle 1991]. Visual techniques have also been developed
to help in this process [Gallagher 1996].

Although they are conceptually appealing techniques, static slicing and its
variants suffer from practical limitations. First, computing slices can be expen-
sive [Weiser 1984], and pragmatic considerations may require lower-precision
data-flow analyses [Tonella et al. 1997]. Second, because a statement is of-
ten transitively dependent on many other statements, slices are often very
large [Jackson and Rollins 1994; Weiser 1984]. Although techniques have been
developed to help control the extent of the code covered by a slice [Orso et al.
2001], slicing remains a computationally expensive technique. In many code in-
vestigation situations, the fine-grained and precise results produced by slicing
may not warrant the cost of computing and inspecting program slices.

3.3 Dynamic Analysis

A number of techniques can help developers navigate or reason about source
code of interest using information collected as the program executes. A first
category of such dynamic-analysis-based techniques includes techniques to au-
tomatically locate the code implementing a feature. For example, with the Soft-

ware Reconnaissance [Wilde and Scully 1995] and Execution Slices [Wong et al.
1999] techniques, the code implementing a feature is determined by compar-
ing a trace of the execution of a program in which a certain feature was ac-
tivated to one where the feature was not activated. Another approach to fea-
ture location based on dynamic analysis was developed by Eisenbarth et al.
[2003]. Eisenbarth et al. produce the mapping between components and test
cases using mathematical concept analysis (a partial ordering and clustering
technique [Snelting 1998]). In addition to producing a basic mapping between
components and test cases, the approach of Eisenbarth et al. involves the re-
finement of the feature-to-code mapping through inspection by a developer of
a static dependency graph of the analyzed program. This step helps achieve a
more precise and complete description of the code that implements a feature,
but requires additional effort on the part of the developers. A number of other
techniques have also been proposed that address the same problem while pro-
viding additional functionalities, such as a probabilistic ranking of the results

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 4, Article 18, Pub. date: August 2008.

18:6 • M. P. Robillard

or tools to analyze the interaction of features [Antoniol and Guéhéneuc 2005;
Eisenberg and De Volder 2005; Salah and Mancoridis 2004].

Other categories of dynamic-analysis-based approaches include dynamic
slicing and impact analysis. Dynamic slicing [Agrawal and Horgan 1990;
Gyimóthy et al. 1999] is a variant of slicing that takes into account program
execution trace information. Specifically, dynamic slicing only considers pro-
gram dependencies that occur in a specific execution of the program. Dynamic
impact analysis techniques [Orso et al. 2004] help developers reason about the
sections of the code (typically methods or functions) that can be impacted by
modifications to other areas of the code.

In contrast to static approaches, dynamic approaches depend on the avail-
ability and quality of test cases for an executable system. As such, they cannot
be applied to incomplete code or to code that cannot be executed. In the specific
case of dynamic feature location, the techniques can only identify the code rel-
evant to features that can be expressed at the user level. These form a proper
subset of the concerns a developer might wish or need to investigate. Often,
developers must investigate code overlapping different features to understand
enough of the system to respect the existing design. Because it is independent
of the execution of specific features, our static approach does not suffer from
this limitation.

3.4 Information Retrieval

Another approach taken to identify the code associated with a feature is to
use information retrieval techniques. Antoniol et al. [1999] proposed an ap-
proach to determine a set of components potentially affected by a maintenance
task using a probabilistic analysis of the text of the maintenance request. This
approach, however, produces results only at the granularity of high-level com-
ponents (classes), and cannot be used to identify more fine-grained elements
such as methods.

Marcus et al. [2004] propose to use an information retrieval technique called
Latent Semantic Analysis (LSI) to automatically map concepts expressed in
natural language to the corresponding source code in a software system. In this
interactive approach, users write or select queries which are then evaluated to
return sections of code (e.g., functions) whose text is similar to that of the query.

The SNIAFL technique of Zhao et al. [2004] combines an analysis of the
names of functions and identifiers with a call graph analysis to automatically
identify the functions associated with a textual description of a feature. The
main tradeoff of SNIAFL is that a developer must produce a description of all

features in a system in order to be able to fully use the technique.

3.5 Repository Mining

A number of approaches can help developers identify elements of interest in
the context of a software modification task through analysis of a repository
of software artifacts. Both Zimmermann et al. [2004] and Ying et al. [2004]
proposed data mining techniques that report on elements that are often changed
together during program evolution tasks. This information can help a developer

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 4, Article 18, Pub. date: August 2008.

Topology Analysis of Software Dependencies • 18:7

determine where to look when investigating source code. The advantage of data
mining approaches is that, given enough evidence, the elements recommended
have the potential to be highly relevant. The main drawback of these approaches
is the necessity of having a large history of changes available for analysis. This
requirement is especially true if results are to be computed and reported at the
level of class members. Reliance on change history implies that the approach
cannot be used when tasks address code that was never changed before.

4. ALGORITHM

In developing the advanced code searching technique we present in this paper,
our overarching goal was to help developers investigate source code in an in-
teractive way, and with as little ancillary effort as possible (i.e., without the
requirement of writing queries, tests cases, feature descriptions, etc.).

4.1 Hypothesis and Heuristics

To meet our goal, we were interested in investigating the hypothesis that the
topology of structural program dependencies contains clues that can help iden-
tify elements that are likely to be more worthy of investigation than others. We
derived this hypothesis after analyzing in detail how developers investigate
source code, as part of a previous empirical study of programmers [Robillard
et al. 2004]. Analyzing the topology of program dependencies is well-suited to
our design goals as all the information required is readily available in the source
code of the program under investigation.

We have thus developed an algorithm for suggesting elements to examine
during a program investigation task based on the topology of structural de-
pendencies in a program. The algorithm takes as input a set of interest Ī . This
set contains program elements (e.g., fields and methods) identified by a devel-
oper as interesting in the context of the task.3 Our algorithm then analyzes the
structural dependencies between the elements in Ī and the rest of the program,
and produces a suggestion set S̄ containing elements related to Ī with, for each
element in S̄, a value indicating its potential interest to the developer. In brief,
our algorithm searches for all the structural neighbors of a set of program el-
ements, and returns these elements, ranked in order of potential interest for
the developer. The critical aspect of our algorithm is the method we use to pro-
duce the ranking. This ranking is based on a set of heuristics derived from two
relatively simple intuitions: specificity, and reinforcement.

Specificity. According to the intuition of specificity, structural neighbors
that have few structural dependencies are more likely to be interesting because
their relation to an element of interest is more unique. Figure 1 illustrates this
concept with two examples. In this figure, elements in gray represent elements
of interest as flagged by a developer. In example a), element of interest A is
referenced (e.g., called) by five other elements, whereas element B is referenced
by a single element. In this scenario, the set of interest consists of two elements
(A and B) and the set of structural neighbors contains six elements (elements

3In the context of our algorithm, we take “interesting” to mean “worthy of detailed investigation”.

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 4, Article 18, Pub. date: August 2008.

18:8 • M. P. Robillard

Fig. 1. Sample program graphs to illustrate specificity.

1 through 6). Because element B is related to only a single other element (6),
we say that element 6 is more specific to the set of interest. In a ranking of
structural neighbors, element 6 would be ranked higher based on specificity.

Example b) shows how specificity can also be taken into account for the
relation that is the transpose of the one used to derive structural neighbors. In
this case, element of interest A is referenced by three other elements. Elements
1 and 3 refer to two elements besides A. However, element 2 refers to only A,
and to no other element. We would thus consider element 2 to be more specific,
and rank it as more interesting with respect to the other structural neighbors.

The intuition of specificity is based on the reasoning that elements that are
very specific to a set of interest probably contribute to the implementation of
the concept, feature, or concern associated with the set of interest. For example,
in Figure 1 a), element A is more likely to be a generic service method because
it has a higher fan-in, and one (potentially) stands to learn less from inspecting
its callers as from the caller of B, which could be a method that is on a call
path that is strongly associated with the implementation of the feature under
scrutiny.

In the scenario presented in Section 2, the top element (getMarkerInRange)
is very specific to the set of interest because it calls a single method, and this
method is in the set of interest. In contrast, the structural element with the
lowest degree of interest (the constructor of VSFFileChooserDialog) is a struc-
tural neighbor because it calls a method in the set of interest that is called by
80 other methods. Hence, this element is not very specific.

Reinforcement. According to the intuition of reinforcement, structural
neighbors that are part of a cluster that contains many elements already in

the set of interest are more likely to be interesting because they are the “odd
ones out” in the cluster of elements related to the set of interest. By cluster,
we mean a group of elements found by following a specific type of dependency
from a single element (e.g., a cluster formed by all the callers of method m).
Figure 2 illustrates this concept with two examples. As in Figure 1, elements
in gray represent elements of interest as flagged by a developer. In example a),
element of interest A is referenced (e.g., called) by five elements, none of which
are part of the set of interest. As such, we do not consider the elements 1 to 5 to
be reinforced. In contrast, element B is also referenced by five other elements,
all of which are flagged as interesting except for element 6. For this reason, we
say that 6 is heavily reinforced and likely to be interesting.

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 4, Article 18, Pub. date: August 2008.

Topology Analysis of Software Dependencies • 18:9

Fig. 2. Sample program graphs to illustrate reinforcement.

Example b) shows how reinforcement can also be taken into account for the
relation that is the transpose of the one used to derive structural neighbors.
In this case, element of interest A is referenced by three other elements, all
of which refer to two elements in addition to A. Elements 1 and 3 refer to two
elements that are not flagged as interesting. However, element 2 refers to only

elements that have been flagged as interesting. For this reason, element 2 is
considered reinforced, and would be ranked as more interesting with respect
to elements 1 and 3.

The intuition of reinforcement is based on the reasoning that elements that
are reinforced probably share some structural property that associates them
to the code of interest, and so it may be desirable (and the developer may be
intending) to investigate all of the elements with that property.

In the concrete scenario presented in Section 2, the top element
(getMarkerInRange) is heavily reinforced because all of its callers and all of
its callees are in the set of interest.

Discussion. The use of specificity and reinforcement to determine the de-
gree of interest of the structural neighbors of a set of interest is, of course,
heuristic. For this reason, in some software investigation situations, specific
or reinforced elements will not correspond necessarily to the more interesting
elements among the structural neighbors. However, we are working with the
hypothesis that specificity and reinforcement are indicative of potential inter-
est in general. The evaluation of our approach (Sections 6 and 7) will provide
supporting evidence for this hypothesis.

In the remainder of this section, we present an algorithm to calculate a
metric representing the degree of interest of a structural neighbor of an ele-
ment of interest based on our specificity/reinforcement criterion. In designing
this algorithm, our guiding principle was to develop a representation of speci-
ficity and reinforcement that would be as simple as possible. There are two
main reasons for this choice. First, a simple algorithm facilitates a baseline
evaluation of the approach, which should prove easier to evaluate and im-
prove incrementally than a sophisticated scheme. Second, because the results
of the approach must appear sensible to the users, we strove for a relatively
straightforward procedure that could be performed manually, at least on simple
examples.

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 4, Article 18, Pub. date: August 2008.

18:10 • M. P. Robillard

4.2 Basic Definitions

Because program investigation is an imperfect process, and because the results
produced by our algorithm indicate a degree of potential interest, we use fuzzy
sets to represent both the set of interest (input) and the suggestion set (output).
The human-centric nature of program investigation makes fuzzy logic a partic-
ularly well-suited theory supporting our algorithm. In our application of fuzzy
set theory, we use notation and definitions consistent with the presentation of
Zimmermann [1996]. In particular, set variables with an overbar distinguish
fuzzy sets from normal (crisp) sets.

Our algorithm relies on the concepts defined below. These concepts assume
the existence of a program P to which the algorithm is applied. Formally, P =

(E, R) consists of a set of elements E and a set R of relations among these
elements.

Definition 4.1 (Program Element). A program element e ∈ E is any ele-
ment that can be individually investigated by a developer.

Typical program elements in an object-oriented language include fields and
methods. Although classes can fit the definition, in practice the amount of code
forming their declaration is too large for them to constitute a unit of investiga-
tion for the purpose of our algorithm.

Definition 4.2 (Relation). A relation r = (l , e1, e2) ∈ R is a program depen-
dency of type l between two program elements e1 and e2.

Typical relations in an object-oriented language include field accesses and
method calls.

Definition 4.3 (Transpose). Given a relation r = (l , e1, e2) ∈ R, its transpose
is defined as r⊤ = (l⊤, e2, e1). In any program, all relations have a transpose,
that is, r ∈ R =⇒ r⊤ ∈ R.

For example, if e1 calls e2, then e2 is called by e1.

Definition 4.4 (Set of Interest). Given a program P = (E, R), a set of in-
terest Ī = {(e, µĪ(e)) | e ∈ E, µĪ : E → [0, 1]} is defined as a fuzzy set with
membership function µĪ.

Definition 4.5 (Suggestion Set). Given a program P = (E, R), a suggestion
set S̄ = {(e, µS̄(e)) | e ∈ E, µS̄ : E → [0, 1]} is defined as a fuzzy set with
membership function µS̄.

In practice, the normalized membership functions µĪ and µS̄ are specified
as sets of ordered pairs, where the first element denotes a program element
and the second its degree of membership [Zimmermann 1996]. For example:
µĪ = {(e1, 0.5), (e2, 0.7)}.

In our proposed approach, the set of interest is a fuzzy set to allow the appli-
cation of the algorithm on sets whose elements are not all associated equally
strongly with the concept represented by the set. This feature supports the iter-
ative application of our approach (in which the fuzzy suggestion set can become
the set of interest), but also to use the approach with other techniques that

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 4, Article 18, Pub. date: August 2008.

Topology Analysis of Software Dependencies • 18:11

Fig. 3. Main algorithm.

produce fuzzy sets of interest (e.g., Dynamic Feature Traces [Eisenberg and De
Volder 2005]). We detail how we take into account the fuzziness of the input set
in Section 4.4.

4.3 Main Algorithm

Figure 3 presents our high-level analysis algorithm. This algorithm is designed
to be able to handle a structural dependency graph created from an open-ended
set of relation types.

For each relation type considered (line 6), we calculate a temporary fuzzy
suggestion set based on the relation type (line 7).4 For example, using l =

calls will generate a temporary suggestion set based on the analysis of the
methods called by methods in Ī . At this point the temporary set corresponds
to the structural neighbors of Ī according to relation l , and ranked by degree
of interest according to the topology of the graph corresponding to l and its
transpose. After a temporary suggestion set is calculated for a relation type,
this set is merged with the final result set S̄ (line 8).

Instead of merging the fuzzy sets obtained for each relation using the stan-
dard union operator for fuzzy sets,5 we define a new operator ⊎ that works
slightly differently: if an element x is in the intersection of two fuzzy sets, the
resulting membership degree is higher than both maximums, and calculated
using the following function:

µS̄1⊎S̄2
(x) = µS̄1

(x) + µS̄2
(x) − µS̄1

(x)µS̄2
(x). (1)

We designed our union operator (Equation (1)) to be commutative, associa-
tive, and, for domain values in [0,1], to have a range in [0,1] that is always
greater than (or equal to) the maximum of its operands. This last property is
intended to reflect the intuition that if an element is found in the sets generated
through different relations, these repeated occurrences reinforce each other. For
example, according to this function, an element (x, 0.75) ∈ S̄1 intersecting with
an element (x, 0.50) ∈ S̄2 will result in an element with membership 0.875 in
the merged set.

4The set of relation types is a crisp set (no overbar).
5For two fuzzy sets S̄1 and S̄2 with membership functions µS̄1

(x) and µS̄2
(x) we usually have

µS̄1∪S̄2
(x) = max(µS̄1

(x), µS̄2
(x)).

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 4, Article 18, Pub. date: August 2008.

18:12 • M. P. Robillard

The goal of our redefined union operator is to assign more relevance to el-
ements found through multiple relations. For example, a method that both
accesses a field of interest and calls a method of interest will have a higher
degree value with our redefined union operator than if we had used the stan-
dard operator. In all cases where an element is found through a single relation
(i.e., the intersection between all the T̄ sets is the empty set), there will be no
difference in the value produced. The impact of Equation (1) is that elements
that are connected through multiple relations will tend to rise to the top of the
suggestion list. So far our experience with the approach using a small number
of relation types has not invalidated this strategy. However, it is important to
note that Equation (1) introduces a dependency between the results of the ap-
proach and the nature of the set of relations R. In particular, using our redefined
merge operator with a graph comprised of a large number of heavily correlated
relations might be problematic. In the improbable case where analyzing such
a graph would be required, it might be worthwhile to consider reverting to the
traditional definition of the fuzzy union operator.

4.4 Analyzing Relations

The key step of the approach is to produce the membership function for the
suggestion set. This step is abstracted as the analyzeRelation function in
Figure 3. In essence, this function produces a degree value for all of the struc-
tural neighbors of elements in Ī in the simplest way possible that takes into
account both specificity and reinforcement, and both the direct and transpose
(inverse) relations. These four cases correspond to the four cases represented in
Figures 1 and 2. We note again that we designed our algorithm to perform cal-
culations on relations and their transpose because both directions of a relation
can provide clues that an element might be worthy of investigation. Section 4.1
describes such potential scenarios.

We define the function analyzeRelation in Figure 4 and illustrate the algo-
rithm with the graph of Figure 5. For simplicity, we can consider that Figure 5
is a call graph, with elements representing methods and arrows representing a
method call. Methods A and B have already been flagged as methods of interest.
In our example, we compute analyzeRelation for the called by relation.6

degree =

(

1 + |Sforward ∩ Ī |

|Sforward|
·
|Sbackward ∩ Ī |

|Sbackward|

)α

. (2)

For each element x in a set of interest (line 8), this function obtains the
range of relation l corresponding to domain x and stores it in a temporary set
Sforward of elements (line 9). Let us perform the calculation for A. Line 9 yields
Sforward = {c, d , e}.

Then, each range element s ∈ Sbackward that is not already in the set of
interest (lines 10–11) is added to the suggestion set. In our case we add c, d,
and e to the suggestion set. The degree value for each element is calculated
in three steps. First, we obtain the set of elements Sbackward (line 12). In the

6The direction of the called by relation is thus opposed to the direction of the arrows in the call
graph represented by Figure 5.

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 4, Article 18, Pub. date: August 2008.

Topology Analysis of Software Dependencies • 18:13

Fig. 4. Function analyzeRelation.

Fig. 5. Example program graph.

remainder of our example, we will calculate the degree value for s =e. In the
case of e, Sbackward = {A, B, f }. Second, we calculate the degree value for e using
Equation (2) (line 13). Presuming α = 0.25 (for now), we have:

degree =

(

1 + 0

3
·

2

3

)0.25

= 0.69.

Third and finally, we add the new element to Z̄ , the suggestion set to be
returned.7

The design of Equation (2) can be justified as follows. This equation calcu-
lates a degree value for a structural neighbor by evaluating the specificity and
reinforcement for both forward and backward references. The two terms inside
the parentheses correspond to a computation of the degree for the forward (left
term) and backward (right term), respectively. For a given term, the numerator
measures the strength of the reinforcement, and the denominator measures
the strength of the (inverse) specificity. The additional unit in the numerator
of the forward term accounts for the cases where there is no reinforcement.
This term is not necessary for the backward term as the set Sbackward will al-
ways include at least the one element used to generate Sforward (s in Figure 4).
Finally, the value obtained by multiplying both terms is taken to an exponent

7The union operation of line 13 uses the traditional definition of unions for fuzzy sets (using the
maximum values of membership functions).

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 4, Article 18, Pub. date: August 2008.

18:14 • M. P. Robillard

Fig. 6. Degree calculations for sample patterns.

α in the unit interval. This last treatment has a relatively minor impact, and is
only present to allow tool implementors to scale all degree values up to obtain
a more uniform distribution.

As can be seen from Equation (2), reinforcement is orthogonal to specificity
and can potentially compensate for it. In other words, an element related to
many other elements that would be ranked very low according to the specificity
criterion could end up being ranked highly if all the elements it is related to
have been flagged as interesting.

4.5 Complexity

The space complexity of our suggestion algorithm is negligible as it only needs
temporary storage for small subsets of an entire program.8 The time complexity
is linear in the cardinality of the set of interest Ī used as input to the algorithm.
More precisely, given the inputs L (set of relations) and Ī (set of interest), and
assuming that the upper bound on the number of dependencies of a program
element is a small constant, the execution time of the algorithm can be modeled
as O(|L| × | Ī |).

4.6 Example Applications

We present a number of sample degree value calculations, the study of which can
provide additional insights into the behavior of the algorithm. Figure 6 shows
five example topologies. In each example, A is a element in Ī and B an element
in Sforward. Elements in grey are in the set of interest Ī . For each pattern, we
include the degree value for B as calculated with Equation (2), with α = 0.25. For
consistency with the call graph example of Section 4.4, the arrows in Figure 6
are oriented in the direction of the transpose of the relation used to perform
the calculation.

Example a) shows the case where A is referred to by a single element that does
not refer to anything else. In this situation our algorithm returns a degree of 1.0.
This is the highest possible quantification of potential interest, and adequately
represents the fact that A has (apparently) no purpose besides contributing to
the implementation of B.

8The static analysis required to execute the algorithm is discussed in Section 5.2.

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 4, Article 18, Pub. date: August 2008.

Topology Analysis of Software Dependencies • 18:15

Fig. 7. Partial dependencies in JHotDraw.

Examples b) and c) represent cases where suggested elements are not re-
inforced. In the case of b), we have a specificity of 1/5 for the direct relation
and a specificity of 1/1 for the transpose, yielding (1/5)0.25 = 0.67. Case c) is
symmetrical to b), but in this case the specificity for the direct relation is 1/1
and the specificity for the transpose relation is 1/5, yielding an identical value
of 0.67.

Example d) has the same configuration as c), but in this case B is reinforced
because two of the elements in Sbackward are in Ī , yielding the term 1/1 for the
direct relation and 3/5 for the transpose, for a final value of (3/5)0.25 = 0.88.

Finally, e) represents another extreme case, where A is referred to by a single
element B, and everything that B refers to is already in Ī . In this case we also
obtain the maximum degree of 1.0 as it is not possible to be more reinforced.

As these examples illustrate, a degree value in isolation is much less useful
that a degree value as interpreted relatively to the degree value of other sug-
gestions. Hence, in a large group of structural neighbors, elements involved in
a topology similar to that in a), d), or e) would be ranked as more potentially
interesting than elements involved in topologies with weaker combinations of
specificity and reinforcement.

We conclude this series of examples with a concrete scenario taken from the
JHotDraw drawing application (version 5.3).9

As a set of interest, we choose two elements in class DrawApplication: method
tool() and field fTool, and apply the algorithm with the relations called by,
calls, accesses, and accessed by and parameter α = 0.25. In this case we chose
a set of interest with a field and a method related to the concept of “tool man-
agement” to show how the algorithm operates with multiple types of relations
(i.e., field access and method call).

We start with the execution of analyzeRelation with l = called by. Obtaining
Sforward for tool() (line 9 of Figure 4) yields five callers, represented in Figure 7
by the four numbered nodes and the setTool(...) node. In the figure, elements
in the set of interest Ī are shaded gray. Because none of the five elements is
in Ī , their direct degree is 1/5 (Equation (2)). For each of the five methods in

9http://www.jhotdraw.org

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 4, Article 18, Pub. date: August 2008.

18:16 • M. P. Robillard

Sforward, the range of the transpose relation (calls) is calculated, and shown on
the figure by an arrow indicating the number of callees. For example, method
setTool(...) calls 26 methods: tool() and 25 other ones (names not important).
Because fTool is a field and not called by any method, a first suggestion set
(line 6 of Figure 3) can be generated for the called by relation:

method 1 2 3 4 setTool(...)
degree 0.45 0.45 0.43 0.31 0.30

At this point the degree for setTool(...) as calculated using the called by

relation is relatively low. According to Equation (2), this value is calculated
by multiplying 1/5 (direct relation) by 1/26 (transpose relation) and taking
the result to the power of 0.25. The value is low mostly because setTool(...)
has low transpose specificity with respect to the called by relation (it calls 25
methods besides tool()).

The second iteration analyzes the relation calls and yields an empty sugges-
tion set because none of the elements in the set of interest call anything. The
merge operation thus produces exactly the suggestion set above.

The third iteration analyzes the relation accesses. This analysis also yields
an empty suggestion set because tool() only accesses the field fTool and this
element is already in the set of interest.

The final iteration analyzes the relation accessed by and considerably
changes the suggestion set. The method tool() is of course not accessed by
anything, so the analysis focuses on fTool. As shown in Figure 7, fTool is
accessed by only two methods (tool and setTool), yielding a high specificity.
Furthermore, one of the methods (tool()) is already in the set of interest, yield-
ing a high reinforcement for the remaining range (method setTool(...)). The
degree for the direct relation is thus (1 + 1)/2 = 1. In addition, setTool only
accesses a single field, fTool itself. This yields a transpose degree of 1/1 = 1.
As a result, the final degree for setTool(...) is 1. Finally, using our redefined
fuzzy union operator (Equation 1), we merge the previously calculated sugges-
tion set (shown above) with the set {(setTool(...), 1.00)} (as calculated for the
relation accessed by). The final suggestion set becomes:

method 1 2 3 4 setTool(...)
degree 0.45 0.45 0.43 0.31 1.00

This result has a meaningful application because setTool is a nontrivial mu-
tator of fTool, and would likely need to be investigated by a developer interested
in understanding the mechanism for managing drawing tools in JHotDraw. In
this simple case, the name of the method is a good indication of its relevance to
the set of interest. However, in class DrawApplication, a total of six elements
besides tool() and fTool have an identifier that contains the string “tool”, yet
only setTool is directly structurally related. In addition, in the case where large
numbers of dependencies must be considered, developers may not always deem
it cost-effective to read the name of each element returned in the result of a

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 4, Article 18, Pub. date: August 2008.

Topology Analysis of Software Dependencies • 18:17

cross-reference search. In such cases, our technique can help by automatically
ranking elements based on our specificity–reinforcement criterion.

5. CURRENT IMPLEMENTATION

We implemented an instance of our topology analysis algorithm to analyze Java
programs using the four relations: calls, called by, accesses, and accessed by. We
developed this prototype as a plug-in for the Eclipse platform.10 Eclipse is an
integrated development environment with an architecture that supports the
addition of modules, called plug-ins, that add to the environment’s function-
ality. The standard distribution of Eclipse includes a set of plug-ins that
provide extensive support for development in the Java programming lan-
guage. Our plug-in, called Suade [Weigand Warr and Robillard 2007], lets
the user specify a set of interest, apply the algorithm to the set, and view
the results of the analysis. Suade is freely available for download from
http://www.cs.mcgill.ca/˜swevo/suade.

5.1 Using the Suade Plug-In

A user specifies the set of interest using the ConcernMapper plug-in [Robillard
and Weigand Warr 2005]. ConcernMapper is a separate tool developed and
deployed independently from Suade, but that nevertheless forms an integral
part of the tool support for our topology analysis algorithm. The ConcernMapper
plug-in augments Eclipse with a view in which a user can specify different
concerns and add different program elements (such as fields and methods of
Java classes) to each concern by dragging elements from other Eclipse views
such as the Package Explorer or the Search Results view.

Figure 8 shows a view of Eclipse during a usage scenario involving Concern-
Mapper. The integrated development environment consists of four main views,
each forming a quadrant. The Package Explorer is in the upper left quadrant.
This standard Eclipse view shows the declarative structure of a Java project and
allows users to browse the elements of a project (packages, compilation units,
classes, methods, fields, etc.) and to select elements to display in an editor. The
upper-right quadrant displays editors for the resources (files) in a project. The
Search Results view is in the lower-right quadrant. This standard Eclipse view
shows the results of cross-reference or lexical searches that can be performed
through the features of the environment (e.g., to obtain all the methods ac-
cessing a specific field). Finally, the ConcernMapper view is in the lower-left
quadrant. This view allows users to associate various program elements with
a concern name (the name of a high-level concept of interest in the context of
a software development or evolution task). A user creates a new concern by
clicking on a button in the view’s tool bar and by entering a name for the con-
cern (e.g., “Storage”). Then, the user associates elements in a project with the
concern by dragging elements from any Eclipse view and dropping them on the
box representing the concern. When elements are added to the concern, they be-
come highlighted in bold in the other Eclipse views and the name of the concern

10www.eclipse.org

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 4, Article 18, Pub. date: August 2008.

18:18 • M. P. Robillard

Fig. 8. The ConcernMapper Eclipse plug-in.

Fig. 9. The Suade view.

is appended to their name. In our example, a developer is interested in the im-
plementation of the permanent storage of drawings in a drawing program. The
user created a “Storage” concern in ConcernMapper and added elements from
the classes DrawApplication, StorableOutput, and StorageFormat. In Figure 8,
the Package Explorer and Search Results views show how these elements are
highlighted in other views. In general, ConcernMapper supports change tasks
by allowing developers to group all the elements related to a task in a single
view, and to save this information for later use. Users can also specify a degree of
relevance to the concern for any element by using the slider at the bottom of the
view. In the context of the Suade plug-in, the elements in the ConcernMapper
view form the set of interest used as input to the algorithm.

To apply the algorithm to a set of interest, a user must open the Suade
view (Figure 9) and drag the concern representing the set of interest into the
view. This will trigger a computation of the algorithm (using a fixed value of
α = 0.25). Once the algorithm completes, the view is refreshed with the results
of the computation.

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 4, Article 18, Pub. date: August 2008.

Topology Analysis of Software Dependencies • 18:19

Fig. 10. Architecture of the Suade plug-in.

Figure 9 shows the details of the Suade View with an example of results. This
view contains a table listing, on each row, one element of the suggestion set.
The leftmost column (Element) contains a textual identifier and an icon for the
element. The middle column (Reason) provides additional information about
how the element was found. This aspect of the results is not formally specified
by the algorithm; In our case we simply list each relation that took part in the
calculation. Finally, the last column (Degree) shows the membership degree for
the suggested element. For example, three elements from three different classes
are recommended with a degree of 0.90. Because it is expected that suggested
elements will often be of interest, the Suade View includes functionality to
display the code of a suggested element and to add a suggested element to the
set of interest in the ConcernMapper view.

5.2 Architecture and Implementation

Figure 10 presents the architecture supporting the deployment of the Suade
plug-in. This architecture comprises three main components: the Eclipse plat-
form (including all of its standard plug-ins), the ConcernMapper plug-in, and
the Suade plug-in and its dependencies. Although Suade is deployed separately
from ConcernMapper, it cannot function independently.

The responsibility of ConcernMapper in this implementation is to manage an
internal model representing the set of interest. This model is exported through
a simple Façade [Gamma et al. 1995] application programming interface (API)
allowing other Eclipse plug-ins to access this model. When a user requests
suggestions (by dragging a concern from the ConcernMapper View to the Suade
View), Suade queries the concern model to get a list of elements of interest,
applies the suggestion algorithm by analyzing the source code of the project on
which the set of interest is defined, and displays the results in the Suade view.

The static analysis necessary to obtain the different relations necessary for
the algorithm is performed using an specially-tailored version of the JayFX
fact extractor.11 JayFX parses the source code of a Java project and builds
an in-memory database representing the structural dependencies among the
elements in the project. Currently, we use JayFX to extract method calls
and field accesses (and their transpose). The semantics of the “calls” relation
includes calls between a caller and (potentially) dynamically-bound method

11http://www.cs.mcgill.ca/˜swevo/jayfx.

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 4, Article 18, Pub. date: August 2008.

18:20 • M. P. Robillard

implementations. JayFX infers these relations by performing a class hierarchy
analysis (CHA).

5.3 Design Decisions

In developing the technology supporting our topology analysis of dependen-
cies, we have experimented with a number of design alternative through a
sequence of unreleased prototypes. The first public release of Suade is thus the
result of development efforts that have benefited from over 18 months of exper-
imentation. This experimentation has led to a number of important design and
implementation decisions.

Fixing the Alpha Value. One of the explicit design dimension for our im-
plementation was the value of the α parameter used to scale the degree value
of suggested elements (see Figure 4, line 4). The purpose of this parameter is
simply to scale up the degree values, because the application of Equation (2)
without using α results in very small degree values. For example, without tak-
ing into account the influence of α, the degree values for the callers of tool()
in the scenario of Figure 7 are 0.040, 0.033, 0.0087, and 0.0077, respectively.
Such small values require more precision to represent, and are potentially
more difficult to interpret. Using a scaling factor such as α allows us to have
a more uniform spread of values. Theoretically, for a single relation, differ-
ent values of alpha do not modify the order among suggested elements. The
only potential consequence of α on the order of suggested elements is caused
by its impact on the results of the fuzzy union operator for suggestion sets
(Equation (1)). However, given the heuristic nature of the approach, we hy-
pothesize that the impact of any specific α value on the overall usability of
the approach is negligible. We determined a concrete value for alpha by con-
ducting an experiment in which we generated a large number of suggestion
sets and studied the distribution of degree values for different values of α

[Robillard 2005]. This experiment indicated that a value of 0.25 produced a
uniform spread of degree values. We also experimented with different α values
during the development our our prototypes and found that 0.25 indeed produced
a completely satisfactory distribution. This value has been chosen for Suade re-
lease 0.0.1. Although experimentation with our current prototype has shown
α = 0.25 to be adequate, use of the technique on dependency graphs involv-
ing different relations or for different programming languages might warrant
adjustments.

Choosing the Set of Relations. Another explicit design dimension for our
approach is the set of relation types to use for generating suggestions (see
Figure 4, line 3). There exists a rich set of dependency types that can be used
with out approach, including method calls, field accesses, method overriding,
and textual similarity. We chose to implement our first prototype for only the
method call and field access relations for specific reasons. First, this is our first
experience with this idea and we wanted to keep the approach as simple as
possible to be able to study its properties and to manually reason about the
results. We chose method calls and field accesses as the two most relevant

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 4, Article 18, Pub. date: August 2008.

Topology Analysis of Software Dependencies • 18:21

relation types based on a previous empirical study of software investigation
using Eclipse [Robillard et al. 2004].

Graph Generation Technology. Suade requires access to a graph of program
dependencies to generate suggestions. A variety of approaches can be used to
generate this graph. In our initial prototype [Robillard 2005], we used a stand-
alone fact extractor to generate a program graph (this fact extractor has now
evolved into the plug-in called JayFX). JayFX requires an initial analysis phase,
but access to dependency data is instantaneous once the graph has been created.
The only major drawback of this approach is that modifications to the source
code require re-generating the program database to avoid inconsistencies. To
address this problem, we developed a second prototype that could generate the
graph directly from Eclipse’s underlying dependency model. This second pro-
totype no longer required an explicit graph generation phase. Unfortunately,
this prototype proved problematic for three reasons. First, it was not possible to
access Eclipse’s underlying dependency model through published interfaces, re-
sulting in deployment problems. Second, the information contained in Eclipse’s
underlying model did not allow us to perform a class hierarchy analysis that
was as precise as JayFX’s analysis.12 Finally, it turned out that for a majority of
usage scenarios, it was actually faster to recompute the graph with JayFX than
to use Eclipse’s underlying model. For these reasons, we reverted to JayFX to
generate the graph for Suade release 0.0.1.

Semantics of Calls Relation. Another important consideration when design-
ing the static analysis used to compute the dependency relations was the spec-
ification of the semantics of the calls (and called by) relations with respect to
virtual calls. Two main alternatives are possible, namely, to consider a calls
relation to be between:

(1) the caller and the static method called as determined through type checking.

(2) the caller and all method implementations potentially invoked through dy-
namic binding.

In the context of our algorithm, both alternatives have advantages and disad-
vantages. On one hand, using only static types will result in fewer dependencies
and has, thus, a better chance of identifying important relations. However, cer-
tain related elements may not be identified if they are only accessed through
dynamic calls. On the other hand, traversing class hierarchies to infer methods
potentially called will elicit more dependencies but, in the case of large class
hierarchies making an important use of overriding, this may result in an ar-
tificially low level of specificity. To investigate how these factors played out in
practice, our initial prototype [Robillard 2005] implemented the two alternative
semantics for the calls and called by relations: to include only static bindings,
and to include all potentially called methods as generated using class hierar-
chy analysis (CHA). Experience with the initial prototype identified the CHA

12When analyzing a method call, JayFX determines the static type of the expression on which the
method was called, whereas the Eclipse model stores the first declaration for the method that it
finds in the class hierarchy.

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 4, Article 18, Pub. date: August 2008.

18:22 • M. P. Robillard

semantics for the calling relations as clearly superior. Among other reasons, the
static binding alternative often led to awkward situations in the case of meth-
ods executed only as the result of dynamic binding (in which case no caller
would be found). Hence, based on our experience with the initial prototype, we
decided to adopt the CHA semantics for Suade.

Inclusion of Library Elements. In a software project, program elements of-
ten refer to a number of elements that are not part of the project proper, but are
defined in external libraries. An important question for our approach is whether
dependencies to library elements should be part of the algorithm’s computation
(i.e., appear in the Sforward and Sbackward sets of Figure 4). The overall impact of
this decision is easy to predict: to include library elements results in a general
decrease of specificity. More specifically, project elements that are used in com-
bination with a great number of library calls will see their degree of potential
interest decrease as a result of the lowered specificity. To explore how these fac-
tors played out in practice, our initial prototype included an option to configure
the function returning the range of a relation (lines 9 and 12 of Figure 4) to
omit the elements that were not defined in the source code analyzed. This way,
library elements that are typically not investigated by developers are left out
of the analysis and, in consequence, of the suggestion sets produced. Experi-
mentation with the tool quickly showed that the inclusion of library elements
was distracting at best, because these were almost never investigated. To keep
Suade as easy to use and configure as possible, we simply eliminated the option
to include library elements for release 0.0.1.

6. CASE STUDIES

We present two case studies intended to build a body of evidence that the anal-
ysis of topologies in the structural dependencies of a program can help suggest
elements of interest to developers investigating source code. We selected our
case studies by identifying, in two different target systems, a high-level concern
that could reasonably form the object of software investigation in the context
of a change task. For each case, we posit a scenario of the use of our technique,
and discuss the results obtained. Because these case studies (and the experi-
ment of Section 7) are intended to provide a baseline record of the approach’s
performance, we focus on applications of the technique on crisp sets (i.e., sets
of interest where all the elements have a degree value of 1.00).

6.1 jEdit Study

Our first case study addresses a feature of the jEdit system described in
Section 2. For this study, we consider the case of a developer in charge of per-
forming a modification to the implementation of the AUTOSAVE feature. This fea-
ture is responsible for automatically saving open file buffers at a user-defined
frequency. The AUTOSAVE feature has been extensively studied as part of previ-
ous experimentation [Robillard et al. 2004].

In this study, we will take the role of a developer having no prior knowledge of
the implementation of AUTOSAVE. To identify a starting point for the investigation
of the feature, we first perform a general text search for the string “autosave.”

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 4, Article 18, Pub. date: August 2008.

Topology Analysis of Software Dependencies • 18:23

Table I. Analysis Results for the jEdit AUTOSAVE Seed

Element Reason Degree Rel.

Calls autosave,
1 BufferIORequest.run() Accesses AUTOSAVE 0.81 Y

2 Autosave.actionPerformed(ActionEvent) Calls autosave 0.61 Y
3 BufferIORequest.toString() Accesses AUTOSAVE 0.60 N
4 Buffer.AUTOSAVE DIRTY Accessed by autosave 0.58 Y
5 AutosaveBackupOptionPane. init() Accesses autosave 0.54 Y
6 AutosaveBackupOptionPane. save() Accesses autosave 0.54 Y
7 Buffer.IO Accessed by autosave 0.51 S
8 VFSManager.getFileVFS() Called by autosave 0.51 N
9 BufferIORequest.BufferIORequest(...) Called by autosave 0.47 S

10 BufferIORequest.write(...) Called by autosave 0.46 S
11 FileVFS. createOutputStream(...) Called by autosave 0.46 N
12 UrlVFS. createOutputStream(...) Called by autosave 0.46 N
13 VFS. createOutputStream(...) Called by autosave 0.46 N
14 Buffer.autosaveFile Accessed by autosave 0.45 Y
15 BufferIORequest.session Accessed by autosave 0.45 N
16 BufferIORequest.vfs Accessed by autosave 0.45 N
17 BufferIORequest.view Accessed by autosave 0.45 N
18 Buffer.dirty Accessed by autosave 0.44 S
19 BufferIORequest.path Accessed by autosave 0.43 N
20 Buffer.LOADING Accessed by autosave 0.43 S
21 BufferIORequest.buffer Accessed by autosave 0.40 N
22 VFSManager.runInWorkThread(...) Called by autosave 0.35 N
23 Buffer.setFlag(int, boolean) Called by autosave 0.33 S
24 Buffer.getFlag(int) Called by autosave 0.31 S
25 WorkRequest.setStatus(String) Called by autosave 0.31 S
26 Buffer.isDirty() Called by autosave 0.30 S
27 CBZip2OutputStream.close() Called by autosave 0.30 N
28 VFS.getFileName(String) Called by autosave 0.30 N
29 WorkRequest.setAbortable(boolean) Called by autosave 0.30 N
30 TarOutputStream.close() Called by autosave 0.28 N
31 jEdit.getProperty(String, Object[]) Called by autosave 0.22 N

Because this query returns 93 matches, we refine it to return only the class
members (fields or methods) that match the string “autosave.” This query re-
turns the following four elements:

AutosaveBackupOptionPane.autosave
Buffer.autosave()
BufferIORequest.AUTOSAVE
BufferIORequest.autosave()

Instead of manually and iteratively exploring the 31 dependencies to and
from these elements, we use Suade to generate a ranked list. Table I presents
the complete results of the analysis.

We illustrate the value of Suade’s ranking through an assessment of the rel-
evance of each element returned. We performed this assessment as follows. For
each element, we answer the question “is this element relevant to a developer
trying to understand how buffers are automatically saved in jEdit?” with the
qualifiers “relevant” (Y), “not relevant” (N), or “somewhat relevant” (S). The last
column of Table 1 (Rel.) indicates our assessment. For example, element #4 is

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 4, Article 18, Pub. date: August 2008.

18:24 • M. P. Robillard

Fig. 11. Ratio of relevant elements for different intervals. The dashed lines represent the overall
ratios.

judged relevant (because it is a flag used to indicate that a buffer has not been
saved since the last autosave operation). In contrast, element #8 is not judged
relevant (because it is a utility function returning a reference to a virtual file
system manager).

To synthesize this assessment, we divide the group of 31 suggestions into
three groups: the top 9 suggestions (elements 1–9), the middle 11 suggestions
(elements 10–20), and the bottom 11 suggestions.13 We can then calculate the
ratio of relevant, somewhat relevant, and irrelevant elements in each group.

Figure 11 shows how the elements (as assessed by the investigator) are dis-
tributed in the three intervals (as determined by Suade). In the interval of top
suggestions (as generated by Suade), 56% of the suggested elements are rele-
vant (as opposed to 19% if the relevant elements had been uniformly distributed
across all three intervals). We can make the opposite observation for the bottom
interval. In this case, 64% of elements are not relevant (as opposed to 52% if the
irrelevant elements had been uniformly distributed across all three intervals).
This exercise shows that, in this case, Suade ranks more relevant elements
in the top interval and more irrelevant elements in the bottom interval than
would have been expected by chance.

A qualitative inspection of the results explains these overall results. We
discuss the detailed topology of only the top and bottom elements as a repre-
sentative example of both cases. The top element (BufferIORequest.run()) is
the method in jEdit that calls autosave(), and one of only three methods in
the entire program that accesses field AUTOSAVE. For these reasons, it is very
specific to the set of interest, for more than one relation. In addition, one of
the accessors of field AUTOSAVE (method Buffer.autosave() is also in the set of
interest, hence an additional degree of reinforcement.

13The groups were created to have a cardinality as equal as possible without distributing elements
of identical degree across two groups.

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 4, Article 18, Pub. date: August 2008.

Topology Analysis of Software Dependencies • 18:25

In the case of the bottom element (jEdit.getProperty(String, Object[])),
it is simply a utility method referenced by 55 sites in the program. Because
of its very low specificity, it naturally gravitates towards the bottom of the
suggestion list.

As this case study illustrates, topological patterns can help estimate the
potential relevance of an element to a set of interest. Although, as expected,
the technique is not perfectly accurate (e.g., in the case of element #3), our
assumption is that overall the topological clues will be strong enough for the
technique to be usable. In this case, a developer would have benefited from the
technique by being able to search all the dependencies to the set of interest in
one operation and to determine immediately the trigger point for the autosave
feature from the top suggestion.

6.2 Azureus Study

Our first case study explains how the algorithm can be useful in practice, but is
subject to investigator bias. We performed another case study to gather similar
evidence that would not be biased in the same way. For this study, we chose to
generate a suggestion set intended to help a developer understand the FILE AL-
LOCATION concern of the Azureus BitTorrent client.14 In Azureus, disk space for
files that are to be downloaded can be allocated using different strategies, and
their implementation is scattered across multiple classes. Some of the imple-
mentation of the file allocation concern is located in the file DiskManagerImpl.
This is a large, complex class that has been modified multiple times. As a result,
it is a target of choice for our analysis. As our set of interest, we selected all
the members of DiskManagerImpl that had the word “allocation” or a variant in
it. This resulted in a set of one field and three methods. We ran Suade on this
initial set of interest. The resulting suggestion set comprised 54 elements.

We then asked two experts to evaluate the results and to qualify each element
in the set according to its relevance. The two experts were graduate students
who had conducted a detailed analysis of the file allocation concern in Azureus
as part of a course project. The experts had performed their analysis using
the FEAT concern modeling tool,15 the SA4J static analysis tool,16 the JProbe
profiler,17 and manual analysis of the source code.

The experts were asked to look at each element in the suggestion set and an-
swer the question “is this element relevant to a developer trying to understand
how files are allocated in Azureus?”, using the answers “Yes,” “No,” and “Some-
what.” The experts were unaware of the reason their expertise was required or
how the list of elements had been generated. The degree value for each element
in the set was not revealed (the list was ordered alphabetically by class name,
then member name, of each of the 54 elements in the suggestion set).

Working as a team for over one hour and using the features of Eclipse, the
experts produced a qualification of each element in the suggestion set. Out of

14http://azureus.sourceforge.net/. Version 2.2
15http://www.cs.ubc.ca/labs/spl/projects/feat
16http://www.alphaworks.ibm.com/tech/sa4j
17http://www.quest.com/jprobe/index.asp

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 4, Article 18, Pub. date: August 2008.

18:26 • M. P. Robillard

Fig. 12. Ratio of relevant elements for different intervals. The dashed lines represent the overall
ratios.

54 elements in the list, 27 (50%) were marked as relevant, 12 (22%) were marked
as somewhat relevant, and 15 (28%) were marked as not relevant. Because the
experts worked as a team, their classification was consensual and reflected
their overall combined knowledge of the system.

We then analyzed whether elements identified as relevant by the experts
were associated with high membership degree as generated by our technique,
in a way similar to the one described in Section 6.1. To this end, we sorted
all elements by descending membership degree and counted the number of
relevant, somewhat relevant, and irrelevant elements in different intervals. We
separated the sorted list of suggestion into four intervals: the top 13 suggestions,
two middle groups of 14 suggestions, and the bottom 13 suggestions. Despite
the fact that there were a number of large groups of elements with the same
degree value (up to 10), with this classification we were also able to include
all the elements with the same degree in the same interval. Figure 12 shows
the proportion of relevant, somewhat relevant, and irrelevant elements in each
interval. The two horizontal lines mark the overall ratios for the 54 elements
(listed above).

From this figure we observe that the approach appropriately ranked the
top and bottom elements with a satisfactory degree of accuracy: 62% of the
13 suggestions were relevant (above the overall ratio of 50%), and 54% of the
suggestions in the bottom interval are not relevant (again above the overall
ratio of 28%). We note that the results for the middle intervals cannot be posi-
tively interpreted. However, because the practical use of the approach involves
perusing the top suggestions, we are focusing our efforts on validating the top
of the suggestion set.

6.3 Experimental Critique

The validity of the evidence gathered as part of our case studies is influenced
by a number of factors. We describe the most important of these factors here,
along with our efforts to limit them.

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 4, Article 18, Pub. date: August 2008.

Topology Analysis of Software Dependencies • 18:27

First, our results might reflect accidentally unique properties the input sets
chosen, as opposed to the more general properties of Java programs. The pre-
sentation of two cases from two different systems helps mitigate this risk. In
addition, although the code analyzed in both cases revolves around the the
high-level concept of a “file,” this is a very general theme in software develop-
ment, and the particulars of the implementation involve mechanisms touching
multiple and varied domains, including the graphical user interface, property
management, and multithreading (jEdit), and network access and error han-
dling (Azureus).

Second, the interpretation of the jEdit case study is based on a subjective
assessment of the relevance of each element generated by our technique. How-
ever, the complete list of elements generated is made available, so that indepen-
dent researchers can interpret our analysis in the light of their own judgment.
The evidence provided by the jEdit study is also corroborated by a second case
study where independent experts evaluated the relevance of the results of the
algorithm. This strategy limits the influence of investigator bias to the selection
of the set of interest associated with the file allocation concern. However, this
set of interest was obtained by pattern-matching a regular expression and not
through an ad-hoc selection. The experts’ evaluation is also made public,18 so
that it can be assessed independently. The case studies thus provide reliable
evidence that the technique can be useful in realistic conditions.

7. QUANTITATIVE VALIDATION

The two case studies described in the previous section provided initial evidence
of the usefulness potential for topology analysis of dependencies. To assess
whether these early results could generalize to different software investigation
scenarios, we conducted an experiment to evaluate the usefulness of the algo-
rithm’s results. We conducted this experiment prior to the release of Suade 0.0.1,
and for this reason the results were obtained using a different prototype that
relied on Eclipse’s Java model for computing structural dependencies. Although
the different implementations do not always produce identical suggestions sets
(see Section 5.3), we do not expect the overall conclusions of this experiment to
be sensitive to this implementation detail given that it involves the application
of our algorithm on 300 distinct input sets.

7.1 Study Design

In this experiment, we investigated how our technique could help discriminate
between relevant and irrelevant elements in different benchmark concerns. In
the context of this experiment a benchmark concern (or benchmark, for short)
is a number of fields and methods in a system that are associated with the
implementation of a concern of interest to a developer. Given a benchmark, we
can evaluate our recommendation technique by studying how successful it is
at suggesting benchmark elements given a subset of the benchmark as a set of
interest.

18http://www.cs.mcgill.ca/˜martin/esecfse2005/

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 4, Article 18, Pub. date: August 2008.

18:28 • M. P. Robillard

Using the terminology of Section 4.2, we formalize our experiment as follows.

(1) Target program. Choose a target program P = (E, R).

(2) Benchmark. Given a program P = (E, R), determine a benchmark B ⊆ E.
The benchmark should include elements that are related to the implemen-
tation of a clearly-defined high-level concern that could realistically be as-
sociated with a software modification task.

(3) Samples. Given a program P = (E, R) and a benchmark B, randomly
select n samples Ii of p elements such that ∀ Ii, Ii ∩ B �= ∅. The samples Ii

will be used as sets of interest. Although, in most cases, it is reasonable to
have samples formed only of benchmark elements (Ii ⊆ B), a more rigorous
evaluation of the technique should also consider sets of interest containing
noise. We characterize the relevance of a sample as r = |Ii ∩ B|.

(4) Application. For each sample Ii, generate a suggestion set S̄i.

(5) Selection window. Determine a selection window w of top suggested el-
ements to consider (e.g., only the element with highest degree, top three
elements, etc.).

(6) Data. Determine the probability pR of selecting a benchmark element by
randomly choosing an element in the suggestion set, and the probability
pF of choosing a benchmark element by randomly choosing an elements in
the filtered suggestion set Fw containing the top w suggested elements. We

have pR =
|B ∩ S̄i |

|S̄i |
and pFw

=
|B ∩ Fw|

w
.

(7) Analysis. Using a statistical technique, determine whether, over all n sam-
ples, pFw

is significantly greater than pR .

As can be seen from this methodology our experiment can be parameterized
in terms of program (P), benchmark (B), number of samples (n), sample car-
dinality (p), sample relevance (r), and selection window (w). We call a fixed
combination of these parameters a configuration.

Our general research hypothesis is that our technique can help a developer
find relevant elements to investigate. In the context of our experiment, our
research hypothesis is that pF > pR which we can interpret as “in the absence
of a better clue, a developer has a better chance of finding a benchmark element
by looking at top suggestions than randomly inspecting the results of cross-
reference searches on elements of interest.” The null hypothesis is that looking
at highly ranked elements does not significantly improve one’s chance of finding
a benchmark element.

7.2 Study Configurations

To ensure a reasonable level of external validity for our study, we instantiated
the experiment for 45 different configurations. In the following, we discuss our
choice of parameters.

Programs and Benchmarks. We ran our experiment on four open-source
Java programs: Violet,19 a small application to draw diagrams in the Unified

19www.horstmann.com/violet/

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 4, Article 18, Pub. date: August 2008.

Topology Analysis of Software Dependencies • 18:29

Table II. Characteristics of Target Programs and Benchmarks

System LOC Benchmark B. Types B. Elements

Violet 0.15 6,744 CONNECTIONS 5 9
LOCC 3.3 27,430 OUTPUT 29 176
JHotDraw 5.3 13,581 ARROW-1 5 11
JHotDraw 5.3 13,581 ARROW-2 7 30
jEdit 4.2-final 88,294 MARKER 8 45

Modeling Language (UML); LOCC,20 a command-line application to extract
metrics from software systems; JHotDraw, the default drawing application built
on the JHotDraw application framework (see Section 4.6); jEdit, a full-featured
text editor (see Section 2). We selected these target systems because they offered
a reasonable size and complexity spectrum, because the set offered a compar-
ison between both similar systems (e.g., Violet and JHotDraw) and different
systems (e.g., LOCC and jEdit), and because we were able to obtain satisfac-
tory benchmarks from these systems.

Table II shows the basic characteristics of each program and a brief descrip-
tion of the benchmark concerns defined on them. The CONNECTION benchmark
defined on Violet was produced independently by a separate researcher de-
signing an experiment for a different project. In the view of the researcher,
this benchmark corresponds to the code that one must understand to fix a
small issue that allows users of Violet to create invalid connections in a UML
diagram. The OUTPUT benchmark on LOCC was created independently by a
second researcher interested in studying code clones in LOCC. This large con-
cern corresponds to the implementation of the output functionality of LOCC,
which supports different output formats (e.g., text, CSV). The two ARROW con-
cerns of JHotDraw were produced by the author. They correspond to the code
that supports the adornment of lines with arrow ends. The first version of this
benchmark omits a class (ArrowTip) which very neatly encapsulates the code
implementing the graphical line decorations. The second version includes the
entire class and an additional method that calls its constructor. This benchmark
exists in two versions because, given the design of our experiment, the addition
of an entire class in a small benchmark can have an important impact on the
results. Having both versions of the benchmark allows us to study this impact.
We discuss this phenomenon in more detail in Section 7.3. Finally, the MARKER

concern was produced by the author as part of a different, unrelated empirical
study of concern evolution (see Section 2). The concern description was reused
as is from the other study. Taken together, this collection of five benchmarks
covers a realistic spectrum of benchmark sizes and styles. Specifically, it in-
cludes benchmarks ranging from small and focused (CONNECTIONS, ARROW-1) to
large and general (OUTPUT).

Number of Samples. The maximum number of samples for an experiment
is bounded by the number of potential combinations of elements in a bench-
mark, given a sample cardinality. For example, with a sample cardinality of 2

20csdl.ics.hawaii.edu/Plone/research/locc.

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 4, Article 18, Pub. date: August 2008.

18:30 • M. P. Robillard

Table III. Experimental Configurations

Name Symbol Values

Benchmark B {Connections, Output, Arrow-1, Arrow-2, Marker}
Number of samples n {20}

Sample cardinality and relevance (p, r) {(2, 2),(3, 3),(4, 3)}
Selection window w {1, 3, 5}

the VIOLET concern offers a maximum of (9
2) = 36 different samples. As for a

lower bound, we must choose enough samples to enable the use of statistical
techniques on the data collected. For simplicity of comparison, we chose n = 20
for all our configurations.

Sample Cardinality and Relevance. In terms of sample cardinality and rel-
evance, we chose three sets of (p, r) parameters that realistically represent a
small but nonunit starting set for a program investigation session: (2, 2), (3, 3),
and (4, 3). The first two sets represent samples of zero nonbenchmark elements
and two and three benchmark elements, respectively. The last set of param-
eters characterizes samples consisting of three benchmark elements and one
non-benchmark element. One must note that including non-benchmark ele-
ments in the sample raises the question of how to select such elements. To
solve this question we created our (4, 3) samples by generating a (3, 3) sample,
applying the suggestion algorithm, and selecting the fourth element from the
suggestions that were not in the benchmark. This strategy is intended to rep-
resent a user including an element that is “reasonable, but not quite right” in
the set of interest.

Selection Window. Hypothesizing that developers do not like to scroll down
long lists of potential results, we aggressively restricted the selection window
for our experiment, choosing the values of 1, 3, and 5. A small window size also
helps us achieve a more robust interpretation of the results because the more
w increases, the more similar Fw and S̄i become.

7.3 Results

Table III summarizes the parameter values we chose for our experimental con-
figurations. We applied our suggestion algorithm to 20 samples for each config-
uration and recorded, for each:

—The size of the suggestion set (|S̄i|);

—The number of suggestions in the benchmark (|S̄i ∩ B|);

—Whether the top suggestion is a benchmark element (for w = 1);

—The number of benchmark elements in the top 3 suggestions (for w = 3);

—The number of benchmark elements in the top 5 suggestions (for w = 5);

For the last three items, whenever there existed a tie for a top position that
could have impacted the result, we broke the tie by randomly (and automati-
cally) choosing the top elements among the equal-valued suggestions. The com-
pletion of these experiments produced 45 × 20 (pR , pF) pairs.

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 4, Article 18, Pub. date: August 2008.

Topology Analysis of Software Dependencies • 18:31

Table IV. Analysis Results

w = 1 w = 3 w = 5

Benchmark (p, r) OR 95%L 95%U OR 95%L 95%U OR 95%L 95%U
Arrow-1 (2,2) 4.3 2.0 9.2 5.0 2.6 9.7 3.5 2.1 5.6
Arrow-1 (3,3) 13 4.8 36 9.4 4.3 21 6.1 3.9 9.6
Arrow-1 (4,3) 15 6.0 40 11 5.4 21 6.9 4.5 11

Arrow-2 (2,2) 3.4 1.4 8.3 3.0 1.6 5.5 * * *

Arrow-2 (3,3) 12 4.4 33 5.7 2.7 12 2.8 1.7 4.7
Arrow-2 (4,3) 4.0 1.6 10 2.6 1.6 4.2 2.2 1.5 3.3

Connections (2,2) 0.96 0.32 2.9 2.5 1.6 3.9 2.5 1.8 3.4
Connections (3,3) 1.7 0.61 4.6 2.9 2.0 4.3 3.4 2.5 4.4
Connections (4,3) 0.74 0.17 3.3 2.4 1.4 4.1 2.8 1.8 4.2

Marker (2,2) * * * 3.8 2.7 5.3 * * *

Marker (3,3) 9.1 3.9 22 4.9 3.5 6.9 3.2 2.4 4.4
Marker (4,3) 27 7.7 96 8.3 4.6 15 6.7 4.1 11

Output (2,2) 2.0 0.80 5.0 2.3 1.6 3.2 1.6 1.3 2.0
Output (3,3) 2.4 1.1 5.0 3.4 2.1 5.4 2.8 1.9 4.1
Output (4,3) 0.48 0.20 1.1 1.0 0.63 1.6 1.2 0.75 2.0

7.4 Analysis

For each configuration, we modeled the odds of getting a benchmark element
using logistic regression. To account for a potential correlation between obser-
vations from the same sample, we used the method of Generalized Estimating
Equations (GEE) as implemented in PROC GENMOD [Allison 1999].

Table IV shows the results of the logistic regression. For each configuration,
we report the estimated odds ratio (OR), along with the lower (L) and upper
(U) bounds of the 95% confidence interval (with two significant digits). This es-
timate is based on the analysis of the 20 samples generated for a configuration.
An OR value is the ratio of the odds of selecting a benchmark element randomly
from the top w suggested elements over the odds of selecting a benchmark ele-
ment randomly from a suggestion set.21 For example, for ARROW-1, (2, 2), w = 1,
the odds of choosing a benchmark element by selecting the top suggestion are
estimated to be 4.3 times higher than by randomly choosing a suggestion, with
a confidence interval of [2.0, 9.2]. The estimated odds ratio is statistically sig-
nificant if the 95% confidence interval does not include the unit ratio. In three
cases, the statistical procedure could not complete the estimation. These cases
are reported with a set of asterisks in the table.

As a first synthesis, we can simply count the number of experimental con-
figurations where our suggestion technique was useful. We consider that the
technique was useful for configurations where the odds ratio is greater than 1.0
with 95% confidence. For clarity, we have highlighted the results in Table IV
where this is not the case. Counting cases where we have no data as nonuseful
configurations, we conclude that the technique significantly improved the odds
of selecting a benchmark element in 35 of the 45 configurations. The most suc-
cessful configuration is (p, r, w) = (4, 3, 1) for the MARKER concern (OR = 27)
and the least successful significant configurations are (p, r, w) = (4, 3, 3) for the

21For a specific sample we have OR = pFw (1 − pR)/pR (1 − pFw).

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 4, Article 18, Pub. date: August 2008.

18:32 • M. P. Robillard

CONNECTIONS concerns and (p, r, w) = (3, 3, 1) for the OUTPUT concern, both with
OR = 2.4.

A closer look at the data allows us to make a number of interesting observa-
tions that translate in knowledge directly applicable by users of the technique.

—Using a set of interest of three relevant elements yielded better results than
using a set of interest of two relevant elements in all cases. We hypothesize
that this phenomenon is caused by the higher number of suggestions gener-
ated with three elements (which increase the denominator of pR), and by the
higher potential for reinforcement offered by a three-element set.

—Increasing w tends to decrease OR and reduce the range of the confidence
interval. In other words, the variability decreases as we consider more of the
top elements. Based on these results, we recommend to consider the 3–5 top
suggestions.

—It is difficult to predict the impact of introducing noise in the set of interest.
This situation is modeled with the (p, r) = (4, 3) parameters in our experi-
ment. If we compare the results using (3, 3) versus (4, 3) across benchmarks,
we see that for ARROW-1 and MARKER the introduction of a noisy element actu-
ally improved the OR, whereas for the other benchmarks it had the opposite
effect. In the case of OUTPUT, the introduction of a noisy element even ren-
dered the technique useless.

—The ARROW-1 benchmark produced higher OR than the ARROW-2 benchmark
for all nine other possible combinations of parameters. This phenomenon
can be partially explained as an artifact of our experiment. In the ARROW-2
benchmark, one class (ArrowTip) is entirely added to the benchmark as it is
entirely related to the concern. Because of our sampling procedure, only a
fraction of the elements in ArrowTip can be part of the sample set of interest.
In this case, our sample does not represent a realistic set of interest because a
developer having identified ArrowTip as entirely relevant to a concern would
normally include the entire class in the set of interest. The impact of select-
ing a subset of ArrowTip is that the other members of the ArrowTip class
will easily be regenerated as suggestions because there are typically many
structural relations among the elements of a class. Because all the elements
of ArrowTip are part of the benchmark, we can expect the probability pR to
be artificially high, and thus to have a lower OR. This analytic interpreta-
tion is confirmed by our comparison of the estimated ORs for the two ARROW

benchmarks. The lesson we take away from this observation is that if all the
elements of a class implement a concern, they should all be added to the set
of interest because they will otherwise form obvious clutter in the suggestion
set.

7.5 Experimental Critique

As is the case for most controlled experiments, our quantitative assessment of
our recommendation technique was performed in a restricted and synthetic con-
text, and as such important factors must be considered when interpreting the
results. We orient our discussion in terms of four common characteristics used

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 4, Article 18, Pub. date: August 2008.

Topology Analysis of Software Dependencies • 18:33

to assess experimental designs: construct validity, internal validity, external
validity, and reliability [Yin 1989, p. 33].

The construct validity of our study (or correctness of our operational mea-
sures) is affected by the fact that not all samples necessarily represent sets
of interest that developers would use. To derive an objective and quantitative
measurement of the success of the technique, we needed to avoid any subjec-
tive discrimination between samples. In practice, users of the technique may
have different personal styles for constructing sets of interest, which may affect
the results. Our measurement of the success of the technique also involves an
imperfect approximation of the use of the technique. Specifically, although we
assess the technique in terms of how it improves the odds of randomly selecting
a benchmark element from a set of structurally related candidates, this is only a
model because, in practice, we do not expect users to choose randomly. Instead,
we can assume that users will choose suggestions based on keywords, previous
knowledge of the task, intuition, etc. However, we feel that our random model is
appropriate as it estimates the uncertainty associated with choosing elements
from a list while making as few assumptions as possible about the selection
strategy used.

The main strength of this experimental design is its high internal validity (or
soundness of the relationship between independent and dependent variables).
Because all the factors potentially affecting the difference between pF and pR

are under our direct control, any significant difference must be caused by the
ranking produced by our technique.

External validity establishes to what extent the results of the study can
be generalized. As can be seen from Table IV, the success level of the tech-
nique is affected by the benchmark and by the nature of the set of interest.
Given the unbounded variety of software and programming tasks, we can ex-
pect that there will be situations where the technique will not be useful. How-
ever, given that we were able to confirm the success of the technique for 35
configurations involving five different benchmarks defined on four different
systems by three different programmers, we expect that additional experimen-
tation with the current form of the technique should lead to similar success
levels.

Finally, reliability qualifies to which degree the study can be repeated with
the same results. In our case, we conducted all the experiments on open-
source systems using procedures and algorithms completely described in this
article and the benchmarks are available on request from the author. In ad-
dition, the direct interpretation of the statistical data does not involve a sub-
jective, a posteriori assessment of relevance. For these reasons, it should be
possible to independently replicate our results.

8. CONCLUSION

We presented a technique for automatically suggesing elements of potential
interest to a developer involved in a program investigation task. Our technique
is based on an analysis of the topology of a graph of structural dependencies
for a software system. The technique takes as input a fuzzy set representing

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 4, Article 18, Pub. date: August 2008.

18:34 • M. P. Robillard

elements of interest to a developer and produces a fuzzy set of related elements,
whose degree of membership is calculated by analyzing how specific an element
is to the set of interest, and how its relation to the set of interest is reinforced
by existing relations with other elements in the set of interest. The intuition
behind our technique is that analyzing the topological properties of the struc-
tural dependencies of a software system can help determine the potential for
an element to be worthy of detailed investigation by a developer. A qualitative
study of the results produced for two sets of interest describing useful con-
cepts in medium-size systems shows how our algorithm can help developers
quickly select program elements worthy of investigation while avoiding less in-
teresting ones. A quantitative experiment of the success of the technique in 45
situations involving five different program investigation scenarios defined on
four different systems showed that the technique can significantly increase the
odds of identifying a relevant element over unguided investigation of the code
in at least 35 of our 45 experimental configurations. We conclude that topology
analysis appears to be a promising and cost-effective way to help developers
navigate source code.

ACKNOWLEDGMENT

The author is grateful to José Correa of the McGill University Statistical Con-
sulting Service for his professional advice and dilligent help with the analysis
of the data for the quantitative experiment. Many thanks also go to Frédéric
Weigand Warr for his work on Suade, and to Félix Martineau, Philippe Nguyen,
Imran Majid and Ekwa Duala-Ekoko for contributing to the empirical evalu-
ation of the work. This article has greatly benefited from the valuable com-
ments of Davor Čubranić, Nomair Naeem, Rob Walker, the members of the Soft-
ware Practices Lab at UBC, and the anonymous ESEC/FSE 2005 and TOSEM
reviewers.

REFERENCES

AGRAWAL, H. AND HORGAN, J. R. 1990. Dynamic program slicing. In Proceedings of the ACM SIG-

PLAN Conference on Programming Language Design and Implementation. 246–256.
AHO, A. V. 1980. Pattern matching in strings. In Formal Language Theory: Perspectives and Open

Problems, R. V. Book, Ed. Academic Press, 325–347.
ALLISON, P. D. 1999. Logistic Regression Using the SAS system—Theory and Application. SAS

Institute Inc.
ANTONIOL, G., CANFORA, G., DE LUCIA, A., AND MERLO, E. 1999. Recovering code to documentation

links in OO systems. In Proceedings of the 6th IEEE Working Conference on Reverse Engineering.
136–144.

ANTONIOL, G. AND GUÉHÉNEUC, Y.-G. 2005. Feature identification: A novel approach and a case
study. In Proceedings of the 21st IEEE International Conference on Software Maintenance. 357–
366.

BOEHM, B. W. 1976. Software engineering. IEEE Trans. Comput. 12, 25, 1226–1242.
CHEN, Y.-F., NISHIMOTO, M. Y., AND RAMAMOORTHY, C. 1990. The C information abstraction system.

IEEE Trans. Softw. Engin. 16, 3, 325–334.
EISENBARTH, T., KOSCHKE, R., AND SIMON, D. 2003. Locating features in source code. IEEE Trans.

Softw. Engin. 29, 3, 210–224.
EISENBERG, A. D. AND DE VOLDER, K. 2005. Dynamic feature traces: Finding features in unfamiliar

code. In Proceedings of the 21st IEEE International Conference on Software Maintenance. 337–
346.

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 4, Article 18, Pub. date: August 2008.

Topology Analysis of Software Dependencies • 18:35

GALLAGHER, K. B. 1996. Visual impact analysis. In Proceedings of the IEEE International Con-

ference on Software Maintenance. 52–58.
GALLAGHER, K. B. AND LYLE, J. R. 1991. Using program slicing in software maintenance. IEEE

Trans. Softw. Engin. 17, 8, 751–761.
GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. 1995. Design Patterns—Elements of

Reusable Object-Oriented Software. Professional Computing Series. Addison-Wesley Longman,
Inc.

GOLDBERG, A. 1984. Smalltalk-80: The Interactive Programming Environment. Addison-Wesley.
GYIMÓTHY, T., ÁRPÁD BESZÉDES, AND FORGÁCS, I. 1999. An efficient relevant slicing method for

debugging. In Proceedings of the 7th European Software Engineering Conference and 7th ACM

SIGSOFT International Symposium on the Foundations of Software Engineering. Lecture Notes
in Computer Science, vol. 1687. Springer-Verlag, Berlin, Germany, 303–321.

JACKSON, D. AND ROLLINS, E. J. 1994. A new model of program dependence for reverse engineering.
In Proceedings of the 2rd ACM SIGSOFT Symposium on the Foundations of Software Engineer-

ing. 2–10.
JANZEN, D. AND DE VOLDER, K. 2003. Navigating and querying code without getting lost. In Pro-

ceedings of the 2nd ACM International Conference on Aspect-Oriented Software Development.
178–187.

KERSTEN, M. AND MURPHY, G. C. 2005. Mylar: a degree-of-interest model for IDEs. In Proceedings

of the 4th ACM International Conference on Aspect-Oriented Software Development. 159–168.
KRUCHTEN, P. 2000. The Rational Unified Process: An Introduction 2nd Ed. Addison-Wesley.
LEJTER, M., MEYERS, S., AND REISS, S. P. 1992. Support for maintaining object-oriented programs.

IEEE Trans. Softw. Engin. 18, 12, 1045–1052.
MARCUS, A., SERGEYEV, A., RAJLICH, V., AND MALETIC, J. I. 2004. An information retrieval approach

to concept location in source code. In Proceedings of the 11th IEEE Working Conference on Reverse

Engineering. 214–223.
OBJECT TECHNOLOGY INTERNATIONAL, INC. 2001. Eclipse platform technical overview. White Paper.
ORSO, A., APIWATTANAPONG, T., LAW, J., ROTHERMEL, G., AND HARROLD, M. J. 2004. An empirical

comparison of dynamic impact analysis algorithms. In Proceedings of the 26th ACM/IEEE In-

ternational Conference on Software Engineering. 491–500.
ORSO, A., SINHA, S., AND HARROLD, M. J. 2001. Incremental slicing based on data-dependences

types. In Proceedings of the IEEE International Conference on Software Maintenance. 158–167.
ROBILLARD, M. P. AND WEIGAND WARR, F. 2005. ConcernMapper: Simple view-based separation of

scattered concerns. In Proceedings of the Eclipse Technology Exchange Workshop at OOPSLA.
65–69.

ROBILLARD, M. P. 2005. Automatic generation of suggestions for program investigation. In Pro-

ceedings of the Joint 10th European Software Engineering Conference and 13th ACM SIGSOFT

Symposium on the Foundations of Software Engineering. 11–20.
ROBILLARD, M. P. 2006. Tracking concerns in evolving source code: An empirical study. In Pro-

ceedings of the 22nd IEEE International Conference on Software Maintenance. 479–482.
ROBILLARD, M. P., COELHO, W., AND MURPHY, G. C. 2004. How effective developers investigate source

code: An exploratory study. IEEE Trans. Softw. Engin. 30, 12, 889–903.
SALAH, M. AND MANCORIDIS, S. 2004. A hierarchy of dynamic software views: from object-

interactions to feature-interactions. In Proceedings of the 20th IEEE International Conference on

Software Maintenance. 72–81.
SANELLA, M. 1983. The Interlisp-D Reference Manual. Xerox Corporation.
SILLITO, J., MURPHY, G. C., AND DE VOLDER, K. 2006. Questions programmers ask during software

evolution tasks. In Proceedings of the 14th ACM SIGSOFT Symposium on the Foundations of

Software Engineering. 23–33.
SNELTING, G. 1998. Concept analysis—a new framework for program understanding. In Proceed-

ings of the ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and

Engineering. 1–10.
TIP, F. 1995. A survey of program slicing techniques. J. Program. Lang. 3, 3, 121–189.
TONELLA, P., ANTONIOL, G., FIUTEM, R., AND MERLO, E. 1997. Variable precision reaching definitions

analysis for software maintenance. In Proceedings of the 1st IEEE Euromicro Conference on

Software Maintenance and Reengineering. 60–67.

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 4, Article 18, Pub. date: August 2008.

18:36 • M. P. Robillard

WEIGAND WARR, F. AND ROBILLARD, M. P. 2007. Suade: Topology-based searches for software investi-
gation. In Proceedings of the 29th ACM/IEEE International Conference on Software Engineering.
780–783.

WEISER, M. 1984. Program slicing. IEEE Trans. Softw. Engin. 10, 4, 352–357.
WILDE, N. AND SCULLY, M. C. 1995. Software reconnaissance: Mapping program features to code.

Softw. Mainten. Resear. Prac. 7, 49–62.
WONG, W. E., GOKHALE, S. S., HORGAN, J. R., AND TRIVEDI, K. S. 1999. Locating program features

using execution slices. In Proceedings of the IEEE Symposium on Application-Specific Systems

and Software Engineering and Technology. 194–203.
YIN, R. K. 1989. Case Study Research: Design and Method 2nd Ed. Applied Social Research

Methods Series, vol. 5. Sage Publications Ltd., UK.
YING, A. T., MURPHY, G. C., NG, R., AND CHU-CARROLL, M. C. 2004. Predicting source code changes

by mining change history. IEEE Trans. Softw. Engin. 30, 9, 574–586.
ZHAO, W., ZHANG, L., LIU, Y., SUN, J., AND YANG, F. 2004. SNIAFL: Towards a static noninteractive

approach to feature location. In Proceedings of the 26th ACM/IEEE International Conference on

Software Engineering. 293–303.
ZIMMERMANN, H.-J. 1996. Fuzzy Set Theory and Its Applications, 3rd ed. Kluwer Academic Pub-

lishers, The Netherlands.
ZIMMERMANN, T., WEIßGERBER, P., DIEHL, S., AND ZELLER, A. 2004. Mining version histories to guide

software changes. In Proceedings of the 26th ACM/IEEE International Conference on Software

Engineering. 563–572.

Received March 2006; revised February 2007, April 2007; accepted August 2007

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 4, Article 18, Pub. date: August 2008.

