Topology-aware OpenMP
Process Scheduling

Peter Thoman, Hans Moritsch, and Thomas Fahringer
University of Innsbruck (Austria)

Motivation

IWOMP 2010, Topology-aware OpenMP Process Scheduling 2010-06-15

Informatik

institut fur
[|

Motivation — Hardware Trends | n nsieme

universitat

iInnsbruck

» Multi-core, multi-socket NUMA machines
are in wide use in HPC

Complex memory hierarchy and topology
Large number of cores in single shared memory system
- are existing OpenMP applications and implementations ready?

IWOMP 2010, Topology-aware OpenMP Process Scheduling 2010-06-15

Informatik

institut fur
[|

Motivation — Hardware Trends | n nsieme

universitat

iInnsbruck

» Multi-core, multi-socket NUMA machines
are in wide use in HPC
Complex memory hierarchy and topology
Large number of cores in single shared memory system
- are existing OpenMP applications and implementations ready?

socket
=
r % r wil o
core 88_ core 83 Bg
ﬁ_‘ t"?ﬂ Og
(:Der gm S &
core Q! ! core Qi<

IWOMP 2010, Topology-aware OpenMP Process Scheduling 2010-06-15

informatik

institut fur

Motivation — Hardware Trends

universitat

iInnsbruck

» Multi-core, multi-socket NUMA machines
are in wide use in HPC
Complex memory hierarchy and topology
Large number of cores in single shared memory system
- are existing OpenMP applications and implementations ready?

socket socket socket
3 w 3 wn 3 (%]
core | @ core | 2! ® O core (o @ core |a 2 ® O core i @ core [2 @ O
Q 2 Q = 3 0 o 2 Q 2 3 0 > Q 2 Q = 3 9
O Q e Q) ~ N7 O Q 'e) Q ~ N7 o Q) e Q ~
= > g @ @ > 3 S gil 9 ® > 3 > gii Q™
0} ™ < = o o Dol ® o ol ™
core Q. ! core o core core core core
A A A
v v v
socket socket socket
core ia @ core | ©i! ® O core a © core io il @ O core iqa © core o 21t @ O
Q = Q 2 3 0 & Q9 =2 Q 2D 3 0 &> Q9 = Q 2 3 0
o 9 o 9 A i~ o 9 o 9 A i~ 7 o 9 o 9 ~
= > gl @ @ > 3 S gil 9 ® o > gii Q™
™ ™ < 7 o o D oil< ® o Dol 7
core Q. | core Q core core core core

IWOMP 2010, Topology-aware OpenMP Process Scheduling 2010-06-15

informatik

institut fur

insieme

Sca I a b i I ity compiler project

universitat

iInnsbruck

» We profiled individual OpenMP parallel regions
in a variety of programs and problem sizes

» On a 8-socket quadcore NUMA system (32 cores)

» Determine two metrics: }

Maximum threadcount

Maximum amount of threads that
can be used with some speedup

20% Range

Measured Speedup

Optimal threadcount

Maximum amount of threads that
allows a speedup within 20% of ideal

maxcount
optcount

Threads

IWOMP 2010, Topology-aware OpenMP Process Scheduling 2010-06-15

ot 1'ssned
!
e — A
../ ! ! [[| 80E VM|
LT 080
1607 V8w
79 98
LT g8
144 LE]
6v0€ 2N
6vT 9
6vT V'
LTV
vy gde
I"IIII e
! ! [| T ey
759 a's!
=
G8L7 08
] T vy
L
I 650E %N
0€¢ V8w
58,798
SOTT g'8w
ovL 28
sr4e]|
8T N‘|nww
S8L7 V'S
ovL 98
SOTT DJ'8w
14T 038w
8T TInww
of 'ssne8
ovL V'3
8€9 4's!
1.2 938w
STARES
8€9 VS|
ST a8
160T 98w
9¢7 D'8w
0z S'ssned
S V'8
LT V8w
9e7 98w
196 J8w
T60T D3w
0z 1'ssned
9e¢ V8w
196 938w
oF S'ssned
ozt VN
196 V3w
SOTT V8w
S80€ O'N|
0€T 9y

=
=
=}
=

formatik

m optimal threadcount

B maximum threadcount

Scalability Results

32
28
24
20 -
16 -
12
8
4
0 -

2010-06-15

IWOMP 2010, Topology-aware OpenMP Process Scheduling

Informatik

institut fur

Motivation — Multi-Process insieme

universitat

iInnsbruck

» First idea: run more than one OMP program (job)

in parallel
800

700 ™

600 \\

400

300

200

Total execution time (seconds)

100

0 I I I I I I I 1

1 2 3 4 5 6 7 8
Number of parallel jobs

IWOMP 2010, Topology-aware OpenMP Process Scheduling 2010-06-15

Motivation — Multi-Process

» Of course it is not always that simple —
a different workload:

2500

N
o
o
o

1500

1000

500

Total execution time (seconds)

1 2 3 4 5 6 7 8
Number of parallel jobs

IWOMP 2010, Topology-aware OpenMP Process Scheduling

Informatik

institut fur

insieme

compiler project

universitat

iInnsbruck

2010-06-15

Algorithm & Implementation

IWOMP 2010, Topology-aware OpenMP Process Scheduling 2010-06-15

Informatik

institut fur
[|

Multi-Process Scheduling Architecture |n i

universitat
Innsbruck

» Goal:
Facilitate system-wide scheduling of OpenMP programs

» Basic Design:
One central control process (server), message exchange
between server and the OMP runtime of each program
» Message protocol:

Upon encountering a OMP parallel region:

OMP processes send a request to server for resources
Includes scalability information for region

Use cores indicated by reply
When leaving region send signal to free cores

IWOMP 2010, Topology-aware OpenMP Process Scheduling 2010-06-15

Informatik

institut fur

Insieme

Implementation & Flow

universitat

iInnsbruck

» Based on UNIX message queues

Well suited semantically and fast enough
(less than 4 microseconds roundtrip on our systems)

User program OMP library OMP server

#omp parallel Find optcount,

{ { maxcount in Reqm’t— Select actual
- profiling data

PID, optcount, maxcount thread count N
— i Use N threads, Response: g:dlocao(;easngased
3 : bind affinity to N d[N] topology
D : o , corel :
: 22;::icsjpecmed Mark cores as
: used by PID

used

: : Free cores:
} : Parallel region — Unmark cores as
: end - PID

IWOMP 2010, Topology-aware OpenMP Process Scheduling 2010-06-15

Topology-aware Scheduling Algorithm

» Multi-process scheduling ameliorates
many-core scalability problems

» What about complex memory hierarchy?
Make server topology aware

Base scheduling decisions on
Region scalability
Current system-wide load
System topology

=» Topology-aware OMP scheduler

IWOMP 2010, Topology-aware OpenMP Process Scheduling

informatik

institut fur

insieme
compller project

universitat

iInnsbruck

2010-06-15

informatik

institut fur

Topology Representation

universitat

iInnsbruck

» Distance matrix for all cores in a system

Higher distance amplification factors for higher levels in the
memory hierarchy

» Example:
01 2 3 456 7 8 9 AB
O 0 1 1 1010 10 10 20 20 20 20
SMMP system 0 0 1 1 1010 10 10 20 20 20 20
node0 nodel node2 1 1 0 0 10 10 10 10 20 20 20 20
1 1 0 O 10 10 10 10 20 20 20 20
core0 | corel cored | coreb core8 | core9 10101010 0 0 1 1 10 10 10 10
shared cache shared cache shared cache 10101010 0 0 1 1 10 10 10 10

core2 | core3 | [| core6 | core7 | [| coreA| coreB
shared cache shared cache shared cache

node RAM node RAM node RAM

> O oo~NoobkwNneH=O
|
o
| —
o
—
o
|
o
=
-t
o
o
—
o
=
o
| —
o
—
o

IWOMP 2010, Topology-aware OpenMP Process Scheduling 2010-06-15

Informatik

institut fur

Insieme

Simple Scheduling

universitat

iInnsbruck

» Request from region with given
maxcount and optcount:

N = optcount + loadfactor * (maxcount - optcount)
loadfactor dependent on amount of free cores

Select N-1 cores close to core from which the request
originated

» Slightly more complicated in practice

dealing with case where fewer than N cores available
(decide whether to queue or return smaller amount)

IWOMP 2010, Topology-aware OpenMP Process Scheduling 2010-06-15

informatik

institut fur

Fragmentation b=l

universitat

iInnsbruck

» Using simple scheduling leads to fragmentation:

socket socket
S w 3 un
-n w core i 2 D O core i 2 core in 2 D O
Q 2 Q 2 3 0 &> Q 2 Q 2 3 0
O m (@) m -~ ~ 7 ‘e) m (@) Q.) A~
> o >3l 8 @ = >3l 8 @
core {? 2! {core {P? 2!i< core {® 2! icore |? 2 <
AN i
v
socket socket
S o | TTTTTTTTTTTTY T 3w
core {o wi icore io wii ® o core | @ -n wil o o
Q Q) 0 > Q = Q 2 o
>3 > 3O = > gil 2 @
o D o) D = ~+ o D o D =S ~+
core Q. icore Q< a Qi<

» Sum of local distance in all 4 processes: 44

IWOMP 2010, Topology-aware OpenMP Process Scheduling 2010-06-15

informatik

institut fur

insieme

Improvement: Clustering

universitat

iInnsbruck

» Same processes without fragmentation:

socket socket
S 3 un
core iq © core |\p it ™ O core {o @ core in ©!! @ O
Q - Q 2 3 0 &> Q 2 Q 2 3 0
o 9 o 2 - o2 o 9 ~
g o) g) S g g ™ rDD- ® 2 E'D"
core Qi !core Qi< core Q! icore Qi<
AN i
v
socket socket
------:,-’-- ------:,-,-- % 8 core m core m g 8
S g S g 3 0 > Sy S = 3 9
o o Lt g A o 2 o 23 A
> > D > > ()
core core

» Sum of local distance in all 4 processes: 13

IWOMP 2010, Topology-aware OpenMP Process Scheduling 2010-06-15

informatik

institut fur

Clustering Algorithm

universitat

iInnsbruck

» Moving threads once started has
significant performance impact (caches, pages, etc)
— instead change algorithm to discourage fragmentation

» Define cores as part of a hierarchy of core sets

» When selecting a core from a new set, prefer (in order)
A core set containing exactly as many free cores as required
A core set containing more free cores than required
An empty core set

» Further improvement possible by adjusting number of
selected cores (enhanced clustering)

IWOMP 2010, Topology-aware OpenMP Process Scheduling 2010-06-15

Evaluation

IWOMP 2010, Topology-aware OpenMP Process Scheduling 2010-06-15

informatik

institut fur

Simulation | n

universitat

iInnsbruck

» Evaluate impact of scheduling enhancements
over 10000 semi-random requests

» Calculate or measure 5 properties:
Scheduling time required per request
Target miss rate: |#returned threads - #ideal threads|
3 distance metrics:

Total distance: from each thread in a team to each other
Weighted distance: distance between threads with close id weighted higher

Local distance: only count distance from each core to next in sequence

IWOMP 2010, Topology-aware OpenMP Process Scheduling 2010-06-15

informatik

institut fur

: : Insieme
Simulation Results
universitat
120% iInnsbruck
100% , o —. — —e—Overhead (us)

P Target miss rate

80% \
60% :E%V—A Total distance
40%

\M =>«\Weighted distance

—#=Local distance

20%

O% I I I I 1

» Absolute overhead always below 1.4 microseconds
» Enhanced clustering reduces local distance by 70%

IWOMP 2010, Topology-aware OpenMP Process Scheduling 2010-06-15

Informatik

institut fur

Experiments

universitat

iInnsbruck

» Hardware:
Sun XFire 4600 M2
8 quad-cores (AMD Barcelona, partially connected, 1-3 hops)
» Software
Backend: GCC 4.4.2
“Default” OMP: GOMP
Insieme compiler/runtime r278

IWOMP 2010, Topology-aware OpenMP Process Scheduling 2010-06-15

Small-scale Experiment

» Random set of 13 programs tested

1000

900

800

700

600

500

400

Total Time (seconds)

300

200

100

0

I

IWOMP 2010, Topology-aware OpenMP Process Scheduling

formatik

institut fur

itat

nsbruc

® GOMP, sequential

® Optimal threadcount,
standard OS mapping

m Our server, no locality
information

® Our server, locality

® Our server, locality +
enhanced clustering

2010-06-15

formatik

institut fur

Large-scale Experiment

universitat
nsbruck

» Random programs chosen from NPB & 2 kernels
» Random problem sizes

30000

B GOMP sequential
25000 ——
20000 —— m Our server, no locality
15000 +—— —
m Our server, locality
10000 +—— —
5000 —— —
B Our server, locality +
clustering
O R TEEE——S—SSSTRSRRRRRER __a—_——— ——,

Total Time (seconds)

IWOMP 2010, Topology-aware OpenMP Process Scheduling 2010-06-15

Informatik

institut fur

insieme

Power Consumption

4

universitat

iInnsbruck

Power consumption measured during large-scale
experiment:

1100 -
standard OS scheduling

- IR

800 /

topology aware scheduling

—
o
o
o

700

Power Consumption (Watts)

600 |

500 ‘ .
0 2500 5000 7500 10000 12500 15000 17500 20000

Time (seconds)

Topology-aware scheduling (with appropriate thread counts)
reduces average power consumption

IWOMP 2010, Topology-aware OpenMP Process Scheduling 2010-06-15

iInformatik

institut fur

Hybrid MPI/OpenMP |)| (Rsiene]

universitat

Innsbruck

» One program consists of more than one process

» Our topology-aware thread mapping meaningful even for
a single program in this case

0,7
» Test of an ADI solver, >
8 MPI processes and g7
4 threads each '
» Improvement is §
around 11% 5o
0,1 -
» OpenMPIl used in both cases 0 Default | Topology aware

IWOMP 2010, Topology-aware OpenMP Process Scheduling 2010-06-15

Summary and Conclusion

IWOMP 2010, Topology-aware OpenMP Process Scheduling 2010-06-15

Informatik

institut fur

Insieme

S u m m a ry compiler project

universitat

iInnsbruck

» Central OpenMP server process

Selects number of threads for parallel regions depending on
Scalability information
System load
Clustering considerations

Performs topology-aware mapping of threads to cores

» Evaluation

Up to 33% performance improvement compared to standard
scheduling

Additional reduction in power consumption

IWOMP 2010, Topology-aware OpenMP Process Scheduling 2010-06-15

informatik

institut fur

Future Work | n

universitat

iInnsbruck

» How to determine/estimate region scalability
without exhaustive profiling

» Make external non-OMP load impact scheduling decisions

IWOMP 2010, Topology-aware OpenMP Process Scheduling 2010-06-15

Thank you!

IWOMP 2010, Topology-aware OpenMP Process Scheduling 2010-06-15

