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Motivation – Hardware Trends

 Multi-core, multi-socket NUMA machines 
are in wide use in HPC

 Complex memory hierarchy and topology

 Large number of cores in single shared memory system

 are existing OpenMP applications and implementations ready?

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling



Motivation – Hardware Trends

 Multi-core, multi-socket NUMA machines 
are in wide use in HPC

 Complex memory hierarchy and topology

 Large number of cores in single shared memory system

 are existing OpenMP applications and implementations ready?

socket

core

core

sh
ared

 
cach

e

core

core

sh
ared

 
cach

e

so
cket

m
em

o
ry

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling



Motivation – Hardware Trends

 Multi-core, multi-socket NUMA machines 
are in wide use in HPC

 Complex memory hierarchy and topology

 Large number of cores in single shared memory system

 are existing OpenMP applications and implementations ready?

socket

core

core

sh
ared

 
cach

e

core

core

sh
ared

 
cach

e

so
cket

m
em

o
ry

socket

core

core

sh
ared

 
cach

e

core

core

sh
ared

 
cach

e

so
cket

m
em

o
ry

socket

core

core

sh
ared

 
cach

e

core

core

sh
ared

 
cach

e

so
cket

m
em

o
ry

socket

core

core

sh
ared

 
cach

e

core

core

sh
ared

 
cach

e

so
cket

m
em

o
ry

socket

core

core

sh
ared

 
cach

e
core

core

sh
ared

 
cach

e

so
cket

m
em

o
ry

socket

core

core

sh
ared

 
cach

e

core

core

sh
ared

 
cach

e

so
cket

m
em

o
ry

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling



Scalability
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 We profiled individual OpenMP parallel regions
in a variety of programs and problem sizes

 On a 8-socket quadcore NUMA system (32 cores)

 Determine two metrics:

 Maximum threadcount

 Maximum amount of threads that 
can be used with some speedup

 Optimal threadcount

 Maximum amount of threads that
allows a speedup within 20% of ideal



Scalability Results
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Motivation – Multi-Process

 First idea: run more than one OMP program (job)
in parallel
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Motivation – Multi-Process

 Of course it is not always that simple –
a different workload:
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Algorithm & Implementation

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling



Multi-Process Scheduling Architecture

 Goal:

 Facilitate system-wide scheduling of OpenMP programs

 Basic Design:

 One central control process (server), message exchange 
between server and the OMP runtime of each program

 Message protocol:

 Upon encountering a OMP parallel region:

 OMP processes send a request to server for resources

 Includes scalability information for region

 Use cores indicated by reply

 When leaving region send signal to free cores

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling



Implementation & Flow

 Based on UNIX message queues

 Well suited semantically and fast enough 
(less than 4 microseconds roundtrip on our systems)
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Topology-aware Scheduling Algorithm

 Multi-process scheduling ameliorates
many-core scalability problems

 What about complex memory hierarchy?

 Make server topology aware

 Base scheduling decisions on

 Region scalability

 Current system-wide load

 System topology

 Topology-aware OMP scheduler
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Topology Representation
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 Distance matrix for all cores in a system

 Higher distance amplification factors for higher levels in the 
memory hierarchy

 Example:



Simple Scheduling
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 Request from region with given 
maxcount and optcount:

1. N = optcount + loadfactor * (maxcount - optcount)

 loadfactor dependent on amount of free cores

2. Select N-1 cores close to core from which the request 
originated

 Slightly more complicated in practice

 dealing with case where fewer than N cores available
(decide whether to queue or return smaller amount)



Fragmentation
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 Using simple scheduling leads to fragmentation:

 Sum of local distance in all 4 processes: 44
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Improvement: Clustering
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 Same processes without fragmentation:

 Sum of local distance in all 4 processes: 13
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Clustering Algorithm
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 Moving threads once started has
significant performance impact (caches, pages, etc)
 instead change algorithm to discourage fragmentation

 Define cores as part of a hierarchy of core sets

 When selecting a core from a new set, prefer (in order)

1. A core set containing exactly as many free cores as required

2. A core set containing more free cores than required

3. An empty core set

 Further improvement possible by adjusting number of 
selected cores (enhanced clustering)



Evaluation
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Simulation
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 Evaluate impact of scheduling enhancements
over 10000 semi-random requests

 Calculate or measure 5 properties:

 Scheduling time required per request

 Target miss rate: |#returned_threads - #ideal_threads|

 3 distance metrics:

 Total distance: from each thread in a team to each other

 Weighted distance: distance between threads with close id weighted higher

 Local distance: only count distance from each core to next in sequence



Simulation Results
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 Absolute overhead always below 1.4 microseconds

 Enhanced clustering reduces local distance by 70%
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Experiments
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 Hardware:

 Sun XFire 4600 M2

 8 quad-cores (AMD Barcelona, partially connected, 1-3 hops)

 Software

 Backend: GCC 4.4.2

 “Default” OMP: GOMP

 Insieme compiler/runtime r278



Small-scale Experiment
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 Random set of 13 programs tested
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Large-scale Experiment
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 Random programs chosen from NPB & 2 kernels

 Random problem sizes
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Power Consumption
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 Power consumption measured during large-scale
experiment:

 Topology-aware scheduling (with appropriate thread counts) 
reduces average power consumption



Hybrid MPI/OpenMP
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 One program consists of more than one process

 Our topology-aware thread mapping meaningful even for 
a single program in this case

 Test of an ADI solver,
8 MPI processes and
4 threads each

 Improvement is
around 11%

 OpenMPI used in both cases
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Summary and Conclusion
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Summary
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 Central OpenMP server process

1. Selects number of threads for parallel regions depending on

 Scalability information

 System load

 Clustering considerations

2. Performs topology-aware mapping of threads to cores

 Evaluation

 Up to 33% performance improvement compared to standard 
scheduling

 Additional reduction in power consumption



Future Work
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 How to determine/estimate region scalability
without exhaustive profiling

 Make external non-OMP load impact scheduling decisions



Thank you!
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