
Topology-aware OpenMP
Process Scheduling

Peter Thoman, Hans Moritsch, and Thomas Fahringer

University of Innsbruck (Austria)

Motivation

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

Motivation – Hardware Trends

 Multi-core, multi-socket NUMA machines
are in wide use in HPC

 Complex memory hierarchy and topology

 Large number of cores in single shared memory system

 are existing OpenMP applications and implementations ready?

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

Motivation – Hardware Trends

 Multi-core, multi-socket NUMA machines
are in wide use in HPC

 Complex memory hierarchy and topology

 Large number of cores in single shared memory system

 are existing OpenMP applications and implementations ready?

socket

core

core

sh
ared

cach

e

core

core

sh
ared

cach

e

so
cket

m
em

o
ry

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

Motivation – Hardware Trends

 Multi-core, multi-socket NUMA machines
are in wide use in HPC

 Complex memory hierarchy and topology

 Large number of cores in single shared memory system

 are existing OpenMP applications and implementations ready?

socket

core

core

sh
ared

cach

e

core

core

sh
ared

cach

e

so
cket

m
em

o
ry

socket

core

core

sh
ared

cach

e

core

core

sh
ared

cach

e

so
cket

m
em

o
ry

socket

core

core

sh
ared

cach

e

core

core

sh
ared

cach

e

so
cket

m
em

o
ry

socket

core

core

sh
ared

cach

e

core

core

sh
ared

cach

e

so
cket

m
em

o
ry

socket

core

core

sh
ared

cach

e
core

core

sh
ared

cach

e

so
cket

m
em

o
ry

socket

core

core

sh
ared

cach

e

core

core

sh
ared

cach

e

so
cket

m
em

o
ry

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

Scalability

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

 We profiled individual OpenMP parallel regions
in a variety of programs and problem sizes

 On a 8-socket quadcore NUMA system (32 cores)

 Determine two metrics:

 Maximum threadcount

 Maximum amount of threads that
can be used with some speedup

 Optimal threadcount

 Maximum amount of threads that
allows a speedup within 20% of ideal

Scalability Results

0

4

8

12

16

20

24

28

32

b
t.

B
_1

3
0

lu
.C

_3
0

8
5

m
g.

A
_1

1
0

5

m
g.

A
_9

6
1

lu
.A

_1
2

0

ga
u

ss
.S

_4
0

m
g.

B
_9

6
1

m
g.

A
_2

3
6

ga
u

ss
.L

_2
0

m
g.

C
_1

0
9

1

m
g.

C
_9

6
1

m
g.

B
_2

3
6

m
g.

A
_2

7
1

cg
.A

_2
5

4

ga
u

ss
.S

_2
0

m
g.

C
_2

3
6

m
g.

B
_1

0
9

1

cg
.B

_2
5

4

is
.A

_6
3

8

cg
.C

_2
5

4

m
g.

B
_2

7
1

is
.B

_6
3

8

cg
.A

_7
4

0

ga
u

ss
.M

_4
0

m
m

u
l.L

_1
8

m
g.

C
_2

7
1

m
g.

C
_1

1
0

5

cg
.B

_7
4

0

cg
.A

_7
8

5

m
m

u
l.M

_1
8

lu
.C

_1
2

0

cg
.C

_7
4

0

m
g.

B
_1

1
0

5

cg
.B

_7
8

5

m
g.

A
_2

3
0

lu
.A

_3
0

4
9

is
.A

_6
5

2

ft
.A

_1
4

5

ft
.A

_1
2

3

ga
u

ss
.M

_2
0

m
m

u
l.S

_1
8

cg
.C

_7
8

5

m
g.

B
_2

3
0

is
.B

_6
5

2

ft
.B

_1
4

5

ft
.B

_1
2

3

ep
.B

_1
4

4

cg
.A

_1
7

1

cg
.A

_6
4

4

b
t.

A
_1

4
9

b
t.

B
_1

4
9

lu
.C

_3
0

4
9

ep
.C

_1
4

4

m
g.

C
_2

3
0

cg
.B

_1
7

1

cg
.B

_6
4

4

m
g.

A
_1

0
9

1

cg
.C

_1
7

1

cg
.C

_6
4

4

lu
.A

_3
0

8
5

ep
.A

_1
4

4

b
t.

A
_1

3
0

ga
u

ss
.L

_4
0

maximum threadcount optimal threadcount

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

Motivation – Multi-Process

 First idea: run more than one OMP program (job)
in parallel

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8

To
ta

l e
xe

cu
ti

o
n

 t
im

e
 (

se
co

n
d

s)

Number of parallel jobs

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

Motivation – Multi-Process

 Of course it is not always that simple –
a different workload:

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8

To
ta

l e
xe

cu
ti

o
n

 t
im

e
 (

se
co

n
d

s)

Number of parallel jobs

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

Algorithm & Implementation

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

Multi-Process Scheduling Architecture

 Goal:

 Facilitate system-wide scheduling of OpenMP programs

 Basic Design:

 One central control process (server), message exchange
between server and the OMP runtime of each program

 Message protocol:

 Upon encountering a OMP parallel region:

 OMP processes send a request to server for resources

 Includes scalability information for region

 Use cores indicated by reply

 When leaving region send signal to free cores

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

Implementation & Flow

 Based on UNIX message queues

 Well suited semantically and fast enough
(less than 4 microseconds roundtrip on our systems)

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

Topology-aware Scheduling Algorithm

 Multi-process scheduling ameliorates
many-core scalability problems

 What about complex memory hierarchy?

 Make server topology aware

 Base scheduling decisions on

 Region scalability

 Current system-wide load

 System topology

 Topology-aware OMP scheduler

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

Topology Representation

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

 Distance matrix for all cores in a system

 Higher distance amplification factors for higher levels in the
memory hierarchy

 Example:

Simple Scheduling

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

 Request from region with given
maxcount and optcount:

1. N = optcount + loadfactor * (maxcount - optcount)

 loadfactor dependent on amount of free cores

2. Select N-1 cores close to core from which the request
originated

 Slightly more complicated in practice

 dealing with case where fewer than N cores available
(decide whether to queue or return smaller amount)

Fragmentation

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

 Using simple scheduling leads to fragmentation:

 Sum of local distance in all 4 processes: 44

socket

core

core

sh
ared

cach

e

core

core

sh
ared

cach

e

so
cket

m
em

o
ry

socket

core

core

sh
ared

cach

e

core

core
sh

ared

cach
e

so
cket

m
em

o
ry

socket

core

core

sh
ared

cach

e

core

core

sh
ared

cach

e

so
cket

m
em

o
ry

socket

core

core

sh
ared

cach

e
core

core

sh
ared

cach

e

so
cket

m
em

o
ry

Improvement: Clustering

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

 Same processes without fragmentation:

 Sum of local distance in all 4 processes: 13

socket

core

core

sh
ared

cach

e

core

core

sh
ared

cach

e

so
cket

m
em

o
ry

socket

core

core

sh
ared

cach

e

core

core
sh

ared

cach
e

so
cket

m
em

o
ry

socket

core

core

sh
ared

cach

e

core

core

sh
ared

cach

e

so
cket

m
em

o
ry

socket

core

core

sh
ared

cach

e
core

core

sh
ared

cach

e

so
cket

m
em

o
ry

Clustering Algorithm

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

 Moving threads once started has
significant performance impact (caches, pages, etc)
 instead change algorithm to discourage fragmentation

 Define cores as part of a hierarchy of core sets

 When selecting a core from a new set, prefer (in order)

1. A core set containing exactly as many free cores as required

2. A core set containing more free cores than required

3. An empty core set

 Further improvement possible by adjusting number of
selected cores (enhanced clustering)

Evaluation

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

Simulation

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

 Evaluate impact of scheduling enhancements
over 10000 semi-random requests

 Calculate or measure 5 properties:

 Scheduling time required per request

 Target miss rate: |#returned_threads - #ideal_threads|

 3 distance metrics:

 Total distance: from each thread in a team to each other

 Weighted distance: distance between threads with close id weighted higher

 Local distance: only count distance from each core to next in sequence

Simulation Results

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

 Absolute overhead always below 1.4 microseconds

 Enhanced clustering reduces local distance by 70%

0%

20%

40%

60%

80%

100%

120%

Overhead (µs)

Target miss rate

Total distance

Weighted distance

Local distance

Experiments

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

 Hardware:

 Sun XFire 4600 M2

 8 quad-cores (AMD Barcelona, partially connected, 1-3 hops)

 Software

 Backend: GCC 4.4.2

 “Default” OMP: GOMP

 Insieme compiler/runtime r278

Small-scale Experiment

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

 Random set of 13 programs tested

0

100

200

300

400

500

600

700

800

900

1000

To
ta

l T
im

e
 (

se
co

n
d

s)

GOMP, sequential

Optimal threadcount,
standard OS mapping

Our server, no locality
information

Our server, locality

Our server, locality +
enhanced clustering

Large-scale Experiment

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

 Random programs chosen from NPB & 2 kernels

 Random problem sizes

0

5000

10000

15000

20000

25000

30000

To
ta

l T
im

e
 (

se
co

n
d

s)

GOMP sequential

Our server, no locality

Our server, locality

Our server, locality +
clustering

Power Consumption

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

 Power consumption measured during large-scale
experiment:

 Topology-aware scheduling (with appropriate thread counts)
reduces average power consumption

Hybrid MPI/OpenMP

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

 One program consists of more than one process

 Our topology-aware thread mapping meaningful even for
a single program in this case

 Test of an ADI solver,
8 MPI processes and
4 threads each

 Improvement is
around 11%

 OpenMPI used in both cases
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

Default Topology aware

Ex
e

cu
ti

o
n

 T
im

e
 (

se
co

n
d

s)

Summary and Conclusion

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

Summary

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

 Central OpenMP server process

1. Selects number of threads for parallel regions depending on

 Scalability information

 System load

 Clustering considerations

2. Performs topology-aware mapping of threads to cores

 Evaluation

 Up to 33% performance improvement compared to standard
scheduling

 Additional reduction in power consumption

Future Work

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

 How to determine/estimate region scalability
without exhaustive profiling

 Make external non-OMP load impact scheduling decisions

Thank you!

2010-06-15IWOMP 2010, Topology-aware OpenMP Process Scheduling

