
Topology-aware OpenMP
Process Scheduling

Peter Thoman, Hans Moritsch, and Thomas Fahringer

University of Innsbruck (Austria)

Motivation

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

Motivation – Hardware Trends

 Multi-core, multi-socket NUMA machines
are in wide use in HPC

 Complex memory hierarchy and topology

 Large number of cores in single shared memory system

 are existing OpenMP applications and implementations ready?

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

Motivation – Hardware Trends

 Multi-core, multi-socket NUMA machines
are in wide use in HPC

 Complex memory hierarchy and topology

 Large number of cores in single shared memory system

 are existing OpenMP applications and implementations ready?

socket

core

core

sh
ared

cach

e

core

core

sh
ared

cach

e

so
cket

m
em

o
ry

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

Motivation – Hardware Trends

 Multi-core, multi-socket NUMA machines
are in wide use in HPC

 Complex memory hierarchy and topology

 Large number of cores in single shared memory system

 are existing OpenMP applications and implementations ready?

socket

core

core

sh
ared

cach

e

core

core

sh
ared

cach

e

so
cket

m
em

o
ry

socket

core

core

sh
ared

cach

e

core

core

sh
ared

cach

e

so
cket

m
em

o
ry

socket

core

core

sh
ared

cach

e

core

core

sh
ared

cach

e

so
cket

m
em

o
ry

socket

core

core

sh
ared

cach

e

core

core

sh
ared

cach

e

so
cket

m
em

o
ry

socket

core

core

sh
ared

cach

e
core

core

sh
ared

cach

e

so
cket

m
em

o
ry

socket

core

core

sh
ared

cach

e

core

core

sh
ared

cach

e

so
cket

m
em

o
ry

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

Scalability

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

 We profiled individual OpenMP parallel regions
in a variety of programs and problem sizes

 On a 8-socket quadcore NUMA system (32 cores)

 Determine two metrics:

 Maximum threadcount

 Maximum amount of threads that
can be used with some speedup

 Optimal threadcount

 Maximum amount of threads that
allows a speedup within 20% of ideal

Scalability Results

0

4

8

12

16

20

24

28

32

b
t.

B
_1

3
0

lu
.C

_3
0

8
5

m
g.

A
_1

1
0

5

m
g.

A
_9

6
1

lu
.A

_1
2

0

ga
u

ss
.S

_4
0

m
g.

B
_9

6
1

m
g.

A
_2

3
6

ga
u

ss
.L

_2
0

m
g.

C
_1

0
9

1

m
g.

C
_9

6
1

m
g.

B
_2

3
6

m
g.

A
_2

7
1

cg
.A

_2
5

4

ga
u

ss
.S

_2
0

m
g.

C
_2

3
6

m
g.

B
_1

0
9

1

cg
.B

_2
5

4

is
.A

_6
3

8

cg
.C

_2
5

4

m
g.

B
_2

7
1

is
.B

_6
3

8

cg
.A

_7
4

0

ga
u

ss
.M

_4
0

m
m

u
l.L

_1
8

m
g.

C
_2

7
1

m
g.

C
_1

1
0

5

cg
.B

_7
4

0

cg
.A

_7
8

5

m
m

u
l.M

_1
8

lu
.C

_1
2

0

cg
.C

_7
4

0

m
g.

B
_1

1
0

5

cg
.B

_7
8

5

m
g.

A
_2

3
0

lu
.A

_3
0

4
9

is
.A

_6
5

2

ft
.A

_1
4

5

ft
.A

_1
2

3

ga
u

ss
.M

_2
0

m
m

u
l.S

_1
8

cg
.C

_7
8

5

m
g.

B
_2

3
0

is
.B

_6
5

2

ft
.B

_1
4

5

ft
.B

_1
2

3

ep
.B

_1
4

4

cg
.A

_1
7

1

cg
.A

_6
4

4

b
t.

A
_1

4
9

b
t.

B
_1

4
9

lu
.C

_3
0

4
9

ep
.C

_1
4

4

m
g.

C
_2

3
0

cg
.B

_1
7

1

cg
.B

_6
4

4

m
g.

A
_1

0
9

1

cg
.C

_1
7

1

cg
.C

_6
4

4

lu
.A

_3
0

8
5

ep
.A

_1
4

4

b
t.

A
_1

3
0

ga
u

ss
.L

_4
0

maximum threadcount optimal threadcount

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

Motivation – Multi-Process

 First idea: run more than one OMP program (job)
in parallel

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8

To
ta

l e
xe

cu
ti

o
n

 t
im

e
 (

se
co

n
d

s)

Number of parallel jobs

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

Motivation – Multi-Process

 Of course it is not always that simple –
a different workload:

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8

To
ta

l e
xe

cu
ti

o
n

 t
im

e
 (

se
co

n
d

s)

Number of parallel jobs

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

Algorithm & Implementation

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

Multi-Process Scheduling Architecture

 Goal:

 Facilitate system-wide scheduling of OpenMP programs

 Basic Design:

 One central control process (server), message exchange
between server and the OMP runtime of each program

 Message protocol:

 Upon encountering a OMP parallel region:

 OMP processes send a request to server for resources

 Includes scalability information for region

 Use cores indicated by reply

 When leaving region send signal to free cores

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

Implementation & Flow

 Based on UNIX message queues

 Well suited semantically and fast enough
(less than 4 microseconds roundtrip on our systems)

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

Topology-aware Scheduling Algorithm

 Multi-process scheduling ameliorates
many-core scalability problems

 What about complex memory hierarchy?

 Make server topology aware

 Base scheduling decisions on

 Region scalability

 Current system-wide load

 System topology

 Topology-aware OMP scheduler

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

Topology Representation

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

 Distance matrix for all cores in a system

 Higher distance amplification factors for higher levels in the
memory hierarchy

 Example:

Simple Scheduling

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

 Request from region with given
maxcount and optcount:

1. N = optcount + loadfactor * (maxcount - optcount)

 loadfactor dependent on amount of free cores

2. Select N-1 cores close to core from which the request
originated

 Slightly more complicated in practice

 dealing with case where fewer than N cores available
(decide whether to queue or return smaller amount)

Fragmentation

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

 Using simple scheduling leads to fragmentation:

 Sum of local distance in all 4 processes: 44

socket

core

core

sh
ared

cach

e

core

core

sh
ared

cach

e

so
cket

m
em

o
ry

socket

core

core

sh
ared

cach

e

core

core
sh

ared

cach
e

so
cket

m
em

o
ry

socket

core

core

sh
ared

cach

e

core

core

sh
ared

cach

e

so
cket

m
em

o
ry

socket

core

core

sh
ared

cach

e
core

core

sh
ared

cach

e

so
cket

m
em

o
ry

Improvement: Clustering

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

 Same processes without fragmentation:

 Sum of local distance in all 4 processes: 13

socket

core

core

sh
ared

cach

e

core

core

sh
ared

cach

e

so
cket

m
em

o
ry

socket

core

core

sh
ared

cach

e

core

core
sh

ared

cach
e

so
cket

m
em

o
ry

socket

core

core

sh
ared

cach

e

core

core

sh
ared

cach

e

so
cket

m
em

o
ry

socket

core

core

sh
ared

cach

e
core

core

sh
ared

cach

e

so
cket

m
em

o
ry

Clustering Algorithm

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

 Moving threads once started has
significant performance impact (caches, pages, etc)
 instead change algorithm to discourage fragmentation

 Define cores as part of a hierarchy of core sets

 When selecting a core from a new set, prefer (in order)

1. A core set containing exactly as many free cores as required

2. A core set containing more free cores than required

3. An empty core set

 Further improvement possible by adjusting number of
selected cores (enhanced clustering)

Evaluation

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

Simulation

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

 Evaluate impact of scheduling enhancements
over 10000 semi-random requests

 Calculate or measure 5 properties:

 Scheduling time required per request

 Target miss rate: |#returned_threads - #ideal_threads|

 3 distance metrics:

 Total distance: from each thread in a team to each other

 Weighted distance: distance between threads with close id weighted higher

 Local distance: only count distance from each core to next in sequence

Simulation Results

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

 Absolute overhead always below 1.4 microseconds

 Enhanced clustering reduces local distance by 70%

0%

20%

40%

60%

80%

100%

120%

Overhead (µs)

Target miss rate

Total distance

Weighted distance

Local distance

Experiments

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

 Hardware:

 Sun XFire 4600 M2

 8 quad-cores (AMD Barcelona, partially connected, 1-3 hops)

 Software

 Backend: GCC 4.4.2

 “Default” OMP: GOMP

 Insieme compiler/runtime r278

Small-scale Experiment

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

 Random set of 13 programs tested

0

100

200

300

400

500

600

700

800

900

1000

To
ta

l T
im

e
 (

se
co

n
d

s)

GOMP, sequential

Optimal threadcount,
standard OS mapping

Our server, no locality
information

Our server, locality

Our server, locality +
enhanced clustering

Large-scale Experiment

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

 Random programs chosen from NPB & 2 kernels

 Random problem sizes

0

5000

10000

15000

20000

25000

30000

To
ta

l T
im

e
 (

se
co

n
d

s)

GOMP sequential

Our server, no locality

Our server, locality

Our server, locality +
clustering

Power Consumption

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

 Power consumption measured during large-scale
experiment:

 Topology-aware scheduling (with appropriate thread counts)
reduces average power consumption

Hybrid MPI/OpenMP

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

 One program consists of more than one process

 Our topology-aware thread mapping meaningful even for
a single program in this case

 Test of an ADI solver,
8 MPI processes and
4 threads each

 Improvement is
around 11%

 OpenMPI used in both cases
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

Default Topology aware

Ex
e

cu
ti

o
n

 T
im

e
 (

se
co

n
d

s)

Summary and Conclusion

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

Summary

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

 Central OpenMP server process

1. Selects number of threads for parallel regions depending on

 Scalability information

 System load

 Clustering considerations

2. Performs topology-aware mapping of threads to cores

 Evaluation

 Up to 33% performance improvement compared to standard
scheduling

 Additional reduction in power consumption

Future Work

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

 How to determine/estimate region scalability
without exhaustive profiling

 Make external non-OMP load impact scheduling decisions

Thank you!

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

