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» Multi-core, multi-socket NUMA machines
are in wide use in HPC

Complex memory hierarchy and topology
Large number of cores in single shared memory system
- are existing OpenMP applications and implementations ready?
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» We profiled individual OpenMP parallel regions
in a variety of programs and problem sizes

» On a 8-socket quadcore NUMA system (32 cores)

» Determine two metrics: }

Maximum threadcount

Maximum amount of threads that
can be used with some speedup

20% Range

Measured Speedup

Optimal threadcount

Maximum amount of threads that
allows a speedup within 20% of ideal

maxcount
optcount

Threads
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» First idea: run more than one OMP program (job)

in parallel
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Motivation — Multi-Process

» Of course it is not always that simple —
a different workload:
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Algorithm & Implementation
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» Goal:
Facilitate system-wide scheduling of OpenMP programs

» Basic Design:
One central control process (server), message exchange
between server and the OMP runtime of each program
» Message protocol:

Upon encountering a OMP parallel region:

OMP processes send a request to server for resources
Includes scalability information for region

Use cores indicated by reply
When leaving region send signal to free cores
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» Based on UNIX message queues

Well suited semantically and fast enough
(less than 4 microseconds roundtrip on our systems)

User program OMP library OMP server

#omp parallel Find optcount,

{ { maxcount in Reqm’t— Select actual
- profiling data

PID, optcount, maxcount thread count N
— i Use N threads, Response: g:dlocao(;easngased
3 : bind affinity to N d[N] topology
D : o , corel :
: 22;::icsjpecmed Mark cores as
: used by PID

used

: : Free cores:
} : Parallel region — Unmark cores as
: end - PID
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Topology-aware Scheduling Algorithm

» Multi-process scheduling ameliorates
many-core scalability problems

» What about complex memory hierarchy?
Make server topology aware

Base scheduling decisions on
Region scalability
Current system-wide load
System topology

=» Topology-aware OMP scheduler
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» Distance matrix for all cores in a system

Higher distance amplification factors for higher levels in the
memory hierarchy

» Example:
01 2 3 456 7 8 9 AB
O 0 1 1 1010 10 10 20 20 20 20
SMMP system 0 0 1 1 1010 10 10 20 20 20 20
node0 nodel node2 1 1 0 0 10 10 10 10 20 20 20 20
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core0 | corel cored | coreb core8 | core9 10101010 0 0 1 1 10 10 10 10
shared cache shared cache shared cache 10101010 0 0 1 1 10 10 10 10

core2 | core3 | [ | core6 | core7 | [ | coreA| coreB
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» Request from region with given
maxcount and optcount:

N = optcount + loadfactor * (maxcount - optcount)
loadfactor dependent on amount of free cores

Select N-1 cores close to core from which the request
originated

» Slightly more complicated in practice

dealing with case where fewer than N cores available
(decide whether to queue or return smaller amount)
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» Using simple scheduling leads to fragmentation:
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» Sum of local distance in all 4 processes: 44
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» Same processes without fragmentation:
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» Sum of local distance in all 4 processes: 13
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» Moving threads once started has
significant performance impact (caches, pages, etc)
— instead change algorithm to discourage fragmentation

» Define cores as part of a hierarchy of core sets

» When selecting a core from a new set, prefer (in order)
A core set containing exactly as many free cores as required
A core set containing more free cores than required
An empty core set

» Further improvement possible by adjusting number of
selected cores (enhanced clustering)
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» Evaluate impact of scheduling enhancements
over 10000 semi-random requests

» Calculate or measure 5 properties:
Scheduling time required per request
Target miss rate: |#returned threads - #ideal threads|
3 distance metrics:

Total distance: from each thread in a team to each other
Weighted distance: distance between threads with close id weighted higher

Local distance: only count distance from each core to next in sequence
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» Absolute overhead always below 1.4 microseconds
» Enhanced clustering reduces local distance by 70%
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» Hardware:
Sun XFire 4600 M2
8 quad-cores (AMD Barcelona, partially connected, 1-3 hops)
» Software
Backend: GCC 4.4.2
“Default” OMP: GOMP
Insieme compiler/runtime r278
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Small-scale Experiment

» Random set of 13 programs tested
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® GOMP, sequential

® Optimal threadcount,
standard OS mapping

m Our server, no locality
information

® Our server, locality

® Our server, locality +
enhanced clustering
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» Random programs chosen from NPB & 2 kernels
» Random problem sizes

30000

B GOMP sequential
25000 ——
20000 —— m Our server, no locality
15000 +—— —
m Our server, locality
10000 +—— —
5000 —— —
B Our server, locality +
clustering
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Power consumption measured during large-scale
experiment:
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Topology-aware scheduling (with appropriate thread counts)
reduces average power consumption
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» One program consists of more than one process

» Our topology-aware thread mapping meaningful even for
a single program in this case

0,7
» Test of an ADI solver, >
8 MPI processes and g7
4 threads each '
» Improvement is §
around 11% 5o
0,1 -
» OpenMPIl used in both cases 0 Default | Topology aware
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» Central OpenMP server process

Selects number of threads for parallel regions depending on
Scalability information
System load
Clustering considerations

Performs topology-aware mapping of threads to cores

» Evaluation

Up to 33% performance improvement compared to standard
scheduling

Additional reduction in power consumption
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» How to determine/estimate region scalability
without exhaustive profiling

» Make external non-OMP load impact scheduling decisions
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