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We present a generic framework for modeling three-dimensional deformable shells of active matter that

captures the orientational dynamics of the active particles and hydrodynamic interactions on the shell and

with the surrounding environment. We find that the cross talk between the self-induced flows of active

particles and dynamic reshaping of the shell can result in conformations that are tunable by varying the

form and magnitude of active stresses. We further demonstrate and explain how self-induced topological

defects in the active layer can direct the morphodynamics of the shell. These findings are relevant to

understanding morphological changes during organ development and the design of bioinspired materials

that are capable of self-organization.
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The defining feature of living materials such as the cell

cytoskeleton, bacterial colonies, or cellular tissues is the

continuous conversion of chemical energy into mechanical

work. This “activity” injects energy at the single particle

level by producing active stresses that drive the whole

system away from thermodynamic equilibrium [1–4].

Importantly, activity is an essential tool for living materials

to self-organize and self-assemble into biologically func-

tional systems, and understanding the processes involved

may provide biomimetic inspiration for the design of

synthetic materials capable of autonomous movement

and self-organization [5,6].

Dense activematerials that produce dipolar flow fields are

often well described by continuum, active nematic theories.

Instabilities due to the active stresses destroy any nematic

ordering and lead to active turbulence, a state characterized

by strong flow vorticity and motile topological defects that

are continually created and destroyed. When an active

nematic is confined, interplay between the geometrical

and topological constraints can lead to a rich dynamical

behavior. For example, an active nematic confined to a

spherical shell must, from the Poincaré-Hopf theorem, carry

a topological charge þ2 which can manifest as four þ1=2
defects or two þ1 defects following intermittent orbits on

the surface of the shell. Such defect dynamics has been

observed by restricting suspensions of subcellular micro-

tubule filaments driven by kinesin motors to spherical [7,8]

or toroidal surfaces [9], and the exotic dynamics has been

reproduced in theoretical [10] and particle-based numerical

[7,11,12] studies. Recent extension to ellipsoidal surfaces

has investigated the connection between active topological

defects and varying surface curvature [11].

Indeed, a number of recent works have taken first steps

in this direction. Encapsulating microtubule and motor

protein mixtures within a deformable lipid vesicle, Keber

et al. [7] showed that deflating the vesicle can result in

tunable dynamic shape changes in the form of ring-shaped,

spindle-shaped, and anisotropic motile droplets with fili-

podialike protrusions. Moreover, Weirich et al. [17]

showed that introducing myosin motors to spindle-shaped

droplets of actin filaments results in the formation of

contractile stresses at the midplane of the droplets that

can artificially mimic cell division by splitting the drop into

two daughter drops. Miller et al. [18] showed that modeling

a deformable shell close to mechanical equilibrium—by

separation of chemical and mechanical timescales—can

capture the contraction caused by chemical wave propa-

gation on deformable surfaces and corresponding morpho-

logical changes in ascidian and starfish oocytes. Similarly,

Mietke et al. [19] introduced a mechanochemical coupling

to describe active stress organization and shape changes of

axisymmetric surfaces, such as spherical and tubular shells,

resulting in shape oscillations and peristaltic motion.

Notwithstanding these important contributions, model-

ing active shape-changing surfaces far-from-equilibrium,

and beyond axisymmetric shapes, remains challenging.

Adding to this complexity, to explain the variety of shape

changes observed in recent experiments, accounting for

evolution of orientational order, hydrodynamic coupling

and the dynamics of topological defects are essential [7–9].

Therefore, in this Letter, we present a generic, continuum,

three-dimensional framework to study the spatiotemporal

dynamics of active self-deforming shells which allows the

effects of hydrodynamics and orientational order to be

included. We do this by localizing a nematic shell at a

deformable interface between two (identical) phases of a

binary fluid.

Applying the algorithm to active nematic shells reveals

dynamically self-organized morphologies, that can be

tuned based on the mechanical properties of the shell,
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and the magnitude and form (extensile or contractile) of

active stress generation. Furthermore, by closely tracking

the shape changes and the dynamics of topological defects,

we explain the mechanism by which three-dimensional

active protrusions are initiated, evolve, and determine the

shell morphology.

We model a deformable active nematic shell at the

interface of two (identical) phases of an isotropic, binary

fluid, by adopting the continuum dynamical equations:

∇ · u ¼ 0; ð1Þ

ρð∂t þ u · ∇Þu ¼ −∇pþ ∇ · ðΣpassive þ Σ
activeÞ; ð2Þ

ð∂t þ u · ∇ÞQ − S ¼ ΓQH; ð3Þ

∂tϕþ ∇ · ðϕuÞ ¼ Γϕ∇
2μ: ð4Þ

The fluid flow is given by u, ρ denotes the fluid density, p

the pressure, and Σ ¼ Σ
passive þ Σ

active is the stress tensor

comprising active and passive contributions, as detailed

below. Equations (1)–(4), are constructed from momentum

conservation for the incompressible velocity [Eqs. (1)

and (2)] [20], symmetry considerations for the nematic

order parameter [Eq. (3)] [21], and Cahn-Hilliard type

advection diffusion for the conserved binary order param-

eter [Eq. (4)] [22].

The phase-field order parameter ϕ is used to distinguish

the two phases of the binary fluid, and in particular to track

the position of the interface between them, which corre-

sponds to the position of the active shell. This approach is

similar in spirit to a phase-field formalism that treats

coexisting nematic and isotropic fluids which has been

used to study active nematic droplets [23] as model systems

for cell motility [24,25], or cell division [26,27], but, as

detailed below, we now adapt it to model deformable

membranes of an active nematic.

To follow the alignment dynamics of the elongated active

particles on the interface, Q is defined as the nematic order

parameter tensor describing the orientational order of the

active particles. In Eq. (3) the corotational term S¼
ðξDþΩÞðQþ 1

3
IÞþðQþ 1

3
IÞðξD−ΩÞ−2ξðQþ 1

3
IÞtrðQWÞ

determines the alignment of the elongated particles in

response to gradients in the velocity field that are charac-

terized by rotational Ω, extensional D, and total gradientW

contributions to the flow, and the flow alignment parameter

ξ, which is proportional to the aspect ratio of the particles.

The relaxational dynamics of the nematic tensor Q

and phase-field order parameter ϕ are governed by the

molecular field H ¼ −½ðδF=δQÞ − 1

3
ItrðδF=δQÞ� and the

chemical potential μ ¼ ðδF=δϕÞ, respectively. These are

determined by minimizing a free energy F. The relaxation

strengths are set by the rotational diffusion coefficient ΓQ

for the nematic and the mobility Γϕ for the phase field.

The first contribution to the free energy is a membrane

term, which combines a mixing free energy corresponding

to phase equilibria at ϕ ¼ −1, 1, a bending term and an

interface term:

Fmem ¼ κ�

2
ð−ϕþ ϕ3

− ϵ2∇2ϕÞ2 þ kϕ

2
ð∇ϕÞ2: ð5Þ

κ� is related to the bending rigidity κ as κ� ¼ ð4ϵ3=3
ffiffiffi

2
p

Þκ
and kϕ is related to the surface tension σ by σ ∝

ffiffiffiffiffi

kϕ
p

,

where ϵ characterizes the width of the interface.

The orientational order is coupled to the binary order

parameter ϕ through a bulk free energy

F b ¼ A0

�

1

2

�

1 −
ηðϕÞ
3

�

trðQ2Þ − ηðϕÞ
3

trðQ3Þ

þ ηðϕÞ
4

trðQ2Þ2
�

; ð6Þ

where A0 is a positive constant. This form of the free energy

gives a first order, isotropic-nematic phase transition at

η ¼ 2.7. The key element in writing Eq. (6) is that, in order

to simulate an active nematic at the interface, the expression

for ηðϕÞ is chosen as ηðϕÞ ¼ η0 − ηsðϕ − ϕ̄Þ2. This allows
parameters to be chosen such that both free energy minima

in ϕ correspond to the isotropic phase, but the interface is

itself nematic. The bulk free energy is further comple-

mented by the Frank elastic energy F elastic ¼ ðL=2Þð∇QÞ2,
penalizing orientational deformations, and an interfacial

anchoring free energy F anchoring ¼ L0∇ϕ · Q · ∇ϕ, with

L0 > 0 to ensure that the director field lies parallel to the

interface.

Using this free energy description, we can write the

passive stress tensor in terms of viscous, elastic, and

capillary contributions, as in previous work [28],

but now including two additional terms because of the

appearance of ∇2ϕ in the membrane free energy:

∇ϕ∇ð∂F=∂∇2ϕÞ − ∇∇ϕð∂F=∂∇2ϕÞ. In addition to the

passive stresses, the active stress is defined as Σactive ¼ −ζQ

such that gradients in the orientational order Q generate

active forces that drive active flows. Furthermore, switching

the sign of the activity parameter ζ allows us to distinguish

extensile ζ > 0 from contractile ζ < 0 active particles.

Equations (1)–(4) are solved using the hybrid lattice-

Boltzmann method (see Supplemental Material for the

choice of the numerical parameters [29]). An alternative

method is to solve the equations on a discretized surface

mesh [30]. The advantage of the phase-field method is that

resolving the interface does not require surface mesh gen-

eration. The advantage of the surface mesh is that it is more

accurate in capturing the details of the surface deformation as

it avoids the finite width of the phase-field interface.

We begin by considering how the morphology of an

initially spherical shell of radius R evolves in space and
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time for different activities ζ. Our main control parameter is

the dimensionless number Z ¼ ζR=
ffiffiffiffiffiffiffiffiffi

κ�kϕ
p

, which charac-

terizes the ratio of active stresses to the restoring forces due

to shell deformation. At small extensile activities the shell

remains undeformed, while four þ1=2 topological defects

are present since the total topological charge of the surface

must be þ2. Because of the activity the þ1=2 defects orbit

the surface, reproducing the experimental observations of

Keber et al. [7]. Increasing activity, however, results in

strong enough active stresses to deform the shell, creating

an autonomously shape-changing material. To quantify the

deviation of the shell morphology from spherical we

calculate the sphericity Ψ ¼ 36πVs
2=As

3, where Vs is

the shell volume and As is its surface area.

As the extensile activity is increased beyond a certain

threshold, the sphericity Ψ drops below one, indicating that

the initial spherical shell is self-developing into a more

anisotropic morphology (see Fig. 1; black squares). At the

same time, monitoring the average number of þ1=2 topo-

logical defects on the surface (see Fig. 1; red diamonds)

shows that this increases from four. Since the total

topological charge on the surface of the shell has to remain

þ2 this indicates that pairs of�1=2 topological defects are
nucleated and the periodic patterns of the defect motion

have now transitioned into active turbulence on the shell

surface.

Although for extensile activities the shell deformations

predominantly occur for active stresses that are strong

enough to prompt defect pair nucleation and establish

active turbulence, shape changes in contractile systems are

possible even without the nucleation of defect pairs. At

small contractile activities (Fig. 1; negative Z values) two

þ1=2 defects localize at each pole and, unlike in extensile

systems, self-propel towards their cometlike tails, stretch-

ing the initially spherical shell into a spindle shape. The

spindle configuration of the shells resembles the tactoids

formed in lyotropic liquid crystals [28,31,32] and in

recently reported droplets of actin filaments [17].

Increasing the contractile activity first further elongates

the spindles. Then, as it is increased still further, pairs of

�1=2 topological defects start to nucleate on the surface,

which leads to the formation of protrusions and troughs on

the shell and results in the emergence of more complex

morphologies.

A common feature observed in both extensile and

contractile systems at high activities is the emergence of

protrusions and troughs on the shell, which appear to be

closely connected to the dynamics of topological defects.

To test this interconnection, we next simulate a deform-

able shell in a more constrained setup: a hemisphere fixed

on a substrate. We initialize a hemispherical, extensile

active nematic shell in an isotropic fluid background.

The active nematic particles are homeotropically anch-

ored to the underlying substrate, such that the total

topological charge of the nematic on the half-sphere is

þ1. The membrane is then allowed to deform continu-

ously, but the interaction with the substrate constrains the

deformation.

FIG. 1. The sphericity Ψ (black squares) and the number of defects NA (red diamonds) on an active deformable shell as a function of

the dimensionless activity Z. For extensile activities (positive Z) defects are spontaneously created and annihilated at activities where

the shell does not yet significantly deform. For contractile activities (negative Z) the surface becomes less spherical while the defect

number remains four. For large extensile and contractile activities protrusions are created. The snapshots indicate representative shapes

at different activities.
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Figure 2(a) shows the deformation of the nematic

hemisphere at small activity. The two þ1=2 defects are

driven towards each other, until the elastic repulsion keeps

them at a fixed distance. The activity is not large enough to

create additional defect pairs, so the configuration is in an

unstable steady state. For intermediate activity the motile

defects are driven together and merge into a single þ1

defect [Fig. 2(b)]. As such the defects form a single

protrusion, indicated by the region of large curvature in

Fig. 2(b). Indeed when the curvature is sufficiently large,

the geometry itself will aid the stability of a þ1 defect

(see Fig. 3 for a schematic drawing).

For large activity the dynamics on the surface of the shell

is much more chaotic, and additional defect pairs form and

annihilate. It is energetically favorable for þ1=2 (−1=2)
topological defects to lie in regions of larger (smaller) mean

curvature. Because of their motility, topological defects in

active systems can move to such favorable locations. Here,

because the surface is deformable they can also dynami-

cally drive variations in the curvature. To quantify the

interconnection between the topological defects and the

surface curvature, we measure the histogram of the mean

curvature for positive and negative topological charges

(Fig. 4). Negative topological charges are clearly more

likely to be found in regions of small mean curvature,

whereas positive topological charges move towards regions

with large mean curvature and generate their own strongly

curved surfaces.

Remarkably, the flows created by motile þ1=2 defects

can drive the formation of long “tentacles” [Fig. 2(c)]. As

FIG. 2. Deformation of an active nematic shell (R ¼ 12) attached to a surface, for (a) small activity, Z ¼ 0.034; (b) intermediate

activity, Z ¼ 8.5; and (c) large activity, Z ¼ 20. For small activity the two þ1=2 defects are driven gradually closer together, until the

active force is balanced by the elastic force. For intermediate activity the two þ1=2 defects come into contact and lead to a single

protrusion. For large activity motile defects can drive formation of long “tentacles,” which will retract again due to surface tension. The

directors on the shell are colored by the magnitude of the order (from red for disordered to yellow to white for fully aligned) and the

surface is colored by the magnitude of the curvature (dark blue for strongly negative to white for strongly positive).

FIG. 3. Schematic of a þ1=2 topological defect approaching

the tip of a protrusion (projection onto the plane). (a) The motile

defect is moving over the surface of the protrusion, causing it to

grow. (b) Closer to the tip the gradients will become smaller and

the active stress will decrease. (c) When the defect has reached

the tip of the protrusion, it combines with another þ1=2 defect

from the back side of the projected plane, giving the winding

number along the yellow line a topological charge of þ1. The

gradients in the director field are small, and the active flow will

therefore be small as well.

PHYSICAL REVIEW LETTERS 123, 208001 (2019)

208001-4



one þ1=2 defect moves towards the tip of a protrusion,

another �1=2 defect pair is created with þ1=2 moving up

the protrusion to combine with the other þ1=2 defect and

form a þ1 defect at the tip, while the −1=2 defect is left

behind at the bottom of the protrusion, generating a trough

on the surface of the shell [center of Fig. 2(c) and the movie

in the Supplemental Material [29]]. With the þ1 defect on

the tip of the protrusion, the active flow becomes negligible

in the tentacle, since the gradient of Q and, consequently,

the active force factive ¼ −ζ∇ · Q vanish at the tip (Fig. 3).

Surface tension will then lead to retraction of the

protrusion.

To summarize, we have introduced a way to simulate

deformable, active nematic shells. Our results demonstrate

that the active flows associated with gradients of the

nematic tensor play a key role in dictating the shell

dynamics and morphology. In particular, self-motile

þ1=2 topological defects can drive the formation of long,

tentaclelike protrusions analogous to those observed exper-

imentally in flexible vesicles coated with suspensions of

microtubules and motor proteins [7] and reminiscent of the

tentacles of the multicellular polyp Hydra [33,34].
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