Hindawi

Complexity

Volume 2021, Article ID 8843271, 12 pages
https://doi.org/10.1155/2021/8843271

Research Article

WILEY

Hindawi

Topology-Aware Bus Routing in Complex Networks of
Very-Large-Scale Integration with Nonuniform Track

Configurations and Obstacles

Ziran Zhu,' Zhipeng Huang,2 Jianli Chen,’ and Longkun Guo

'National ASIC System Engineering Research Center, Southeast University, Nanjing, China
2Center for Discrete Mathematics and Theoretical Computer Science, Fuzhou University, Fuzhou, China
*State Key Laboratory of ASIC and System, Fudan University, Shanghai, China
*Shandong Key Laboratory of Computer Networks, School of Computer Science and Technology,
Qilu University of Technology (Shandong Academy of Sciences), Jinan, China

Correspondence should be addressed to Longkun Guo; longkun.guo@gmail.com

Received 9 September 2020; Revised 21 January 2021; Accepted 26 March 2021; Published 15 April 2021

Academic Editor: Shi Cheng

Copyright © 2021 Ziran Zhu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

As one of the most important routing problems in the complex network within a very-large-scale integration (VLSI) circuit, bus
routing has become much more challenging when witnessing the advanced technology node enters the deep nanometer era
because all bus bits need to be routed with the same routing topology in the context. In particular, the nonuniform routing track
configuration and obstacles bring the largest difficulty for maintaining the same topology for all bus bits. In this paper, we first
present a track handling technique to unify the nonuniform routing track configuration with obstacles. Then, we formulate the
topology-aware single bus routing as an unsplittable flow problem (UFP), which is integrated into a negotiation-based global
routing to determine the desired routing regions for each bus. A topology-aware track assignment is also presented to allocate the
tracks to each segment of buses under the guidance of the global routing result. Finally, a detailed routing scheme is proposed to
connect the segments of each bus. We evaluate our routing result with the benchmark suite of the 2018 CAD Contest. Compared
with the top-3 state-of-the-art methods, experimental results show that our proposed algorithm achieves the best overall score

regarding specified time limitations.

1. Introduction

As the advanced technology node enters the deep nanometer
era, routing has become much challenging because of the
enormously growing scale of the large scale of very-large-scale
integration (VLSI) circuit [1]. Among the routing problems,
bus routing is attracting most research interest and has met
new challenges: (1) all bits in each bus must be routed with the
same routing topology; (2) nonuniform and complex routing
track configurations; and (3) we need to handle obstacles.
Particularly, the constraint according to which all bits be-
longing to the same bus must be routed following the same
routing topology makes the previous routers not applicable to
current topology-matching bus routing.

Previous works on bus routing focused mainly on printed
circuit board (PCB) designs. For example, Tian and Watanabe
[2] considered the delay-matching constraint in bus routing to
meet several timing specifications. Yan and Wong [3] and
Zhang et al. [4] handled the length-matching bus routing such
that the wire lengths of all nets on the same bus are within the
specified range. However, none of these works considered the
constraint of maintaining the same topology for all bits on the
same bus. Therefore, it is desirable to develop an effective and
efficient topology-matching bus routing algorithm.

According to the previous criteria, the bits in a bus are
considered to have the same topology if the following four
criteria are met: (1) All bits have the same number of wires.
(2) All wires traced from all bits have the same layer

mailto:longkun.guo@gmail.com
https://orcid.org/0000-0003-2891-4253
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/8843271

sequencing. (3) All wires traced from all bits route towards
the same direction. (4) Within each segment (a segment is a
set of wires of different bits with the same sequence when
traced from a set of pin shapes), the wires of different bits
maintain the same or the reverse order as the order seen
from the pin shapes.

Figure 1(a) illustrates a bus being routed successfully
with the same topology. Supposing that we start tracking the
wires from the pin shapes on the left, as shown in this figure,
all wires traced from all bits have the same direction
(rightward, downward, and rightward, resp.) and the same
layer sequencing (L1, L2, and L1). In addition, within all
segments (segl, seg2, and seg3), the wires of different bits
maintain the same order or the reverse order as the order of
pin shapes.

Routing tracks are designed to help routers comply with
various design requirements and help mask coloring, which
are essential in advanced technology node [5]. Each routing
track has a width constraint that only wires with width no
larger than the constraint are allowed to be routed on the
track. Since the routing requirements of different buses may
be different (e.g., different wire widths and different wire
spacing), the routing track configuration may be nonuni-
form. For example, Figure 1(b) shows five tracks that can be
classified into two types (blue and green, resp.) based on the
width constraints. The blue tracks have a larger width
constraint and cover the whole design from bottom to top,
while the green tracks have a smaller width constraint and
only cover part of the design. Particularly, routing tracks can
overlap with each other, and the distribution may be uneven.
Such nonuniform routing track configuration imposes a
great challenge to the bus routing.

Obstacles such as circuit components and power vias
make bus routing even more challenging. Since such ob-
stacles are scattered throughout certain layers, it is not
possible to find continuous routable area if bus bits are not
allowed to route between some of them.

Due to the high complexity of the routing problems, the
routing process is typically divided into global routing, track
assignment, and detailed routing. In global routing, the
routing region is divided into coarse-grained grid cells
(called g-cells), and rough routing regions are determined
for each net through the connection between the g-cells.
Next, track assignment allocates routing tracks to iroutes
that are extracted from the global routing result. Finally,
detailed routing finds a path for each net to connect the
iroute and pins and completes the final routing.

In this paper, we propose an effective algorithm to solve
the topology-matching bus routing problem considering
obstacles and nonuniform track configurations. The major
contributions of our work are summarized as follows:

(i) A track handling technique is presented to unify the
nonuniform routing track configuration with
obstacles.

(ii) We formulate the topology-aware single bus routing
as an unsplittable flow problem (UFP), which is
integrated into a negotiation-based global routing to
determine the desired routing regions for each bus.

Complexity

(iii) Under the guidance of the global routing result, a
topology-aware track assignment is proposed to
allocate tracks to each segment of buses, which
significantly reduces the difficulty of maintaining
the same routing topology in the subsequent steps.

(iv) A detailed routing scheme considering routing
topology for all bus bits is presented to connect the
segments of each bus.

(v) Experimental results show that our proposed bus
routing algorithm is effective. Compared with the
top 3 teams of the CAD Contest at ICCAD on
Obstacle-Aware On-Track Bus Routing [5], our
proposed algorithm can achieve the best overall
score within the specified time.

The rest of this paper is organized as follows. Section 2
first introduces the bus routing preference metrics and then
gives the problem statement. Section 3 details our bus
routing algorithm. Section 4 provides the experimental
results. Finally, conclusions are drawn in Section 5.

2. Preliminaries

In this section, we first introduce the bus routing preference
metrics considered in the 2018 CAD Contest at ICCAD [5]
and then formulate the topology-matching bus routing
problem.

2.1. Bus Routing Preference Metrics. For successfully routed
buses, the metrics such as wire length, the number of seg-
ments, the width of each segment, and the number of
spacing violations are used to measure the bus routing
quality in the contest [5]. We detail these four metrics as
follows.

2.1.1. Wire Length. Wire length is a basic metric of routing
quality. Longer wire lengths typically imply larger delays and
larger power consumption [6]; hence routers are expected to
minimize the wire length. The wire length of a bus is cal-
culated by summing up the wire length of all bits, and taking
detour will cause an increase in wire length.

2.1.2. Number of Segments. Since each layer has a preferred
routing direction (either horizontal or vertical), more seg-
ments indicate that more vias are used. However, vias are
undesirable due to their negative impacts on signal integrity,
delay, routing area, and manufacturing yields [6]. Therefore,
an ideal bus router should minimize the number of
segments.

2.1.3. Width of Segments. If the direction of a segment is
horizontal, then the width of the segment is defined as the
y-coordinate of the topmost wire in the segment minus the
y-coordinate of the bottommost wire in the segment; in
contrast, if the direction of a segment is vertical, the

Complexity

VLA TP AT T DT

Py
#
Iy

P

|
71
A
/|
A

{

|

|

1
4
|

()

(b)

FIGURE 1: (a) A bus with the same routing topology. (b) Nonuniform routing track configuration.

calculation is between the x-coordinate of the rightmost and
the leftmost wire [5]. The smaller the width of a segment is,
the more compact the corresponding bus is.

2.1.4. Spacing Violation. Each layer has a spacing constraint
which specifies the minimum distance that should be
maintained between the routing paths of a bit and the design
boundary, the obstacles, and other routing wires on that
layer. Spacing violation will result in an additional penalty in
the evaluation score.

Figure 2 shows an example of bus routing preference
metrics, where Figure 2(a) gives an inferior routing result
with a longer wire length, a large number of segments, and a
larger width of segments, while Figure 2(b) gives a desired
solution because its wire length and number of segments are
minimized, and the width of segments is also smaller.

2.2. Problem Statement. We are given the following: (1) A
design with [routing layers & = {L,, L,, ..., L;}. Each layer
has a routing direction and a spacing constraint. The routing
direction is either vertical or horizontal, and the spacing
constraint specifies the minimum distance that should be
maintained between the output routing path and the design
boundary, the obstacles, and other routing wires in that
layer. (2) A set of m routing tracks 7 = {T,T,,...,T,,}.
Each track T is represented by a line in a layer with a width
constraint WT;. The direction of each track is always the
same as the routing direction of the layer that the track is on,
and the width constraint requires that only the wires with a
width smaller than or equal to the width constraint can be
routed on the track. (3) A set of p obstacles

0= {Ol,Oz, - ,OP}, which are scattered throughout cer-
tain layers. (4) A set of n buses % = {B,,B,,...,B,}. Each
bus B; consists of NB; bits, all bits have NP, pin shapes, and
the width constraint WB; (1<j<l) indicates that the
routing paths for the bus B; in layer L; have the width equal
to the width constraint.

The goal of topology-matching bus routing is to achieve
as many successfully routed buses as possible, and the fol-
lowing metrics should also be minimized simultaneously: (1)
the total wire length of all buses; (2) the number of segments;
(3) compactness of each bus (i.e., the width of segments); (4)
the number of spacing violations.

A bus is routed successfully if the following three hard
constraints are met: (1) Routing paths of each bit connect all
pin shapes of the bit and do not overlap with the paths of
other bits. (2) All wires are on-track without violating the
width constraint of the tracks and do not overlap with
obstacles. (3) All bits are routed with the same topology.

3. Our Algorithm

The overall flow of our proposed algorithm is summarized in
Figure 3, which mainly consists of four parts: (1) pre-
processing, (2) global routing, (3) track assignment, and (4)
detailed routing.

The preprocessing stage unifies the nonuniform routing
track configuration with obstacles to support efficient query
and simplify subsequent routing operations. In the global
routing stage, we formulate the topology-aware single bus
routing as UFP and integrate it into a negotiation-based
global routing to determine the desired routing regions for
each bus. The complexity of subsequent steps can be reduced

4 Complexity

.xff}'*i'i/fff//ff///ff/x;} {f_rff:-&’Kx’i”///f////f/x’/f/f///f/

”

ST & 2 CSN IS S LTS TS LSS L LSS T ;
17 7
a 1
] i 4 ,’f'

/ / L r/
7 X

"
g ,;j AL é TR
iy e A]
é HTZTZZTTIA przes; AZZZEES
V777777777777 77774

(5] pin (5 Pin

Wire Wire

[l Obstacle [l Obstacle

(@

(b)

FiGUure 2: Example of bus routing preference metrics. (a) An inferior routing result. (b) A desired routing result.

Circuit input

Grid graph construction

!

Initial solution generation

!

Rip-up and reroute

Track assignment
Preprocessing Initial assignment
Global routing Rip-up and reassignment

v

Detailed routing

|

Routing result

F1GURE 3: Our algorithm flow.

by confining its search space to the regions identified by the
global routing stage. Under the guidance of the global
routing result, the track assignment stage allocates tracks to
each segment of buses, which significantly reduces the
difficulty of maintaining the same routing topology in the
subsequent step. Finally, the detailed routing stage connects
the segments of each bus bit and obtains the final routing
result. We shall detail these four major parts in the following
subsections.

3.1. Preprocessing. In this subsection, we perform some
preprocessing on the input data to simplify subsequent
routing operations. Since the nonuniform routing track

configuration and obstacles make the bus routing much
more complicated, we first present a track handling tech-
nique to unify the track configuration while considering
obstacles. Specifically, we treat each routing track uniformly
as covering the entire design from top to bottom (or left to
right), and each track has a set of intervals for recording the
subtracks that have been used. Furthermore, if the center-
lines of two tracks overlap, we will shrink or delete the used
intervals of the track that has a smaller width.

Figure 4 shows three nonuniform routing tracks and an
obstacle. In the figure, we treat these three tracks as covering
the entire design from top to bottom, and tracks T, T',, and
T, have the sets of used intervals {I,,1,}, {I,}, and {I;},

Complexity

| Obstacle
& Track T,

—. - Track T,

Track Tj

FiGure 4: Example of our track handling technique.

respectively. The interval I, is occupied by the obstacle, and
intervals I,,1;,I, are not covered by the corresponding
tracks. In addition, since the centerlines of tracks T, and T'5
overlap and the track T, has a smaller width, we update the
set of used intervals of track T, by deleting the interval I,.
Then the set of used intervals of track T', is finally empty, and
thus the wires can go through directly from track T, to track
T;.

Besides, we adopt a minimum spanning tree algorithm
to decompose each multipin bit into a set of two-pin bits and
determine a preferred direction (horizontal or vertical) for
each pin. That is, if the physical locations of the same pin
shapes in different bits are horizontally distributed, then the
preferred directions of the pin shapes are set as vertical; in
contrast, if the physical positions of the same pin shapes in
different bits are vertically distributed, then the preferred
directions of the pin shapes are horizontal. The preferred
direction of a pin is the desired direction of the wire that
connects to the pin. For example, the preferred directions of
all six pins in Figure 1(a) are horizontal, since the physical
positions of the same pin shapes in different bits are ver-
tically distributed.

3.2. Global Routing. To determine the desired routing re-
gions for each bus and reduce the complexity of subsequent
detailed routing, we formulate the topology-aware single bus
routing as UFP and integrate it into a negotiation-based
global routing scheme. The three main steps of our global
routing scheme are elaborated as follows.

3.2.1. Grid Graph Construction. In the global routing stage,
each routing layer is partitioned into a set of global cells (g-
cells) as shown in Figure 5(a), and a corresponding grid

graph can be constructed as shown in Figure 5(b). In the grid
graph, each vertex represents a g-cell and each routing edge
represents a boundary between adjacent g-cells, and any two
adjacent layers are connected by vias. In addition, the
number on each routing edge of Figure 5(b) indicates the
capacity of the edge, which corresponds to the number of
routing tracks that can be contained across the edge. Since
solving the 3D global routing problem directly is time-
consuming, we further project a multilayered design onto
the 2D plane, and then a capacitated graph G(V,E,u) is
constructed.

Besides, each pin corresponds to a g-cell. If two pins of
any two bits are in the same g-cells, then we temporarily
combine the two bits as a bit. In this way, we can reduce the
number of bits in each bus greatly in global routing, and the
runtime of the global routing stage will be reduced. Take
Figure 5(a) for example. There are two bits in a bus and each
bit has two pins. Since the two pins of two bits are in the
same g-cells, we combine the two bits as a bit, and the
demand (number of tracks consumed) of each routed wire in
the merged bit is 2.

3.2.2. Initial Solution Generation. Too many bends of a
routing path not only increase the number of vias, resulting
in poor routing quality, but also make it more difficult to
maintain the same routing topology due to the increase of
the number of segments. Therefore, we limit the number of
bends in this initial solution generation step. The bits can be
categorized into two types based on the preferred directions
of pins. Figure 6(a) shows the pins of four bits from different
buses with the same preferred direction, and the path
connecting each bit has an even number of bends. Con-
versely, the pins of three bits from different buses shown in
Figure 6(b) have orthogonally preferred directions, and the
path connecting the two pins of each bit has an odd number
of bends. Further, since we set a preferred direction for each
pin, a bit has at most one path with one or zero bends, and
we only need to determine n — 1 (n>2) bending points in
turn to obtain a path with n bends.

In this step, the number of bends of a path connecting
each bit is limited to four. For each bus, let d; represent the
demand of bit i, 2; denote the set of paths for bit i, and P!
represent the set of paths with the same routing topology T
in 9;. Note that, the topology in global routing ensures that
(1) all bits have the same number of wires and (2) all wires
traced from all bits route towards the same direction, while
temporarily ignoring the relative order of the wire of dif-
ferent bits. In addition, for each P € &;, we have a non-
negative variable x (P) and a weight w (P) associated with it.
The weight w (P) of path P is the sum of the weights of all the
edges on the path, and the weight of edge e is defined as

1

w(e) = L1 o@@-u@

(1)
where d (e) represents the sum of the demands of the bits
passing through e and u (e) is the capacity of the edge e. For
each edge e, the demand d(e) is initialized to 0 and is
updated once a bus is routed successfully. The weight w (e)

6 Complexity

(a) (®)

FIGURE 5: Example of grid graph construction. (a) Each routing layer is partitioned into a set of global cells (g-cells). (b) Each g-cell is
modeled as a vertex, and abutting g-cells are connected by routing edges.

2l -*":f 4 bends ;
",; P IIEI I I I II I]
7 Z7777])
A V 7
ﬁ//,// ;;’ SLILLSLELLS 1 bend /,a; §
P 2
V¥ 777 P77 PES ¥
5 ’ 7 77T T TTIRSS
;}?};F;;;a} 2 bends 14 :"::" 3 bends
o () WHA7777777
2bends b AT T T T T T T IS 5;
;:5 IS SIS SIS IL S S
AT PP T T T T T T T I T T F T T T T ;:3 § L bend
0 bends fj ?;
EZ Pin
m Wire m Wire
- Obstacle - Obstacle
(a) (b)

FIGURE 6: The bits can be categorized into two types based on the preferred directions of pins. (a) The two pins of each bit have the same
preferred direction, and the path connecting the two pins has an even number of bends. (b) The two pins of each bit have orthogonally
preferred directions, and the path connecting the two pins has an odd number of bends.

decreases dramatically as the demand approaches the ca- For each bus, we try the topologies of the bus one by one
pacity but grows slowly in the undercapacity and overca- until the bus is routed successfully. Further, we introduce
pacity parts. a new variable x; for each bit i, where x; =) p rx (P), and

We determine the order of routing topology let u' be a copy of u. Then, the global routing problem of
according to the number of bends and the weight of path ~ the bus with topology T can be formulated as UFP as
w(P). A smaller number of bends have a higher priority. follows:

Complexity

Myt

max Z Z w(P) - x(P)
i=l peg!
X;— z x(P)=0, 1<i<my

Pep! (2)

M

s.t. Zdi Z

=l pep!: eeP

x(P)<u'(e)—d(e), ecE

x,x(P) €{0,1}, 1<i<my,Pe U,P .

In the formulated UFP, the objective is to maximize the
number of routable bits, and the total weight of all selected
paths is as large as possible (i.e., the congestion is as small as
possible). The constraints in the first line ensure that at most
one path is selected per bit, and the constraints of the second
line limit the total demand of bits that can pass through each
edge. 1’ will be increased if all the topologies of the bus fail to
be routed. A bus is successfully routed if all bits of the bus are
successfully routed (i.e., x; = 1,1<i<ny;). Once a bus is
successfully routed, we update the demand d (e) and weight
w(e) of each edge e and then handle the next bus.

Based on the combinatorial algorithm for UFP in [7],
Algorithm 1 provides an algorithm for problem (1). Let |E| =
m and u,;, (4,,,,) be the minimum (maximum) edge ca-
pacity and d > e Winins Wmax D€ the minimum/maxi-
mum demand/weight among all bus bits. In Line 1, we first
partition the set of bits T into two disjoint sets T, and T,. T
consists of bits for which d; <u,,,,/2, and the rest of the bits
are in T',. For each bit j and a given path P of bit j, we adopt
F(j,P) in [7] to measure the weight gain relative to the
added demand load. We set the lower bound «y, and the
upper bound a, on F in Line 3. The order of bits are sorted
in Line 6, and then we handle the bits one by one to select a
path for each bit in Lines 7-11. L;, (e) in Line 8 denotes the
relative load of edge e after routing bit j.

The time complexity of Algorithm 1 is O (my; - |Epr|),
where ny;, is the number of bits in a bus and |Epr| is the
number of edges of the paths that have the same routing
topology T for the bus. In detail, as can be seen from Al-
gorithm 1, Line 1 requires O(n,;) time, Line 6 requires
O (my;, - log(my;,)), and Lines 8-9 need O(|Epr|) time. Be-
sides, since the number of loops in Line 2 and Line 4 is
constants, the number of loops in Line 7 is m;. Hence,
Algorithm 1 requires O (n; - |Epr|) time for each bus.

Theorem 1. Algorithm 1 is an O(+/m) approximation al-
gorithm for the UFP.

Proof. Consider an optimal solution routing bits in QCT.
For each j € @, let @; be the route chosen for j in the optimal
solution. The total weight of either @N T, or @N T, is at least
w(@/2). Denote that set by @' and its index by i’ € {1, 2}, and
let a' = 2% be the highest such that w({je @'|F(j, Q;)
>a'h)zw(Q)/4. Let Qug={je @ |F(j,Q)>a'} and
Qo = {] € Q'|F(j,@;) SZO/} be sets of higher and lower
quality routes in @'. According to the definition of F, we
have w(@,,,) <2a'Y,1 = 2ma’, where the inequality is true

since an optimal solution cannot overflow an edge. There-
fore, we have w (@) <8ma’. In addition, since F(j, P;) >«
for every je %, according to [7], we have
w(P)=a'Y,L(e)> (1/4)yma'. By combining the two
inequalities, we get (w(Q)/w(P))<32ym =0 (ym). O

3.2.3. Rip-Up and Reroute. Rip-up and reroute is a basic
routing technique and is usually combined with the nego-
tiation technique. The negotiation-based rip-up and reroute
is widely used in global routing [8, 9], track assignment [10],
and detailed routing [11] and has been shown to be effective
and efficient to improve the routing quality.

At each rip-up and reroute iteration, we first identify and
mark a set of buses with overflowed edges or excessive
routing cost (equation (9)) that need to be ripped up and
rerouted. Rerouting the buses that do not overflow but have
excessive routing costs can not only reduce the routing cost
but also free up routing resource for other overflowed buses.
Then, the marked buses are sorted in decreasing order based
on the score defined as follows:

Sorder (Bl) = C1 L (Bz) ta- Cw (Bl)
+ﬁ : Cs (Bi) Ty Cc (Bi)’

where a- C,, (B;) + - C,(B;) + y - C.(B;) is the routing cost
defined in equation (9), ne. (B;) denotes the number of
overflowed edges passed by bus B; in the previous iteration,
and C, is a user-defined parameter which is set as a + f§ + y.
In addition, the history-based cost function for each
routing edge e in [8] is adopted, which is defined as

cost(e) =b(e) + h(e) x p(e) +vc(e), (4)

(3)

where b(e) is the wire length cost, /i (e) is the history cost,
p(e) is the current penalty cost, h(e) x p(e) denotes the
congestion cost of edge e, and vc(e) is the via cost. The
weight of edge e is set as w(e) = (1/cost(e)), and we reroute
a bus by solving problem (2).

We repeat the rip-up and reroute process until there is
no overflowed edge or excessive routing cost or the given
maximum number of iterations is reached. Since we reroute
a bus by solving the UFP (2) and the required runtimes is
O (- |Eprl), the rip-up and reroute stage requires
O (n,y, - ny; - |Epr|), where n,;, is the total number of buses
that need to be ripped-up and rerouted.

After obtaining a 2D global routing solution, we extend
the layer assignment method in [12] to map the solution
from the projected plane to the original multiple layers. Note
that, within each segment of a bus, we ensure that the wires
of different bits are assigned to the same layer.

3.3. Track Assignment. After obtaining desired routing re-
gions for each bus in the global routing stage, we propose a
topology-aware track assignment in this subsection to al-
locate tracks to each segment of buses under the guidance of
the global routing result. In this track assignment stage, we
treat the array of all g-cells in a row or column of a routing
layer as a panel, and each straight wire that passes through
one or more g-cells is regarded as an iroute.

3.3.1. Initial Track Assignment. Since all bits in each bus
need to be routed with the same routing topology, we handle
the buses one by one to assign the tracks to each segment.
For each bus, each segment consists of the set of iroutes of
different bits that have the same sequence when traced from
source pin to sink pin.

In order to maintain the relative order of the iroutes in
each segment, our initial track assignment for each segment
is as follows. First, we sort the iroutes of each segment in the
same order or in the reverse order of bits. Both orders are
tested because the results of each order may be different, and
the best results are adopted. Then, based on the sorted order,
for each iroute, we collect the valid tracks in the panels and
calculate the cost of assigning the iroute to each valid track.
A track is valid if the width constraint of the track is greater
than or equal to the wire width of the iroute. Finally, we
select a valid track with the minimum cost to accommodate
the iroute.

The cost function for assigning the iroute ir to the track
is defined as

cost (ir, t) = wl(ir, t) + C, - ol (ir, t) + C5 - blk (ir,) 5)
+ C, - cp(ir, 1),

where cost (ir, t) is the total cost of assigning track t to iroute
ir, wl (ir, t) is the wire length cost, ol (ir, t) is the overlap cost,
blk (ir, ¢) is the blocked interval cost, cp (ir,t) is the com-
pactness cost, and C,,C;, and C, are the user-defined
constants which are set as 0.2, 1000, and 1, respectively.

The definition of wire length cost is adopted from the
work [10]. Because the routing tracks may be nonuniform or
even overlapping, the overlap cost of an iroute being
assigned to a track is modified from the work [10], which is
determined not only by the overlapping iroutes on that track
but also by the overlapping iroutes on other tracks. In ad-
dition, since some tracks may only cover a partial design, the
blocked interval cost is the sum of blockage cost defined in
[10] and the length of the iroute ir that is not on the tracks.
According to the 2018 CAD Contest at ICCAD [5], the wires
of all bits in a bus should be as compact as possible. Thus, we
define the compactness cost to make each bus more compact
and reserve more free space for other buses.

Figure 7 illustrates the calculation of the compactness
cost. We assume without loss of generality that the panels are
horizontal. For the first and last segments of each bus, since
the iroutes eventually need to be connected to the corre-
sponding pins in the detailed routing stage, the compactness
cost is set as the vertical distance between the iroute and the
corresponding pin. For example, Figure 7(a) shows the first
segment of a bus, where pin p, and iroute a, belong to the
first bit and pin p, and iroute a, belong to the second bit. The
compactness costs of iroute a; on tracks T';, T,, and T} are 0,
d,, and d, + d,, respectively, and the compactness costs of
iroute a, on tracks T, T, and T; are d, +d,, d,, and 0,
respectively.

For the rest of the segments in the bus that do not need to
connect pins, the compactness costs of the iroutes are related
to the order in which the iroutes of bits are assigned. If we
handle iroute a, before iroute a, in Figure 7(b), the

Complexity

compactness cost of each iroute is the vertical distance
between the iroute and the upper boundary of the panel.
Conversely, if we handle a, before a,, then the compactness
cost of each iroute is the vertical distance between the iroute
and the lower boundary of the panel. In addition, if the
iroutes of a segment are distributed in multiple panels as
shown in Figure 7(c), the compactness cost of each iroute in
the bottommost panel is the vertical distance between the
iroute and the upper boundary of the panel, the compactness
cost of each iroute in the topmost panel is the vertical
distance between the iroute and the lower boundary of the
panel, and the compactness cost of each iroute in the rest
panels is 0.

3.3.2. Rip-Up and Reassignment. After the initial track as-
signment, there may be overlaps between the iroutes.
Therefore, we extend the negotiation-based track assignment
in the work [10] to minimize the overlaps and wire length
while keeping the relative order of the iroutes in each
segment.

The cost function for reassignment is defined as

costy; (ir, t) = 0, - wl(ir, t) + 6, - ol (ir, t)

W]

+ Oy - bk (ir, 1) + 0, - cp (ir, t) + Oy, - his (ir, 7),

(6)
where wl (ir, t), ol (ir,), blk (ir, t), and cp (ir, t) are the same
as the definition in equation (5), and his (ir, t) is the history
cost from the work [10]. The user-defined parameters
641> Oo1> Oy Op> and 6 are used to balance the cost com-
ponents. Both 6, and 6, are initialized as 1 and gradually
decreased to 0.1 as the iteration increases, and 0, is ini-
tialized as 0.1 and gradually increased to 1 as the iteration
increases. Besides, 0y is a very large constant and 0, is set
as 1. Through the control of these parameters, we can reduce
the overlaps with less wire length and compactness cost at
early iterations and focus more on overlap reduction at late
iterations.

In order to maintain the same topology for all bus bits, we
always keep the relative order of the iroutes in each segment
during the rip-up and reassignment stage. However, reas-
signing an iroute while keeping the relative order of iroutes in
the segment may fall into a local optimum, due to the fact that
the solution space is limited and we may always select the same
set of iroutes or always try to assign an iroute to a small set of
tracks. Therefore, in each iteration, we may rip up and reassign
multiple iroutes to reduce the probability of falling into local
optimum. Specifically, when an iroute has no other tracks that
can be assigned to or these tracks have been tried several times
by this iroute, we will also rip up and reassign some of the
iroutes that adjacent to this iroute. The time complexity of
reassigning an iroute is O (n,,,) at each iteration, where n,,, is
the number of tracks in the panel that the iroute is located.
Since we may rip up and reassign multiple iroutes simulta-
neously to reduce the probability of falling into local optimum,
if we handle k iroutes simultaneously, the time complexity is
O (nkt). However, since 1, is not too large (tens to hundreds)
and we set k as 3, the running time of this stage depends mainly
on the number of iroutes that need to be reassigned.

Complexity

T, Panel 2

71 Pin
- — Track
74 Iroute

()

FZ7 Pin
- — Track
7 Iroute

(b) (c)

FIGURE 7: Three cases of compactness cost calculation. (a) Iroutes of the first or last segment, which eventually needs to be connected to the
corresponding pins in the detailed routing stage. (b) All iroutes of a segment are in the same panel. (c) The iroutes of a segment are

distributed in multiple panels.

For example, assume that iroute a, in Figure 7(c) needs
to be reassigned. Since the relative order of the iroutes of
different bits in a segment should be maintained, iroute a,
can only be placed between iroute a, and iroute a,. That is, if
iroute a, is not reassigned to another track, then iroute a,
cannot be reassigned. Therefore, we rip up both the iroutes
a, and a,, and then iroutes a, and a, can be reassigned to the
tracks T and T, respectively.

3.4. Detailed Routing. After track assignment, we need to
connect the components of each bit to obtain the final
routing result. A bit component is a pin or an iroute of the
bit. Algorithm 2 gives the framework of our detailed routing.
In Line 3, in order to preserve the same routing topology for
all bus bits and honor the global routing result, the com-
ponents of each bit are sorted according to the trace order of
global routing paths from the source pin to the sink pin, and
then we only need to connect the adjacent components of
each bit one by one.

In Line 4, we adopt L-shaped [13], Z-shaped [13], and the
3-bend routing [14] to connect the adjacent components,
because it is easy to control the same topology for all bus bits
and is very efficient by using these predefined pattern
routing. After that, we use two-stage negotiation-based rip-
up and reroute to iteratively improve the solution quality in
Lines 8-16. itel and ite2 in Line 8 indicate the maximum
number of iterations for the first stage and the second stage
of rip-up and reroute, respectively. In the first stage, we rip
up every two adjacent components that have the overlapping
wires and reroute them through the patterns routing while
maintaining the same routing topology. After each iteration,
we increase the history cost of the overlapped interval on a
track according to the number of overlapped wires. As a
result, a track with a higher history cost tends to have less
chance to be routed, and the bits with alternative routes are
forced to use other tracks. In the end, the bit that most needs
to use this track will eventually use it.

Since the limited search space of the patterns routing and
only allowing to rip up and reroute the adjacent components
in the first stage rip-up and reroute, it is possible to reduce
the wire overlap if some restrictions are removed. In the
second stage, we use the A* algorithm [15] to search for the
paths and allow paths to be outside the global routing guide.
In addition, we also allow some iroutes extracted in the track
assignment stage to be removed, thus increasing the freedom
of routing. For example, if we remove the second component
of a bit, then we are required to find a path to connect the
first component and the third component. When a part of a
bit is rerouted, we check whether other bits in the bus are the
same as its topology. If not, we will adjust the routing paths
of other bits based on the path of that bit. We repeat the rip-
up and reroute process until all the buses are routed suc-
cessfully or the given maximum number of iterations is
reached.

Finally, we construct a conflict graph in which each bus
is regarded as a vertex, and each edge represents the conflict
between two buses. We iteratively rip up the bus (vertex)
with the largest degree and its associated edges until there are
no conflict edges in the graph, and the final routing result is
obtained.

4. Experimental Results

To evaluate our proposed bus routing algorithm, we
implemented our algorithm in the C++ programming
language and tested it on the benchmarks (including the
hidden cases) of the 2018 CAD Contest at ICCAD on
Obstacle-Aware On-Track Bus Routing [5]. Table 1 lists the
benchmark statistics, where “#Layer,” “#Track,” “#Obstacle,”
“#Bus,” “#Bit,” and “#Pin” give the total numbers of layers,
tracks, obstacles, buses, bits, and pins, respectively.

The score function in the contest [5] is adopted to
evaluate the quality of bus routing results, which consists of
routing cost C,, spacing violation penalty P, and fail routing
penalty P. That is,

10 Complexity
Input: The graph G(V, E,u), all bits of a bus.
Output: The set Py, of paths that connecting the bits.
(1) Partition the set of bits T into two disjoint sets T'; and T',;
(2) fori=1,2 do
(3) (xlb(_wmin/lvl’ Ayp meaxumax/dmin;
(4) for each k from |log | to [log o,] do
(5) a2k,
(6) Sort the bits in T; according to a nonincreasing order of w;/d;
(7) for each j € T; do
(8) if 3 path P of bit j s.t. F(j,P) >« and Ve € P, Li, (e) + dj/u(e) <1 then
9) Route the bit on P and for e € P set L (e) = L, (e) + dj/u(e);
(10) Update Py g;
) end if
12) end for
(13) end for
(14) end for
ArcoriTHM 1: Unsplittable flow problem solving.
Input: A set of components of all bits in all buses.
Output: Final routing result.
(1) for each bus B; do
(2) for each bit b,-]- do
(3) Sort the components;
(4) Connect the adjacent components with the same topology;
(5) end for
(6) end for
(7) the components that wires overlap, i«0;
(8) while O, # @ and i<itel + ite2 do
(9) if i<itel then
(10) Reroutel(O,);
(11) else
12) Reroute2(0,);
(13) end if
(14) Update history cost andO,;
(15) i+ 1;
(16) end while
ALGORITHM 2: Detailed routing framework.
TaBLE 1: Statistics of the 2018 CAD Contest at ICCAD benchmarks.
Benchmark #Layer #Track #Obstacle #Bus #Bit #Pin
beta_1 3 49209 159 34 1260 2520
beta_2 3 49209 0 26 1262 2524
beta_3 3 22732 555108 60 665 1330
beta_4 3 22732 0 62 698 1396
beta_5 4 54150 0 6 1964 3928
final_1 3 81226 0 18 1032 2064
final_2 3 14209 0 70 1285 2570
final_3 4 21379 0 47 852 1704

Complexity 11
TaBLE 2: Experimental results.

First place Second place Third place Ours

Benchmark
., P P, S C P P, S C P P S C P P, S CPU

beta_1 689 280 0 969 701 509 0 5797 641 8744 4000 13385 812 432 0 1244 10
beta_2 515 760 0 1275 563 4904 O 5467 484 9472 2000 11956 626 224 0 850 8
beta_3 1936 0 0 1936 2024 0 0 2024 1999 1928 O 3927 1905 0 0 1905 3600
beta_4 2192 0 0 2192 2271 0 0 2271 2250 1048 0 3298 2376 184 0 2560 3600
beta_5 119 1848 0 1967 95 616 2000 2711 98 1216 2000 3314 95 0 2000 2095 45
final_1 327 830 2000 3157 367 2750 2000 5117 252 0 10000 10252 341 430 2000 2771 3600
final_2 1824 4500 8000 14324 1890 2990 8000 12880 1976 6910 0 8886 2076 1470 6000 9546 2521
final_3 2966 490 10000 13456 2678 300 2000 4978 4238 20 24000 28258 2674 540 10000 13214 3600
Normalized 1.09 2.24 4.57 1.00

S=C,+P +P,. (7) The three parts of the score function are calculated as

follows:

C, = Z (a-C,(B)+B-Ci(B) +y-C.(B)),

(8)

P, = number of spacing violations x 6,

P f= number of route fail buses x ¢,

where a, 3,7, J, ¢ are five weighting parameters given in the
input data, and the values of these parameters may vary from
different benchmarks. For each bus B;, the wire length cost

ZAH bits of bus B;

C,, (B;), the segment cost C, (B;), and the compactness cost
C. (B;) are defined as follows:

Cw (Bi) ==

#segment of bus B,

(wire length of bit j/half parameter wire length of bit)
#bits of bus B; ’

ZAH bits of bus B;

)~ Jower bound of #segment of bus B;

(9)

(width of segment j/lower bound width of segment j)

Cc (Bl) ==

Ideally, if a bus B; is routed with the minimum wire
length (C,, (B;) = 1) and the minimum number of segments
(C,(B;) = 1) and all segments are routed with widths close to
the lower bound (C, (B;) = 1), then the routing cost C, of the
perfectly routed bus is close to « + 3 + y.

The experimental results of the top 3 teams of the 2018
CAD Contest at ICCAD [5] and ours are listed in Table 2.
Our algorithm was run on a Linux workstation with a
2.40 GHz Intel Xeon CPU and 64 GB memory, and the
results of top 3 teams of the contest are provided by the
contest organizer. Since the binaries of top 3 teams are not
available for us, we do not report their runtime. Never-
theless, the specified time for each test case is one hour
according to the contest [5], and our program will be killed if
the runtime exceeds the specified time.

In Table 2, the columns “First place,” “Second place,”
“Third place,” and “Ours” give the corresponding routing

» o«

#segment of bus B;

results generated by the first place, second place, and third
place of the contest [5] and our algorithm, respectively. The
latest evaluation script (eval_1.0-a8) provided by the contest
[5] was used to obtain the routing cost “C,,” spacing vio-
lation penalty “P;,” fail routing penalty “P,” and score “S.”
It can be seen from Table 2 that all the buses are successfully
routed by our algorithm for the tested cases beta_1, beta_2,
beta_3, and beta_4. Particularly, on average, our algorithm
outperforms the top 3 teams by 9%, 124%, and 357% in the
final scores, respectively. The experimental results show that
our proposed bus routing algorithm is effective.

5. Conclusions

In this paper, we have presented an effective algorithm to
solve the topology-aware bus routing problem considering
the existence of both nonuniform track configuration and

12

obstacles. We first presented a track handling technique to
unify the nonuniform routing track configuration together
with obstacles. Then, we have formulated the topology-
aware routing problem of single bus as UFP, which is in-
tegrated into a negotiation-based global routing problem of
determining the desired routing regions for each bus.
Moreover, we presented a topology-aware track assignment
method which can allocate the tracks to each segment of
buses regarding the guidance of the global routing result.
Lastly, a detailed routing scheme has been presented to
connect the segments of each bus. We have evaluated our
routing results with ICCAD benchmark suites. Compared
with the state-of-the-art methods, the experimental results
have shown that our proposed method achieves the best
overall score within the specified time.

Data Availability

The data used in this study can be accessed via http://iccad-
contest.org/2018/problems.html.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the Fundamental Research
Funds for the Central Universities of China under Grant
2242021k30031, National Key Research and Development
Project of China under Grant 2018YFB22022704, National
Science Foundation of China (nos. 61977017 and 61772005),
and Outstanding Youth Innovation Team Project for Uni-
versities of Shandong Province under Grant 2020KJN008.

References

[1] G. Georgiev, A. Chatterjee, and G. Iannacchione, “Expo-
nential self-organization and moores law: measures and
mechanisms,” Complexity, vol. 2017, Article ID 8170632,
9 pages, 2017.

[2] Y. Tian and T. Watanabe, “Improved delay-matching bus
routing by using multi-layers,” in Proceedings of the Inter-
national Conference on Electronics Packaging and iMAPS All
Asia Conference (ICEP-IAAC), pp. 708-713, Kyoto, Japan,
April 2015.

[3] T. Yan and M. D. F. Wong, “Bsg-route: a length-matching
router for general topology,” in Proceedings of IEEE/ACM
International ~ Conference on Computer-Aided Design,
pp- 499-505, San Jose, CA, USA, November 2008.

[4] R. Zhang, T. Pan, L. Zhu, and T. Watanabe, “A length
matching routing method for disordered pins in pcb design,”
in Proceedings of the IEEE/ACM Asia and South Pacific Design
Automation Conference, Chiba, Japan, January 2015.

[5] A.Liao, H.-Y. Chang, O. Chi, and J. Wang, ICCAD 2018 CAD
contest: obstacle-aware on-track bus routing, http://iccad-
contest.org/2018/problems.html, 2018.

[6] C.]J. Alpert, D. P. Mehta, and S. S. Sapatnekar, Handbook of
Algorithms for Physical Design Automation, Auerbach Pub-
lications, Boca Raton, FL, USA, 2008.

Complexity

[7]1 Y. Azar and O. Regev, “Combinatorial algorithms for the
unsplittable flow problem,” Algorithmica, vol. 44, no. 1,
pp. 49-66, 2006.

[8] Y.-J. Chang, Y.-T. Lee, J.-R. Gao, P.-C. Wu, and T.-C. Wang,
“NTHU-route 2.0: a robust global router for modern designs,”
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 29, no. 12, pp. 1931-1944, 2010.

[9] W.-H. Liu, W.-C. Kao, Y.-L. Li, and K.-Y. Chao, “NCTU-GR
2.0: multithreaded collision-aware global routing with
bounded-length maze routing,” IEEE Transactions on Com-
puter-Aided Design of Integrated Circuits and Systems, vol. 32,
no. 5, pp. 709-722, 2013.

[10] M.-P. Wong, W.-H. Liu, and T.-C. Wang, “Negotiation-based
track assignment considering local nets,” in Proceedings of the
IEEE/ACM Asia and South Pacific Design Automation
Conference, Macao, China, January 2016.

[11] F.-K. Sun, H. Chen, C.-Y. Chen, C.-H. Hsu, and Y.-W. Chang,
“A multithreaded initial detailed routing algorithm consid-
ering global routing guides,” in Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design, pp. 81:
1-81:7, San Diego, CA, USA, November 2018.

[12] T.-H. Lee and T.-C. Wang, “Congestion-constrained layer
assignment for via minimization in global routing,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 27, no. 9, pp. 1643-1656, 2008.

[13] R. Kastner, E. Bozorgzadeh, and M. Sarrafzadeh, “Pattern
routing: use and theory for increasing predictability and
avoiding coupling,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 21, no. 7,
pp. 777-790, 2002.

[14] Y.Xu, Y. Zhang, and C. Chu, “Fastroute 4.0: global router with
efficient via minimization,” in Proceedings of the IEEE/ACM
Asia and South Pacific Design Automation Conference,
Yokohama, Japan, January 2009.

[15] A.Hetzel, “A sequential detailed router for huge grid graphs,”
in Proceedings of the Conference on Design, Automation and
Test in Europe, Paris, France, February 1998.

http://iccad-contest.org/2018/problems.html
http://iccad-contest.org/2018/problems.html
http://iccad-contest.org/2018/problems.html
http://iccad-contest.org/2018/problems.html

