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Abstract—Flying ad hoc networks (FANETs) plays a crucial
role in numerous military and civil applications since it shortens
mission duration and enhances coverage significantly compared
with a single unmanned aerial vehicle (UAV). Whereas, designing
an energy-efficient FANETs routing protocol with a high packet
delivery rate (PDR) and low delay is challenging owing to
the dynamic topology changes. In this paper, we propose a
topology-aware resilient routing strategy based on adaptive Q-
learning (TARRAQ) to accurately capture topology changes with
low overhead and make routing decisions in a distributed and
autonomous way. First, we analyze the dynamic behavior of
UAVs nodes via queuing theory, then the closed-form solutions
of neighbors’ change rate (NCR) and neighbors’ change inter-
arrival time (NCIT) distribution are derived. Based on the real-
time NCR and NCIT, a resilient sensing interval is determined by
defining the expected sensing delay of network events. Besides, we
also present an adaptive Q-learning approach that enables UAVs
to make distributed, autonomous and adaptive routing decisions,
where the above sensing interval ensures that the action space
can be updated in time with low cost. The simulation results
verify the accuracy of the topology dynamic analysis model, and
also prove that our TARRAQ outperforms the Q-learning-based
topology-aware routing, mobility prediction-based virtual routing
and greedy perimeter stateless routing based on energy-efficient
Hello in terms of 25.23%, 20.24% and 13.73% lower overhead,
9.41%, 14.77% and 16.70% higher PDR and 5.12%, 15.65% and
11.31% lower energy consumption, respectively.

Index Terms—Flying ad hoc networks, Routing protocol,
Dynamic topology changes, Sensing interval, Q-learning.

I. INTRODUCTION

THE paradigm of the Internet of Things (IoT) enables
highly integrated smart machines and devices to ac-

cess and process information from the physical environment
without human interaction [1]. As the emerging device of
IoT and the carrier of aerial technology, Unmanned Aerial
Vehicle (UAV) plays a crucial role in military and civilian
IoT applications such as coverage monitoring, emergency
communication, remote sensing and disaster rescue (e.g. the
recent Australian wildfire) [2], thanks to its flexibility, small
volume, low cost, concealment, rapid deployment [3], etc.
Compared with the application of a single UAV node, the
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coordination of multi-UAVs can shorten the mission duration
and improve efficiency. Thus, the Flying Ad-hoc Networks
(FANETs) emerges to improve cooperation and scalability.
However, there are challenges in cooperative communication
and routing in FANETs due to the intermittent connectivity
and the energy consumption of UAVs [4]. Recently, extensive
research has been conducted on how to improve the mo-
bile ad-hoc network routing protocols and implement them
in FANETs, but the latter’s sparse heterogeneity structure,
dynamic mobility, limited energy and serious fragmentation
are the major issues in designing an efficient routing strategy
ensuring a robust data exchange between UAVs [5].

There are multiple categories of FANETs routing protocols
for different Quality of Service (QoS), such as topology-based
and geographic-based. The topology-based protocols include
hierarchical and flat patterns. The former are designed for
large-scale networks due to the strong scalability, whereas the
cost and complexity of clustering might outweigh the pros in
sparse FANETs [6]. For flat routing methods, the proactive
ones have a huge overhead for routing table while the reactive
ones create the intolerable delay, and most of their hybrid
ignore the standard attributes of UAVs, namely the Global
Positioning System (GPS), which provides a precious oppor-
tunity for geographic-based protocols [7]. Based on location
information, the geographic-based protocols find appropriate
relays towards the destination by greedy forwarding, hence
nodes no longer need to explore the state of the entire net-
work [8]. Although FANETs with high mobility and dynamic
mission will benefit from geographic-based protocols, there
are still some issues to be addressed.

First, the routing decisions should be made in a distributed
and autonomous way for each UAV since the global state of
the entire network is unavailable when they are configured
with geographic-based protocols. Q-learning, which is one of
the easiest and most practiced reinforcement learning (RL)
techniques, is envisioned as a promising solution [9]. By
adjusting their behavior according to the reward function
of environmental feedback, the intelligent agent can achieve
optimal decisions without prior knowledge. This makes it
possible for adaptive autonomous routing decisions. Whereas,
the shortest route may be the one with poor link duration
(LD) and unbalanced energy consumption, and the routing
holes will appear once there is no suitable relay next [10].
At the time of writing, considering multiple metrics can work
to a certain extent at the cost of detour. However, since the
learning-based protocol works via the continuous and periodic
interaction between agents and the environment, the relays will
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deviate from the best decision if there is a false hole owing
to the inaccurate environment information.

Due to the time-varying topology of FANETs, the learning
performance will deteriorate since nodes often lag in capturing
rapid topology changes. Thanks to the Hello protocol, nodes
can announce their existence and exchange status periodically
with each other [11]. The Q-learning-based routing protocols
use Hello messages to interactive with the dynamic environ-
ment, namely maintain the neighbor status, where the Hello
timer and expiration timer (ET) play a significant role. More
concretely, the former represents the periodic sensing interval
(SI) while the latter reflects the validity period of neighbors
[12]. However, both of them are deterministic in the routing
protocol standard proposed by the Internet Engineering Task
Force [13], which often has a poor performance in the rapidly
changing FANETs due to the following reasons.

On one hand, the network performance is affected by SI.
A smaller SI can ensure the accuracy of topology change
detection whereas the additional overhead is wasted if the
frequency of perception is higher than the neighbors’ change
rate (NCR) or the traffics’ arrival rate (TAR). Conversely,
although the overhead and energy consumption can be reduced
by a larger SI, there will be serious packet loss if the SI
lags behind the arrival of traffics or is too large to perceive
the change of key links [14]. On the other hand, the SI
is determined by the network performance demands. For
example, UAVs are sensitive to delay when acting as an aerial
relay [15], and they will have more stringent requirements
for overhead (energy efficiency) when performing coverage
monitoring tasks [16]. Besides, the stability and reliability of
the links are more critical when UAVs are utilized to search
and rescue [17]. Thus, resilient SI should be designed to enable
the network to meet various performance demands.

In this paper, we conduct thorough research on the above is-
sues. We begin with constructing a queuing service framework
for analyzing link establishment and disconnection between
UAVs, then the closed-form expressions of LD, NCR and
distribution of neighbors’ change inter-arrival time (NCIT)
are derived. Then we propose a protocol called Topology-
Aware Resilient Routing based on Adaptive Q-learning (TAR-
RAQ) that enables UAVs to make distributed, autonomous
and adaptive routing decisions, which contains three phases:
1) neighbor discovery; 2) neighbor maintenance; 3) relay
selection. During the first two phases, the residual LD pre-
dicted by Kalman Filter (KF) is working as an expiration
timer for available neighbors, and the NCR and NCIT are
used to calculate the resilient SI on demand, namely all
UAVs can dynamically adjust their sensing scheme based
on dynamic behavior and performance requirements, thus the
accurate information of neighbors can be obtained accordingly
with tolerable overhead. When it comes to the last phase,
the neighbor information obtained previously is regarded as
the finite states where agents attempt to take actions, and
an adaptive Q-learning approach is presented to ensure the
distributed and autonomous routing decisions. For clarity, we
summarize our contribution as follows.

• We analyze the dynamic topology changes of FANETs
via queuing theory, which reveals the mapping rela-

TABLE I: Main Abbreviations Used in This Paper.

Abbreviations Explanation

CQS Cyclic Queuing System
DEWMA Dynamic Exponential Weighted Moving Average
EE-Hello Energy-Efficient Hello

EIT Events’ Inter-arrival Time
ET Expiration Timer

E2ED End-to-End Delay
FANETs Flying Ad-hoc Networks

KF Kalman Filter
LD Link Duration

MPVR Mobility Prediction-based Virtual Routing
NCIT Neighbors’ Changes Inter-arrival Time
NCR Neighbors’ Change Rate
NIT Neighbors’ Inter-arrival Time
PDR Packet Delivery Ratio
PPP Poisson Point Process

QTAR Q-Learning-based Topology-Aware Routing
RWP Random Waypoint

SI Sensing interval
TAR Traffics’ Arrival Rate

TARRAQ Topology-Aware Resilient Routing Based on
Adaptive Q-learning

tionship between LD and service duration, NCR and
customer change rate, NCIT and distribution of customer
change inter-arrival time, respectively. And the closed-
form expressions of LD, NCR and NCIT are derived
to describe the mobility behavior accurately. To the best
of our knowledge, this is the first research to accurately
characterize the topology changes of FANETs;

• We propose a novel resilient perception strategy based on
the first contribution. The NCR with dynamic exponential
weighted moving average (DEWMA) process is used to
calculate the topology changes. By defining the expected
sensing delay of the network events, the resilient SI is
determined based on the real-time NCR and NCIT to
satisfy the network’s dynamic demands. Besides, with the
KF method introduced, the residual LD is predicted to
determine the validity period of neighbors;

• We present an adaptive Q-learning approach, which en-
ables UAVs to make distributed and autonomous rout-
ing decisions. In dynamic FANETs, the action space is
updated in time with the low cost through the second
contribution. The reward function is designed based on
the link quality, residual energy and distance of neighbors
to find a stable path with a lower loss rate, fewer hops
and energy consumption. Besides, the action selection,
learning rate and discount factor are adjusted according
to the residual LD, which achieves adaptive learning from
the variable network environment.

The remainder of this article is organized as follows. In
section II, the related works are classified and analyzed.
Section III introduces the motivation scenario, network model
and Q-learning framework for FANETs routing. The queuing
service system model and the TARRAQ protocol is proposed
in sections IV and V, respectively. Extensive simulations are
performed in section VI to verify the accuracy of the proposed
model, and the performance of TARRAQ is discussed. Finally,
we conclude this article in section VII. The key and unique
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abbreviations are summarized in Table I.

II. RELATED WORKS

A. Related Works on Perception Strategy

1) Mobility-Based Perception Strategy: The mobility-based
perception strategy tends to determine the optimal SI by study-
ing the influence of dynamic behavior on topology changes. It
includes two opposing camps: formula-based and intelligence-
based perception strategy.

Qualitative and intuitive analysis of the correlation between
network parameters (e.g. node’s mobility, density and SI)
and perception performance (e.g. accuracy and overhead) is
a typical feature of the formula-based perception strategy. As
one of the earliest typical perception strategies, an adaptive
Hello protocol was proposed by Giruka [18]. It allows nodes
to broadcast Hello messages once they move a certain distance.
However, it only studies the influence of mobility rather
than other factors. Besides, the linear relationship between
the optimal SI and mobility is inaccurate. Park et al. [19]
defined the mobility factor by dividing transmission range
by speed, and obtained the best mapping coefficient through
experiments with the goal of maximizing throughput. Mahmud
et al. [20] defined the best SI based on density, airspace size,
node’s speed and transmission range, and proposed the energy-
efficient Hello (EE-Hello) protocol. Although the overhead
efficiency was improved, the end-to-end delay (E2ED) has not
been reduced.

Considering that both the interaction between parameters
and their influence on network performance are difficult to
understand and explain, the intelligence-based perception strat-
egy prefers to construct a correlation between key parameters
and the best SI using intelligent tools. Shah et al. [21] proposed
a scheme to determine SI based on an artificial neural network
(ANN), where the input is the node’s transmitting power and
mobility while the output is the Hello interval. The network
throughput and packet delivery ratio (PDR) are improved at the
expense of network delay. However, their ANN architecture
with only 10 nodes in a single hidden layer can complete the
learning process in 20 epochs, which means the relationship
between input and output is not complicated. In fact, it can
be determined by analyzing the topology changes, and we
will elaborate on it in section IV. An energy-efficient routing
approach through an adaptive neuro-fuzzy inference system
was proposed in [22]. The nodes with more residual energy
and higher mobility are set with a smaller SI, which provides
excellent performance in high mobility and dense FANETs.
However, the influence of network density, traffic flow and
node transmission range on the optimal SI has been ignored.
According to the factors considered in the EE-Hello scheme
[20], a new energy-efficient ad-hoc on-demand distance vector
based on the response surface methodology was proposed by
Mohamed [23]. However, its adaptability needs to be improved
once the actual scenario and the model are quite different.

2) Event-Based Perception Strategy: Unlike the mobility-
based perception strategy, the event-based one tends to proceed
from the original intention of the perception [24], that is, to
provide accurate network information for routing decisions

[25]. Nelson et al. [26] dynamically adjust SI by monitoring
the NCR and packet loss rate of nodes. Specifically, the SI
will decrease if the NCR exceeds the threshold or packet
loss occurs, and vice versa. However, the optimal threshold in
multiple scenarios is difficult to determine, and the influence
of traffics has not been discussed. Considering the situation
where traffic inter-arrival time follows the Poisson distribution,
an event-driven adaptive Hello protocol was proposed in [27].
But it is counterproductive in low-speed sparse networks since
the links established within 10 s are probably available even
if new traffic is frequently generated.

B. Related Works on Routing Protocols

1) Topology-based Routing Protocols: In this category, an
appropriate routing path from the source to the destination is
required before data transmission begins. According to how
the routing is maintained, it can be further categorized as
proactive, reactive and hierarchical schemes.

In the proactive ones, UAVs preserve the latest route in-
formation in the network, regardless of whether they have
data packets to send or not. The predictive Optimized link
state routing protocol (OLSR), which combines the advantages
of proactive routing and the GPS information available on
board, was introduced in [29]. The expected transmission
count metric is defined based on link quality and moving
speed, thus the routing follows the topology change without
interruptions. Note that for high-mobility FANETs, it is not
sufficient to only exchange the control packets. The UAVs
should have the capability to predict the status of neighbors to
meet the critical reliability requirement. In [30], an enhanced
OLSR based on mobility and delay prediction was proposed.
It employed the KF to choose stable neighbor nodes as
relays and introduced a cross-layer queuing delay prediction
model to achieve traffic load balance and reduce the E2ED.
Whereas the proactive protocols are only suitable for real-time
applications in coordinated formation architectures with low
mobility degree since periodic routing table update require a
large number of control packets in highly dynamic FANETs,
which results in poor overhead and inefficiency.

The reactive routings are introduced to address the cons of
proactive ones since it triggers the route discovery process
only when the UAV has packets to send. Oubbati et al. [31]
proposed an energy-efficient connectivity-award date (ECaD)
routing protocol, which is envisioned as a promising reactive
solution. The key idea behind ECaD is to exploit UAVs
to efficiently anticipate path failures before their occurrence
and select alternative next hops. It also considered the link
connectivity expiration time and residual energy of UAVs to
ensure communication stability. Hong et al. [32] proposed
a topology-aware routing scheme for UAV swarm network.
Based on the smooth processing of the flight controller’s
output, it calculates LD and sets half of its minimum value as
SI. However, the topology changes should be associated with
link changes or traffic arrival intervals rather than LD since
the latter is irrelevant to the network density [33]. Besides,
although it has a better perceived latency, the overhead is
higher than that of the conventional protocols.
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Hierarchical routing protocols are more advantageous in
terms of flexibility and scalability for large-scale FANETs.
In [3], the authors proposed an energy-efficient swarm-
intelligence-based clustering protocol where the particle fitness
function is exploited for geographic location, residual energy
and inter-cluster distance. Whereas in our view, it can be
further improved by incorporating a mobility prediction mech-
anism to perform efficient routing in high-mobility FANETs,
and it would be a promising protocol if the neighbor discovery
process is further considered.

2) Geographic-Based Routing Protocols: Compared with
the topology-based routing protocols, the geography-based
ones consume less bandwidth and lower overhead. Jiang
et al. introduced a mobility prediction-based virtual routing
(MPVR) strategy for FANETs [34]. The deviation degree,
hop count and LD are considered when selecting the next
hop. However, the residual energy and the local minimum
problem is ignored. Besides, the specific method of obtaining
neighbor information, which is exactly the prerequisite of
MPVR, was not introduced. In [35], a novel protocol named Q-
learning-based geographic routing (QGeo) was proposed. Both
transmission distance and link status were considered in the
reward function, thus the reliable transmission was achieved
with low overhead. Nevertheless, it is not sufficient to find
relays without considering the link status. Note that QGeo
utilizes a fixed SI, it may suffer from serious performance loss
in applications that require high-accuracy link information, and
leading to limited adaptability for high-mobility FANETs. Liu
et al. proposed a Q-learning-based multi-objective optimiza-
tion routing (QMR) protocol [36], where both the delay and
the energy consumption are considered. The QMR adjusted
the Q-learning parameters and estimate neighbor relations in
real time. Whereas, the QMR believes that close neighbors
have more rewards than distant ones. In fact, the links of
remote relays are not all inclined to break, which is related to
the relative motion. Conversely, near relays are not typically
optimal due to the sharp increase of hops and delays. The
Q-learning-based topology-aware routing (QTAR) [37], which
improved the routing decision based on the two-hop neighbors’
information and adaptive Q-learning technique, is envisioned
as a promising solution. However, the authors ignored the
value of LD, which may play a crucial role in the reward
function to obtain stable links. In addition, the calculation
methods for LD and SI inherited from [32] are designed
for swarm networks rather than FANETs, which may not be
applicable owing to the rapid topology change.

III. PRELIMINARIES

A. Motivation Scenario

In this study, we consider a FANETs scenario consisting of
multiple UAVs and a BS for wild disaster monitoring. Aiming
at detecting the region of interest (RoI) and transmitting
data to the BS, the UAVs can make free movement and
change their direction and altitude independently to achieve
a trade-off between sensing range and accuracy for RoI. Thus
their movement can be considered as 3D random waypoint
(RWP) model owing to the random RoI. With the BS as

Base Station

Destination

Source

Air-to-ground Link

Air-to-air Link

Traffic Packets
Hello Packets𝑆𝑆1

𝑆𝑆2

𝑆𝑆5
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𝑆𝑆6
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𝑆𝑆14

𝑆𝑆16

Landslide

𝑆𝑆7

Fig. 1: Typical FANETs scenario for wild disaster monitoring.

the destination, the UAV traffic source appears randomly as
the concerned event occurred, and the remaining UAVs are
considered as the relays to forward the traffic packets to BS,
whose location is known by all UAVs before they takeoff.

As shown in Fig. 1, the state of UAVs will be exchanged
via Hello messages. When the traffic packets are generated in
S2, the location and other state information of next hop are
utilized to forward packets, and finally construct a route path to
a destination (e.g. S5-S6-S9-S11-S13-BS). The routing errors
will be sent back to find a new route once the forward link is
broken. Besides, there may be a serious network fragmentation
problem, namely a single UAV or sub-net of UAV groups
(SUGs) that are disconnected from BS (e.g. S14 and S1-S3-
S7). The traffic packets generated in SUGs will be forwarded
to the edge of SUGs and stored. They will be forwarded to
BS immediately once the path is available, or be dropped once
the max cache time arrives. The aim of our research is to find
the optimal route with low latency, high delivery rate and low
overhead in the rapidly changing FANETs.

B. Network Model

Assume that all UAVs are aware of the location information
using GPS within tolerable error, which means that the i th
UAV Si has a vector of 3D position pi ∈ R3×1. Considering
that the UAV communication channels are mainly dominated
by the line of sight (LoS) links [38], we assume that the path
loss model for link between Si and Sj follows a proportion
of d−α

i,j , where α is the path loss exponent and di,j is the
Euclidean distance calculated by

di,j =

√∑3

k=1
| pi,k − pj,k|2. (1)

The Signal to Interference plus Noise Ratio (SINR) from Si

to Sj is denoted by

γi,j =
Pi,jhi,jd

−α
i,j

N0 + UI
, (2)

where Pi,j is the transmission power from Si to Sj , N0 is
the ambient noise, and the power gain of small-scale fading
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channel hi,j is exponentially distributed with a unit mean.
According to [39], the interference UI can be calculated by

UI =
3Ne(D

3−α
m − ϵ3−α)

2D3
m(3− α)

, (3)

where ϵ denotes the minimum distance between UAVs to avoid
a collision, Dm =

√
3L is the farthest distance between any

two UAVs, and Ne = 4
√
3πN denotes the equivalent number

of UAVs in a sphere with a radius of Dm. Thus, the successful
transmission probability P (γi,j ≥ γth) is given by

Prob (γi,j ≥ γth) = Prob

(
hi,j ⩾

γthdi,j
α (N0 + UI)

Pi,j

)
= exp

(
−γthdi,j

α (N0 + UI)

Pi,j

)
,

(4)

where γth is the SINR threshold. Prob (γi,j ≥ γth) ≥ ϕ must
be satisfied to ensure the link quality, where ϕ is the constraint
on SINR probability. Thus, the effective transmission range R
is defined as

R =

(
− Pi,j ln (ϕ)

γth(N0 + UI)

) 1
α

. (5)

During the transition process of l-bit packet from Si to Sj ,
the energy consumption is calculated as{

Er
i,j = l × Eelec

Et
i,j = l × Eelec + l × dαi,j × Efs

, (6)

where Er
i,j and Et

i,j denote the energy consumed by receiving
and sending l bit data, respectively. Eelec and Efs denote the
coefficients of transmitter (receiver) and power amplifier [40].

C. Q-learning Framework for FANETs Routing

Note that the purpose of routing is to determine an ap-
propriate path that can transfer packets from the source to
the destination, which consists of many single-hop decisions.
It involves the probability of selecting the best relay from
finite neighbors despite the lack of information about the entire
network, which is exactly the core idea of Q-learning, namely
finding the best action-selection strategy for finite Markov
decision process even without the prior knowledge about the
effect of actions on the environment.

Therefore, the routing process can be modeled by the
Markov decision process and solved by the Q-learning al-
gorithm as follows. By denoting the packet as an agent, the
entire network can be regarded as the environment while the
state’s space is composed of all UAVs for forwarding packets.
The selection of next hop is treated as an action, thus the
action space represents the available neighbors. Accordingly,
the state transition is equivalent to the packet forwarding
decision among UAVs.

In Q-learning, agents will get the reward R(st, at) when
taking action at from state st, and the Q-table is updated by

Qt+1(st, at)← (1− α)Qt(st, at)

+ α

[
R(st, at) + γ max

a′∈At+1

Qt(st+1, a
′)−Qt(st, at)

]
,

(7)

Routing Decision Agent

Location & Residual Energy
ID of neighbors
Max link duration
Velocity & Direction

Neighbor Table

Traffic Packet

Q-Table
𝑠𝑠2
𝑆𝑆5
𝑠𝑠6𝑆𝑆6

State

UAV node

Environment

Reward

𝑆𝑆2

𝑅𝑅𝑡𝑡

𝑠𝑠𝑡𝑡

𝑎𝑎𝑡𝑡

𝑅𝑅𝑡𝑡+1
𝑠𝑠𝑡𝑡+1

Q-Table
𝑎𝑎2 𝑎𝑎5 𝑎𝑎6

𝑠𝑠3 𝑄𝑄(𝑠𝑠3,𝑎𝑎2) 𝑄𝑄(𝑠𝑠3,𝑎𝑎5) 𝑄𝑄(𝑠𝑠3,𝑎𝑎6)

Neighbor Table

Action

Select relay

Q-Learning
Process

Adaptive Learning Rate
& Discount Factor

Fig. 2: Q-learning Framework for FANETs Routing.

where Qt(st, at) is the Q value when taking action at from
state st, Qt+1 is the Q value at time t+1, and α ∈ (0, 1) is the
learning rate while γ ∈ (0, 1) denotes the discount factor. Once
the action at is performed, the agent’s state will change from
st to st+1. Note that max

a′∈At+1

Qt(st+1, a
′) is the maximum Q

value of all possible action a′ ∈ At+1, where At+1 is the
action space in state st+1. Aiming at different QoS metrics,
the reward R(st, at) can be defined and calculated through the
information embedded in Hello messages.

All UAVs will permanently maintain the neighbor table
and Q-table by exchanging status information with neighbors
regularly. The former is used to update the action space and
calculate the reward, while the latter is used to determine the
best action. As shown in Fig. 2, once the traffic packet is
generated or received at the UAV node (e.g. UAV S5), an
agent will take action from the action space, that is, S5 selects
a relay from neighbors S2, S4 and S6. Then the reward can be
calculated based on QoS demands. Accordingly, the Q-table
will be updated constantly via (7) as the agent learns from
the environment. The best relay namely the optimal action
can be determined via iterative Q-table, which means that a
hop-by-hop traffic forwarding will be performed from S5 to
destination.

Although there are other advanced RL techniques that can
be exploited to solve the routing problem, e.g., Deep Q
Network (DQN) [41] and Deep Deterministic Policy Gradient
(DDPG) [42], the Q-learning based scheme is envisioned as
the best option in our motivation scenario. Note that the above
process is performed by each UAV in a distributed manner
since the global view of the network is impossible, which
means each node only stores and retrieves a certain row of
the Q-table. The slow convergence caused by an intractably
large Q-table is no longer an issue for TARRAQ. The action
space of each state will be very small even in a dense network
due to the limited number of neighbors.

IV. TOPOLOGY DYNAMICS ANALYSIS BASED ON
QUEUING THEORY

The dynamic topology adaptation of the routing protocol
is mainly reflected in the timely detection of network frag-
mentation and adjustment of routing decisions when topology
changes, which is related to the mobility model, node density
and transmission range. Thus, as the primary task of imple-
menting a topology-aware routing protocol for FANETs, it is
critical to study the characteristics of mobility behavior, such
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as the rate and the inter-arrival time distribution of neighbor’s
arrival, departure and change.

When the establishment, maintenance and disconnection
of links are regarded as queuing service process, there is
obviously a one-to-one correspondence between the behavior
of UAVs and customers. UAV plays a dual role during the
queuing service process: a server when analyzing its topology
changes and a customer when considering the impact of
its behavior on the topology changes of other UAVs. The
UAV’s mobility model determines how customers enter and
leave the service system. Besides, the UAV’s speed range,
communication range and network density determine the ser-
vice duration, the rate and inter-arrival time distribution of
customer’s change. It provides a precious opportunity for
applying the queuing model to analyze mobility behavior, and
thus the existing queuing theory theorems can be directly used
to obtain rigorous conclusions without complex derivation
once the queuing model is determined. In this section, based
on the queuing theory, the influence of mobility features on
NCR is revealed, and the distribution of NCIT is deduced,
which provides a theoretical basis for designing the resilient
perception strategy and Q-learning routing protocol.

Remark 1: To clarify the relationship between the CQS and
the topology changes event, their connections are summarized
in Table II, which will be used alternately below unless
otherwise specified.

A. Queuing Model

The communication links between UAVs will be established
or disconnected frequently due to the topology changes. As
shown in Fig. 3(a), taking node Sc as an example, the
process that other nodes entering its communication range
Ωc, maintaining the link with Sc and leaving Ωc, is regarded
as a queuing service process. All nodes are divided into two
categories, namely the nodes inside and outside Ωc, which are
denoted as collections M1 and M2, respectively. Since UAV
moves based on the 3D RWP mobility model, the nodes in M1

will join M2 immediately once their links established with Sc

are broken, namely, they will be regarded as the customer
source once the service is over. Thus, the above process is
essentially a cyclic queuing system (CQS).

1) Queuing Rules: The nodes can establish links with Sc

immediately once they enter Ωc, which means that customers
can be served instantly without waiting, hence the number of
servers and system capacity can be regarded as infinite.

2) System Service Duration: Assuming that the CQS is
nonempty, namely there is at least one UAV within M1,
the service duration of CQS is equivalent to LD. Specifi-
cally, let’s consider the case that there are two nodes Sc

and So in 3-D space, where So is an ordinary node that
will be, being or has been served by the central node Sc.
The velocity of Sc and So are defined as vc = vck and
vo = vosinβvocosαvoi+vosinβvosinαvoj+vocosβvok, and
their relative velocity v and its magnitude v can be given by

v = vo − vc = vosinβvocosαvoi+ vosinβvosinαvoj

+ (vocosβvo − vc)k,
(8)

(a)

𝒗𝒗𝒊𝒊
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𝑆𝑆𝑖𝑖 𝑋𝑋

𝑌𝑌

𝑍𝑍

(b)

𝜓𝜓𝑎𝑎

𝜃𝜃𝑎𝑎

𝑎𝑎𝑖𝑖

𝑋𝑋

𝑌𝑌

𝑍𝑍

𝑂𝑂

(c)

Fig. 3: (a) The communication range Ωc of Sc. Three nodes
enter Ωc from a1, a2 and a3, and leaving it from b1, b2 and b3
with relative velocity v1, v2 and v3. (b) The moving direction
of UAV Si. (c) The azimuth and elevation of the entrance
location ai.

v = |v| =
√
v2o + v2c − 2vcvocosβvo . (9)

As shown in Fig. 3(b), αvk is regarded as the angle between
the X-axis and the horizontal component of vk, while βvk is
regarded as the angle between vk and the Z-axis. The analysis
process will be simplified significantly based on the relative
motion of Sc and So, that is, Sc is regarded as a fixed node
when So enters Ωc with relative velocity v, whose direction
can be calculated as αv = αvo and

βv = arccos
vocosβvo − vc√

v2o + v2c − 2vcvocosβvo

. (10)

Assuming that So enters Ωc from a3 and leaves Ωc from b3
without changing the velocity, as shown in Fig. 3(a), we have
oa3 = R(cos θa3

sinψa3
· i+sin θa3

sinψa3
· j+cosψa3

·k),
a3b = |a3b|(cosαv sinβv · i+ sinαv sinβv · j + cosβv · k),
where θa3 and ψa3 are the angles shown in Fig. 3(c).
Since |ob| = R = |oa3 + a3b|, we have dlink =
|a3b| = 2R |sinψa3

sinβv cos(θa3
− αv) + cosψa3

cosβv|.
The whole LD can be calculated by

Twl =
2R

v
|sinψa3 sinβv cos(θa3 − αv) + cosψa3 cosβv| .

(11)
Thus, the general distributed LD [43], namely the service
duration, is affected by relative velocity and the entrance of
Ωc.

3) Distribution of Customers: Assuming that the position
of the UAVs follow a 3-D Poisson Point Process (PPP) with
density ρ, that is, the probability that there are n nodes in a
3-D space S with a volume of V is defined as

Prob{n nodes in S} = (ρV )n e−ρV

n!
, (12)

where ρV equals to the expected number of nodes in S, and ρ
denotes the average network density. Assuming that both αvk

and βvk are uniformly distributed in [−π, π], while vk has a
similar distribution as them in [vl, vu]. Besides, the position,
speed and direction of nodes are independent.

B. Arrival of Customers
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TABLE II: The Connections between CQS and Topology
Changes Event.

Description of the CQS Topology Changes Event

The servers and customers The UAV Sc and its neighbors
The service range The communication range Ωc of Sc

The start / end of the service The time when nodes enter / leave Ωc

The service duration The LD between Sc and neighbors
The customers in service M1: the nodes inside Ωc

The customers’ source M2: the nodes outside Ωc

The arrival, departure and
change of customers

The establishment, disconnection and
change of neighbors

(a) (b)

Fig. 4: The region where UAVs will (a) enter and (b) leave
Ωc from the hemispherical surface at velocity v within the
upcoming t seconds.

1) Customers’ Arrival Rate: Fig. 4(a) presents an intuitive
illustration that a node can only enter Ωc from a certain point
on the hemispherical surface once its velocity is determined.
The shaded region SRa shows the position of nodes that are
moving at a relative velocity v and are about to enter Ωc,
namely will be served by Sc, within the upcoming t seconds.
Considering all possibilities of the relative velocity, the ex-
pected number of customers arriving within the upcoming t
seconds is given by

ηA =

∫ ∞

0

∫ π

−π

∫ π

−π

ρV1 · f(v, αv, βv)dβvdαvdv, (13)

where V1 = vtπR2, and f(v, αv, βv) is derived in Appendix
A. Thus, the expected number of customers arriving the CQS
per second, namely the expected new customers’ arrival rate
η̇A is given by

η̇A =
R2ρ

vu − vl

[
v2uE

(
vc
vu

)
− 2v2l 2E

(
vc
vl

)
+ v2l E

(
β0,

vc
vl

)
+
v2c
4
M+

0,vc
(βv, vu, vc)−

v2c
4
M−

β0,vc
(βv, vl, vl)

]
,

(14)
where E (·) and E (·, ·) are the complete and incomplete
elliptic integral of the second kind [44] [45], respectively. And
M±

a,b(x, y, z) is defined as

M±
a,b(x, y, z) =

∫ π

a

ω (x) ln

∣∣∣∣∣y +
√
y2 − b2sin2x

z ±
√
z2 − b2sin2x

∣∣∣∣∣ dx,
(15)

where ω (x) = 1 + 3cos (x) and β0 = π − sin−1 (vl/vc).
The conclusion that η̇A is proportional to ρ and R2 can be

drawn based on (14), which is consistent with intuition, that
is, the number of nodes entering Ωc per second will inevitably
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(b) Range of node’s speed: 5-40 m/s.

Fig. 5: New neighbor arrival rate of Sc when moving with
different speeds in various cases with 40 nodes, where the
length of the region ranges from 400 m to 600 m, vl = 5 m/s
while R takes a value every 25 m from 100 m to 200 m.

increase with ρ, and the nodes that were originally just passing
by Sc will be more likely to enter Ωc due to the increase of
R, namely η̇A will be increased.

In Fig. 5, we plot η̇A in various cases based on numerical
integration results. The raise of vc will cause an increase in v
and thus more neighbors will arrive. It is worth noting that η̇A
and vc are not simply proportional, namely the increase of vc
will promote the growth rate of η̇A. In addition, the expansion
of the speed range will also increase η̇A, which can be verified
by the difference of Fig. 5(a) and Fig. 5(b).

2) Customers’ Arrival Time Distribution: Given the relative
velocity, the probability that the neighbors’ inter-arrival time
(NIT) is not greater than t is equivalent to the probability that
there is at least one node moving in SRa with relative velocity
v, thus we have

Prob {NIT ≤ t|v, αv, βv}
= Prob {At least one node in SRa|v, αv, βv}
= 1− e−ρV1 .

(16)

Therefore, the cumulative distribution function (CDF) of NIT
is given by

FA (t) = Prob {NIT ≤ t}

=

∫ ∞

0

∫ π

−π

∫ π

−π

(
1− e−ρV1

)
f (v, αv, βv) dβvdαvdv.

(17)

Substituting for f (v, αv, βv) from (51), we have

FA (t) =

1− 1

π (vu − vl)

∫ π

0

∫ ∞

0

v · e−ρV1g (v, αv, βv)dvdβv,
(18)

where g (v, αv, βv) is defined by (52). By differentiating (18)
with respect to time t, the probability density function (PDF)
of NIT is given by

fA (t) =
ρR2

vu − vl

∫ π

0

∫ ∞

0

v2e−ρV1g (v, αv, βv)dvdβv. (19)

It is worth noting that (19) can be accurately approximated by
the exponential distribution with the parameter η̇A, namely

fA (t) ≈ η̇Ae−η̇At. (20)
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C. Departure of Customers

Assuming that the customers in CQS have changed during
the period of tp, and the number of customers entering, leaving
and staying in the CQS is denoted as ηA(tp), ηD(tp) and
N(tp), respectively. Hence, we have

ηA (tp)− ηD (tp) = N (tp) . (21)

By dividing both sides by tp and taking a limit, we have

lim
tp→∞

(
ηA (tp)

tp
− ηD (tp)

tp

)
= lim

tp→∞

N (tp)

tp
, (22)

where ηA(tp)/tp and ηD(tp)/tp are respectively the average
number of neighbors arriving and leaving during tp, and they
will become the expected arrival and departure rate, namely
η̇A and η̇D, when tp →∞. Since the number of customers of
Sc is limited,1 thus N (tp) /tp → 0 when tp →∞, and finally
we have η̇D = η̇A.

As mentioned earlier, the service duration follows a general
distribution and the number of servers and system capacity
is infinite, and we can infer from (20) that the inter-arrival
time of customers is approximately exponentially distributed.
Thus, the above CQS belongs to the M/G/∞/∞ type. Based
on Theorem 4.14 in [46], the departure of customers follows
a Poisson process. We have FD (t) = FA (t) and fD (t) =
fA (t) due to η̇D = η̇A and flow conservation, where fD (t)
and FD (t) are the PDF and CDF of neighbor departure inter-
arrival time, respectively.

D. Change of Customers

1) Customers’ Change Rate: The arrival or departure of
neighbors will lead to topology changes. Thus, the NCR is
defined as the sum of η̇A and η̇D, namely we have

η̇C = η̇A + η̇D = 2η̇A, (23)

where η̇A is calculated in (14). It provides a theoretical basis
for calculating dynamic η̇E for equations (32)∼(34) and finally
contributes to the resilient perception strategy.

2) Customers’ Change Inter-arrival Time Distribution: As
shown in Fig. 4(a) (or (b)), given the relative velocity v, the
nodes located in SRa (or SRb) will arrive (or leave) Ωc within
the upcoming t seconds, hence the nodes located in the union
of the two shaded regions, SRu = SRa ∪ SRb, will cause
the customer changes within the upcoming t seconds. The
probability that the NCIT is not greater than t is equivalent to
the probability that there is at least one node in SRu. Thus,
we have

Prob {NCIT ≤ t|v, αv, βv} = 1− e−ρVu , (24)

and the CDF of NCIT is given by

FC (t) = P {NCIT ≤ t}

=

∫ π

−π

∫ π

−π

∫ ∞

0

(
1− e−ρVu

)
f (v, αv, βv) dβvdαvdv.

(25)

1This is the case for any practical FANETs since the number of neighbors
of a UAV is bounded.
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Fig. 6: The fitting error of equation (28) in various cases with
40 UAVs. The speed range is limited to 5-40m/s.

The volume of SRu, namely Vu, varies with different v, t
and R, which are derived in Appendix B. Substituting for
f (v, αv, βv) from (51), FC (t) can be further solved by

FC (t) =

1− 1

π (vu − vl)

∫ π

0

[∫ 2R
t

0

e−ρV3(v,t)vg (v, vc, βv)dv

+

∫ ∞

2R
t

e−ρV2(v,t)vg (v, vc, βv)dv

]
dβv.

(26)

By differentiating (26) with respect to time t, the PDF of NCIT
is given by

fC (t) =
R2ρ

vu − vl

∫ π

0

[∫ ∞

2R
t

e−ρV2(v,t)v2g (v, vc, βv)dv

+

∫ 2R
t

0

(
2− v2t2

4R2

)
e−ρV3(v,t)v2g (v, vc, βv)dv

]
dβv,

(27)

where V2 (v, t) and V3 (v, t) are derived in Appendix B. Note
that (27) can be accurately approximated by

fC (t) ≈ η̇Ce−η̇Ct, (28)

namely the exponential distribution with the parameter η̇C .
By fitting the PDF of NCIT with (28), the boxplot graphs
of fitting errors in various cases are revealed in Fig. 6. The
error decreases with the increase of R and ρ. Besides, the
maximum error remains below 0.0088 and even lower with
higher speed, larger communication range and smaller flight
area, which means that the fitting of fC (t) ≈ η̇Ce

−η̇Ct and
FC (t) ≈ 1−e−η̇Ct will be more accurate with the increase of
η̇C . Equation (28) provides a theoretical basis for calculating
FEIT (t) and the resilient SI (see equation (31) for detail).
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V. TOPOLOGY-AWARE RESILIENT ROUTING BASED ON
ADAPTIVE Q-LEARNING

In this section, we present the TARRAQ protocol, which
includes the following phases: neighbor discovery, neighbor
maintenance and relay selection. During the first two phases,
nodes will find and update the available neighbors to obtain an
accurate action space for Q-learning-based routing decisions,
and the fragmentation of FANETs will be detected. When
it comes to the relay selection phase, the information of
neighbors’ states determines the next hop, and the problem
of route interruption caused by fragmentation will be solved.

A. Neighbor Discovery Phase

1) DEWMA Scheme for NCR
Generally, the conventional methods tend to obtain the NCR

by monitoring the changes in the neighbor list. However, the
accuracy is greatly affected by the SI. And an inaccurate NCR
will also result in the inability to set the best SI since the
latter is usually calculated by the former. To avoid the above
problems, we calculate the NCR by capturing the factors that
affect topology changes, namely R, ρ, vc, vu and vl discussed
in (23) and (14). Each node calculates the dynamic NCR
according to (23) via the following DEWMA Scheme.

Given that the speed of the neighbor node, network density
and other characteristics may be accidental and time-varying,
namely, ρ, vl and vu in (23) may be much higher or lower
than the average value. However, their instantaneous outliers
cannot represent the real situation within a period of time.
Thus, a DEWMA scheme is introduced, and the smoothed
values are estimated by increasing or decreasing the old and
new variables sequentially to adapt to accidental changes.

Specifically, the neighbor list is checked and compared
periodically, and the current variables are smoothed by

vartest = τvar × vart−1
est + (1− τvar)× vartsam, (29)

where vartest and vartsam are the values of ρ, vl and vu
estimated previously and collected currently, respectively. The
weight of short-term and long-term data is controlled by τvar,
which is hoped to have the following functions: when the
variable fluctuates significantly, the latest ones are expected
to be concerned particularly to ensure a dynamic reaction and
decision, hence the current value needs to be smoothed with
greater weight, and τvar is defined by

τvar = min
(
vart−1

est /var
t
sam, var

t
sam/var

t−1
est

)
. (30)

Taking the network density ρ as an example, τρ is set to
ρt−1
est /ρ

t
sam (or ρtsam/ρ

t−1
est ) if ρtsam is greater (or less) than

ρt−1
est , thus the weight of ρtsam in (29) increases with the

increase of the difference between ρtsam and ρt−1
est . Similar

analysis can also be applied to vl and vu, which won’t be
reiterated here. In addition, given that the R and vc are
individual rather than overall parameters, which means, the
randomness of the network will not bring fluctuation to them,
and their real-time value represents the real situation, hence
it should be obtained directly without taking the impact of
historical data into account.

2) Resilient Perception Strategy based on Sensing Delay

0 2 1

0 2 1

: Neighbor Change : Traffic Arrival

Case 1

Case 2

Fig. 7: Sensing delay of network events in various cases.

In addition to the changes in topology, the characteristics
of network events also vary with scenarios, which can be
divided into the following two categories. Case 1: The NCIT
is greater than the traffic inter-arrival time. There is no need
to perceive the network before each traffic arrives, since the
neighbor nodes may not change in the short term. Case 2: The
NCIT is smaller than the traffic inter-arrival time. There is no
need to perceive the network whenever link changes, since the
repeated perception is wasted owing to the infrequent traffic.

Therefore, defining SI according to the event with the lowest
arrival rate η̇E = min{NCR,TAR}, namely NCR in case 1
and TAR in case 2, is the best solution for minimizing the
overhead without sacrificing accuracy.

Note that different performance requirements should be
satisfied since there is always a compromise between overhead
and other performance indicators. Thus, the concept of sensing
delay is proposed to characterize and control the trade-off
relationship.

We define sensing delay tSD as the time difference between
perception behavior and the last event, and it is ubiquitous due
to stochastic network events. As shown in Fig. 7, periodic
perception is performed after every TS . In case 1, the sensing
delay reflects the degree of compromise between perception
overhead and accuracy, that is, the link change can be captured
swiftly if the sensing delay is small enough, hence the accuracy
increases with the overhead increasing, and vice versa. Thus,
it is expected to find the maximum TS while minimizing the
link errors caused by large sensing delay. In case 2, the sensing
delay reflects the time difference between the arrival of the
last traffic and the latest perception. Within a certain range,
the larger it is, the closer the perception is to the arrival
of the next traffic, hence the overhead is smaller and the
neighbor information is more accurate, and vice versa. Thus,
it is expected to find the maximum TS while avoiding link
information expiration caused by a large sensing delay. The
resilient perception can be achieved by presetting the expected
sensing delay. Therefore, a resilient perception strategy based
on sensing delay is proposed as follows.

Assuming that the network is initialized at t = 0 and a
network event occurs at time tEO, which lies between the
n−1 th and the n th perception, n = ⌈tEO/TS⌉, the sensing
delay is given by tSD = nTS− tEO, tSD ∈ [0, TS ], where TS
symbolizes the SI of perception. Thus the CDF of tSD can be
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calculated by

FSD (t) = Prob (tSD ≤ t)
= Prob (tEO ∈ {[TS − t, TS ] ∪ [2TS − t, 2TS ] ∪ · · · })

=

∞∑
k=1

(FEIT (kTS)− FEIT (kTS − t)) .

(31)
Since the traffic arrival generally follows the Poisson pro-

cess [47] and the NCIT can be accurately approximated by the
exponential distribution according to (28), the CDF of events’
inter-arrival time (EIT) can be given by FEIT (t) = 1−e−η̇Et,
and (31) can be further simplified as

FSD (t) =

∞∑
k=1

(
e−η̇E(kTS−t) − e−η̇EkTS

)
=
e−η̇ETS

(
eη̇Et − 1

)
1− e−η̇ETS

,

(32)

where η̇E is the incidence rate of event, which represents the
NCR and TAR in cases 1 and 2, respectively. The PDF of EIT
can be calculated by differentiating (32) with respect to t,

fSD (t) =
e−η̇ETS

1− e−η̇ETS
η̇Ee

η̇Et , 0 ≤ t ≤ TS . (33)

Thus, the expected sensing delay can be calculated by

ESD (t) =

∫ TS

0

tfSD (t)dt =
e−η̇ETS

1− e−η̇ETS
η̇E

∫ TS

0

teη̇Etdt

=
TS

1− e−η̇ETS
− 1

η̇E
≤ δTS ,

(34)
where δ ∈ [0, 1] since tSD ∈ [0, TS ].

It provides a method for capturing the topology changes
on demand, that is, TS can be dynamically determined based
on η̇H and the performance requirements, which can be met
by giving different δ. If the accuracy of the neighbor is more
valued, a smaller sensing delay namely a smaller δ should be
set to achieve a more accurate perception of topology changes.
If the overhead is more valued, a larger TS can be obtained
by setting a larger δ to reduce the network overhead.

B. Neighbor Maintenance Phase

As one of the most crucial variables during the neighbor
maintenance phase, the expiration timer reflects the residual
LD of available links, which can be calculated from the
position and velocity embedded in the Hello messages. Note
that for high-mobility communication scenarios, it is not
sufficient to only use the information in Hello messages.
In fact, the node should have the capability to predict the
status of neighbors to meet the critical timeliness requirement.
Therefore, our TARRAQ calculates the adaptive expiration
timer by predicting the residual LD via KF.

1) Mobility Prediction: Aiming at predicting the mobility
of neighbors, KF model is introduced during the neighbor
maintenance phase, which is mainly composed of estimation
and correction. According to the law of RWP mobility model,
the discrete state evolution model and measurement model can
be expressed by

{
x[t] = Fx[t− 1] + u[t− 1]

y[t] = Hx[t− 1] + z[t− 1]
, (35)

where x[t] = [pT [t],vT [t]]T denotes the predicted mobility
state of node Sj , p[t] = [pj,1[t], pj,2[t], pj,3[t]]

T and v[t] =
[vj,1[t], vj,2[t], vj,3[t]]

T . x[t− 1] denotes the state information
embedded in the Hello messages or predicted at last discrete
time. y[t] denotes the measurement vector obtained by GPS.
F ∈ R6×6 and H ∈ R3×6 are the matrices of state transition
and observation. u and z are zero-mean Gaussian distributed
noise with covariance matrices as Q and R.

Based on the RWP mobility model, the state transition
and measurement matrix should be initialized as F =
[I3×3,SI · I3×3; 03×3, I3×3] and H = [I3×3, 03×3], respec-
tively. According to [24], we determine the initial values for
covariance matrix by M[0] = 104I6×6, Q = 10−3I6×6 and
R = I3×3, where In×n is unit matrix. The initial state x[0]
denotes the first measurement value since no prior information
can be obtained. Following the standard procedure of KF, the
state prediction and tracking are summarized as follows.

Step 1. State Prediction.

x̂[t|t− 1] = Fx̂[t− 1]. (36)

Step 2. Covariance Matrix Prediction.

M[t|t− 1] = FM[t− 1]FT + Q (37)

Step 3. Kalman Gain Calculation.

K[t] = M[t|t− 1]HT
(
R + HM[t|t− 1]HT

)
(38)

Step 4. State Tracking.

x̂[t] = x̂[t|t− 1] + K[t] (y[t]−Hx̂[t|t− 1]) (39)

Step 5. Covariance Matrix Update.

M[t] = (I−K[t]H)M[t|t− 1] (40)

2) Adaptive Expiration Timer: After obtaining the predicted
positions of available neighbors, the residual LD can be
estimated by

T̂ rl
i,j = Twl

i,j − T̂ el
i,j , (41)

where Twl
i,j is defined by (11),

T̂ el
i,j =

1

vi,j

√∑3

k=1

∣∣ paj ,k − p̂j,k
∣∣2 (42)

represents the LD elapsed. Here vi,j denotes the relative
velocity between Si and Sj , and p̂j,k represents the 3D
position of UAV Sj predicted by (36)∼(40). As shown in Fig.
3(a), paj

∈ R3×1 denotes the position of aj where Sj enters
Ωi, which is obtained by their position and relative velocity.

Finally, for UAV Si, we regard Sj’s ET as its residual
LD, namely T̂ rl

i,j . Once Si receives messages from Sj , ET
will be set immediately if Sj is not within the neighbor list,
and it will be refreshed with the periodical KF procedure. If
new messages are not received after ET expires, then Sj is
considered to have left Ωi and should be deleted from the
neighbor list of Si.
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C. Relay Selection Phase

In our TARRAQ, an adaptive Q-learning approach is pro-
posed to make distributed and autonomous decisions for relay
selection, where metrics of link, neighbor and distance are
considered in the reward function. Besides, the Q-learning pa-
rameters are adjusted adaptively in the dynamic environment.

1) Reward Function: In order to obtain a stable route with
low delay, the metrics of link, neighbor and distance are jointly
considered as follows.

The link metric: The link quality should be taken into
consideration since the route will be more reliable if links
are stable. Thus we consider the link metric by F

[1]
i,j = T̂ rl

i,j ,
where the predicted residual LD T̂ rl

i,j is defined in (41).
The neighbor metric: The next hop with more useful neigh-

bors close to the destination will be preferred since there will
be more choices and a lower possibility of packet loss. Thus
the neighbor metric is given by F

[2]
i,j = |Nu

j |/NCRj , where
Nu

j = Nj − (Ni ∩Nj) represents the useful neighbors of Sj ,
and Ni denotes the neighbor set of Si. If Sj has a higher
degree and smaller NCR, and owns more neighbors that are
not in the neighbor list of Si, it yields a larger F [2]

i,j .
The distance metric: Note that the distant neighbors usually

have shorter link lifetime and fewer hops to destination, while
the adjacent ones have more stable links with worse E2ED,
the distance metric is defined by

F
[3]
i,j =

zi,j ·∆di,j
σ2

exp

(
−
z2i,j
2σ2

)
, (43)

where zi,j = (R/di,j)
2 − 1, zi,j ∈ (0,∞), di,j and R can be

calculated by (1) and (5), respectively. ∆di,j = di,D − dj,D
is the difference between the distance of Si and Sj to the
destination. Generally, if Sj has a greater ∆di,j and adjacent
to our preset distance, it yields a larger F [3]

i,j . Note that a
larger (smaller) σ means more preference for close (distant)
neighbors, we set σ = 1 by default.

Based on the above metric, the reward function is given by

R(st, at) =


Rmax , st+1 is the destination

Rmin , st+1 is the local minimum∑3

k=1

φkF
[k]
i,j∑|Ni|

c=1 F
[k]
i,c

, otherwise

, (44)

where Rmax is the maximum reward once next hop is the
destination. Rmin is the minimum value when there is no
neighbor closer to the destination, which can avoid the routing
holes caused by network fragmentation. The normal reward
will be calculated by the last item when taking action from
st to st+1, namely transferring packets from node Si to Sj .
φk ∈ (0, 1) is the weight for various F

[k]
i,j . There will be

more reward if a node has larger factors of link, neighbor
and distance. In this way, nodes that may become network
fragments can be excluded from the best relay.

2) Adaptive Exploitation and Exploration: In highly dy-
namic FANETs, the action space will be invalidated once the
residual duration of a link gradually drops to zero. In order
to adapt to the dynamic of FANETs, the residual LD, namely

the system service time, is considered as the key metric for
balanced and adaptive exploitation and exploration.

First, residual LD-based softmax is designed to achieve a
combination of exploitation and exploration. The probability
that the agent selects action at in state st is given by

π(st, at) =
eT̂

rl
i,j/τ∑|Ni|

c=1 e
T̂ rl
i,c/τ

, (45)

where τ is a positive parameter of temperature, and a higher
value means that the agent selects more random actions while a
lower one means less exploration. And τ is updated by τ(t) =
τ(0)/ log2(1+ t) during iteration. Thus π(st, at) for different
actions is almost equal at the beginning with a larger τ , and
after it decreases with time step increases, there will be a larger
gap for different π(st, at). Based on (45), the agents prefer the
action with the largest LD whereas other actions are ranked
instead of randomly chosen.

In addition, the residual LD is also used to control the
update process of α and γ in (7). Note that Q-values need
to be updated faster when the action space is more unstable,
thus a larger learning rate is preferred if link is about to
break. Thus an adaptive αi,j associated with the residual LD
from Si to Sj is designed by αi,j = exp(−T̂ rl

i,j). This makes
Qi,j substantially updated if Sj will soon disappear from Ni.
Similarly, if the residual LD from Sj to Sk is shorter and Sk is
the best relay for Sj , a smaller discount factor γi,j is required
since Sj is probably not the best choice for Si. Thus we have
γi,j = 1− exp(−T̂ rl

j,k).

D. TARRAQ Protocol

We are now ready to present the complete TARRAQ proto-
col. Algorithm 1 provides the pseudo-code of TARRAQ run
by each UAV (taking UAV Si for example), which is mainly
composed of the following two parts.

1) Neighbor Discovery and Maintenance: First, UAVs cal-
culate the NCR dynamically by performing DEWMA. Then
they preset the expected sensing delay for various performance
demands and calculate the resilient SI based on the smallest
of NCR and TAR. Once they receive Hello messages from
other nodes, the transmitters will be counted in the neighbor
list if they are newly arrived, and the expected LD will be
calculated instantly. If no message from any UAV is received,
there will be an increment for SI’s timer T SI

i , and it will not be
reset namely Hello message will not be broadcast until T SI

i >
SI. In addition, the KF procedure for mobility state will be
performed for all neighbors to estimate the residual LD T̂ rl

i,j ,
and the neighbor that has not exchanged valid information will
be deleted once T̂ rl

i,j drops to zero.
2) Next Hop Selection: The traffic packets will be transmit-

ted to the destination if it’s within one-hop range. Otherwise,
the distributed Q-learning process will be performed. The Q-
table is first initialized and then updated periodically when
a Hello message is received. The action is selected based
on (45), and then the adaptive learning rate and discount
function are adjusted. Multi metrics are considered in (44)
when calculating the award. Q-values are updated via (7) to
choose the best relay, and it receives the minimum reward
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Algorithm 1 TARRAQ

Input: pi, δ, vi, vl, vu, R, ρ, Kmax, ϵ, TAR and destination
Output: The best relay for UAV Si

1: Initial T SI
i , KF parameters, Q-table and neighbor table

2: for t = 1 : ∆t : tmax do
3: /***** Neighbor Discovery and Maintenance *****/
4: Obtain the real-time value of pi, vi and R
5: Calculate the NCR by (23) and (14)
6: Set η̇E as the minimum of NCR and TAR
7: Set ESD for different performance requirement
8: Calculate the resilient SI by (34)
9: if Hello message is received (e.g. from Sj) then

10: Calculate the actual T rl
i,j by (41)

11: Perform DEWMA for NCR
12: Update neighbor table and content of Hello
13: Reply Hello, reset T SI

i = 0
14: else if no Hello from any UAV is received then
15: if T SI

i ≤ SI then T SI
i = T SI

i +∆t
16: else
17: Send Hello message and reset T SI

i = 0
18: end if
19: for j = 1 : 1 : |Ni| do
20: Perform the KF procedure by (36) to (40)
21: Estimate T̂ rl

i,j by (41)
22: if T̂ rl

i,j ≤ 0 then remove Sj from Ni

23: end if
24: end for
25: end if
26: /************ Next Hop Selection ************/
27: if the destination is within one-hop then
28: The maximum reward Rmax is obtained
29: Transmit the traffic to the destination
30: else
31: Update the action space via available neighbors
32: while k ≤ Kmax do
33: Select action by (45), and adjust α and γ
34: Measure the reward by (44)
35: Update the Q-value by (7)
36: if max

j∈Ni

|Qk(Si, Sj)−Qk−1(Si, Sj)| ≤ ϵ then
37: Break
38: end if
39: end while
40: m = argmax

j∈Ni

Qt(si, aj)

41: Select UAV Sm as the best relay
42: end if
43: end for

Rmin when reaching the local minimum. The iteration will
be stopped when at least one of the following conditions is
satisfied: 1) Maximum number Kmax of iterations is reached;
2) max

j∈Ni

|Qk(Si, Sj)−Qk−1(Si, Sj)| ≤ ϵ.

Remark 2: It should be emphasized that the conclusions
of section IV play a crucial role in TARRAQ. That is, as the
premise of the dynamic calculation of NCR, (23) together with
(28) provide a theoretical basis for resilient SI in (34), and the

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

C
D

F
  

o
f 

 N
IT

Time (s)

(a) CDF of NIT

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Time (s)

C
D

F
  

o
f 

 N
C

IT

(b) CDF of NCIT

: 30 m/s 

: 20 m/s

Analytical,

Simulated,

: 400 m

: 400 m

: 200 m 

: 150 m 

Analytical,

Simulated,

: 600 m

: 600 m

Fig. 8: Comparison between theoretical analysis and simula-
tion statistics: the CDF of NIT and NCIT in various cases.

system service duration derived in (11) is used to set a timer
for link validity. Besides, they are also valuable in the reward
function and action selection strategy, and the details have been
offered in the last subsection thus won’t be reiterated here.

VI. SIMULATION AND DISCUSSION

A. Simulation for Dynamic Topology Feature

The distribution of NIT and NCIT is analyzed and approx-
imated by exponential distribution in section IV. Here, Monte
Carlo simulations are performed to verify their accuracy.

The closed-form solutions for the distribution of NIT and
NCIT, namely equations (18) and (26), are analyzed by nu-
merical integration, which is shown as the dotted lines in Fig.
8. The simulation experiment was performed in a cube region
with a side length of L, which is 400 m or 600 m for a dense or
sparse scenario, respectively. Besides, 40 UAVs are randomly
deployed and moving with the RWP mobility model, and their
speed range is limited to 5-40 m/s while the communication
range is set as 150 m or 200 m. The arrival and change of
neighbors during the 3600 s experiment are recorded for each
node, and the average results from 500 random simulations
are shown as the scatter points in Fig. 8.

The numerical integration results from theoretical analysis
in section IV perfectly match the Monte Carlo simulations,
and their slight difference is caused by the boundary effects.
Specifically, when a UAV moves close to the boundary of
the 3-D region, it will bounce back into the region soon.
In addition, the probability that other nodes enter or leave
their communication range from the direction of boundary will
be very small or even non-existent, which makes the actual
η̇A and η̇C lower than expected. Note that this error will be
reduced as the network scale increases since it reduces the
occurrence of the above case.

In addition, Fig. 8 also demonstrates that the CDF of
NIT and NCIT increase sharply with the increase of time
and present a long-tail effect. Since η̇A and η̇C , which are
related to the slope of CDF, are depending on R, ρ, vc,
vu and vl. Thus the probability that neighbors will arrive or
change in a short time becomes higher with faster mobility,
a larger communication range and a smaller network scale.
Interestingly, the CDF of NCIT is similar to the two times
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TABLE III: Simulation Parameters.

Parameters Value

Region Size 600 m× 600 m× 150 m

Number of UAVs 40
Mobility Model 3-D RWP
Minimum Speed 5 m/s
Maximum Speed 10 - 60 m/s

Transmission Power 1.0 W

Coefficient of Transmitter or Receiver 50 nJ/bit

Coefficient of Power Amplifier 10 pJ/bit/m2

Path Loss Exponent 2
Traffic Type CBR
CBR Rate 1 Mbps

PHY/MAC Protocol 802.11b
Propagation Model Free-space

Antenna Type Omni-directional

magnified and normalized version of NIT, due to that the
distribution of NCIT can be accurately approximated by the
exponential distribution with the parameter η̇C and η̇A, and
there is a relationship of η̇C = 2η̇A.

B. Simulation for Routing Protocol

In order to test the performance of TARRAQ, we con-
structed a scenario by MATLAB R2021a. According to the
parameters in [20], with the initial position generated ran-
domly, 40 UAVs are moving in a region of 600 m×600
m×150 m, and the lowest speed is 5 m/s while the highest
speed varies within 10∼60 m/s. For the MAC layer, we
utilize the IEEE 802.11b protocol, which is suitable for long-
range communication with high data rate. The source node is
randomly selected during 300 s simulation. The first 10 s are
the initialization stage, and then 1 Mbps Rate of CBR traffics
that follows the Poisson process with an average interval of 1 s
are generated [20] [28] [37]. In our simulation, the maximum
cache time is 5 s. The free-space path loss model is used
to characterize propagation in our simulation, and each node
is configured with an omni-directional antenna and has the
same transmission power of 1 W [34] [37]. According to [40],
the path loss exponent is set as α = 2, and we also have
Eelec = 50 nJ/bit and Efs = 10 pJ/bit/m2. The detailed
parameters are summarized in Table III.

We considered three state-of-art protocols for the perfor-
mance comparison, namely GPSR-EE-Hello [20], MPVR [34]
and QTAR [37], where GPSR-EE-Hello presents the improved
GPSR protocol based on Mahmud’s scheme. Our TARRAQ
is further divided into two cases: δ = 0.55 and δ = 0.65
for the sensing delay-sensitive and overhead-sensitive scenes,
respectively. We performed 50 simulations and the results with
90% confidence interval are presented as follows.

1) Comparison Under Different SINR Thresholds
As shown in Fig. 9, there will be better overheads whereas

worse PDR, E2ED2 and energy consumption with the increase
of SINR threshold γth, owing to a lower successful probability
and smaller effective range of transmission.

2The cache time caused by network fragmentation is excluded in E2ED.

Fig. 9(a) presents that PDR becomes lower with a larger
γth, which is mainly caused by poor connectivity. The PDR
of GPSR-EE-Hello degrades because it performs forwarding
with link stability ignored. MPVR is slightly better since the
LD is considered additionally. QTAR has a better performance
than MPVR and GPSR-EE-Hello owing to the two-hop link
information used in the reward function. However, our TAR-
RAQ shows a significant advantage in PDR thanks to the KF
prediction for residual LD and the multi metrics considered in
the reward function, which enables the protocol to be aware
of broken links in advance.

Fig. 9(b) illustrates that E2ED increases with a larger
γth, due to the reduction of R and the number of available
neighbors, which probably causes detour. The worst E2ED
occur on GPSR-EE-Hello owing to the perimeter forwarding
mechanism used. MPVR preferentially selects the nodes close
to the virtual trunk for the next hop to ensure fewer hops,
thus its performance is better than that of GPSR-EE-Hello.
However, they are inferior to our TARRAQ. For one thing, the
topology change analysis based on queuing theory provides a
theoretical basis for SI, which enables TARRAQ to capture
neighbor change accurately and yields shorter routes. For
another, the metrics of neighbor and distance in the reward
function ensure fewer hops and reasonable distances to for-
warding. Whereas, it creates more E2ED than QTAR since the
latter considers the two-hop neighbors and the UAV’s velocity
to meet the packet delivery deadline. However, our TARRAQ
has a significant advantage in PDR, overhead and energy
consumption over QTAR since the residual LD is predicted
and the resilient perception is achieved. Therefore, the E2ED
increases to ensure the link quality, and thus a stable path with
more hops may be selected by TARRAQ.

Fig. 9(c) shows that the overhead is inversely proportional
to γth, because a larger γth means a smaller R, thus fewer
control packets will be exchanged. TARRAQ has an absolute
advantage over the other three protocols, since that the closed-
form solutions of LD, NCR and NCIT provide a rigorous
theory for the preset of SI, which can perceive the network
environment accurately with low overhead. GPSR-EE-Hello
is slightly inferior due to the empirical SI calculation method.
MPVR needs more overhead since the nodes are configured
with fixed SI. QTAR has the worst overhead even though
dynamic SI is preset, which is owing to a large number of
control packets during two-hop interaction.

As indicated in Fig. 9(d), as the SINR threshold increases,
there will be more energy consumption since the number of
hops and forwarding soared as the effective transmission range
shrinks. MPVR has the highest energy consumption due to a
large number of control packets. Although the GPSR-EE-Hello
has a significant advantage of overhead over MPVR, its energy
consumption is only slightly better since that there will be
more transmission under the perimeter forwarding mechanism.
Note that QTAR has fewer hops whereas worse overheads,
it has superiority than GPSR-EE-Hello in terms of energy
consumption. Our TARRAQ performs better than the other
protocols owing to the lowest overhead and the distance metric
in the reward function, which ensures fewer forwarding when
transmitting traffic packets.
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Fig. 9: Comparison of the routing performance under different SINR thresholds (speed: 5-20 m/s).
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Fig. 10: Comparison of the routing performance under different moving speeds (SINR threshold: -3 dB).

2) Comparison Under Different Moving Speeds
In addition to the SINR threshold mentioned above, the

UAV’s speed is another key affecting the routing performance.
As demonstrated in Fig. 10, the overhead, PDR, E2ED and
energy consumption deteriorate sharply as speed increases.

Fig. 10(a) illustrates the impact of moving speed on PDR,
that is, all protocols have worse PDR at higher mobility due to
the frequent link disconnection. The PDR of GPSR-EE-Hello
is the worst among the four protocols, while MPVR is slightly
better since it considers link stability. However, as the speed
increases, GPSR-EE-Hello is improved owing to the accurate
information of neighbors obtained by a smaller SI. Thanks to
the consideration of two-hop neighbor information in Hello
messages, QTAR has a higher PDR than MPVR and GPSR-
EE-Hello at both low and high speeds. Given that increasing
speed makes a worse link condition, the KF prediction of
residual LD enables a better link quality with fewer control
packets. Thus TARRAQ presents the best PDR performance.

It can be seen from Fig. 10(b) that there will be a worse
E2ED as the moving speed increases owing to the unstable
links, which cause more routing errors. Compared to GPSR-
EE-Hello and MPVR, Our TARRAQ shows a notable perfor-
mance since it selects the path with a lower E2ED in two
ways: 1) The neighbor with lower NCR and more useful
options will be preferred as a relay to avoid local minimum
and high delay; 2) The adaptive adjustment of exploitation
and exploration ensures adaptation of routing decisions in high
mobility environment. Unfortunately, TARRAQ creates more
E2ED than QTAR since the former prefers link stability and
energy efficiency while the latter pays more attention to E2ED,

which can be seen from the required and offered velocity
it defined. Nevertheless, our TARRAQ performs better than
QTAR in terms of PDR, overhead and energy efficiency owing
to the cost of E2ED.

Fig. 10(c) indicates that as the speed increases, there will
be a larger NCR and more link errors, and thus the number of
control packets namely overhead increases. Two-hop neighbor
information increases the packet header size, and thus QTAR
has the highest overhead. MPVR needs to transmit about two
times more control packets than GPSR-EE-Hello since the
latter adjusts SI according to node’s mobility. Obviously, the
resilient perception strategy in TARRAQ provides excellent
performance in terms of overhead. That is, the node can
calculate NCR accurately and preset appropriate SI based
on network condition and performance demand. In addition,
the KF procedure can accurately predict the residual LD and
reduce the link error, thus a lower overhead appears.

Fig. 10(d) proves that the energy consumption is presented
as a function of UAV speeds. When UAVs are moving at high
speed, more Hello messages will be exchanged to discover the
neighbor’s change and more transmission may be performed
to ensure the successful routing, namely more energy will be
consumed. In addition to the energy optimization obtained
by low overhead, TARRAQ also benefits from the neighbor
metric of the reward function. Besides, the NCR is calculated
based on DEWMA to adapt to rapid changes. QTAR presents
a worse performance than TARRAQ owing to the non-optimal
SI and the transmission of two-hop messages. GPSR-EE-
Hello consumes more energy than QTAR since that there
may be more transmission caused by the perimeter forwarding
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mechanism or route failure when nodes move rapidly. MPVR
performs the worst since it requires a large number of control
packets when topology changes rapidly.

3) Discussion on Routing Performance
MPVR: Based on the default sensing scheme, the Hello

interval in MPVR is uniformly distributed in [0.5SI,1.5SI]
and the expiration timer is three times the maximum Hello
interval. All nodes broadcast Hello messages at a fixed interval
regardless of the network density, speed and transmission
range. Thus, it can only maintain a good result when link
change occurs approximately once per second since SI=1000
ms, and the overheads may be out of control owing to
the unnecessary Hello messages exchanged in low dynamic
networks, and the frequent routing errors will appear in high
dynamic cases. According to statistics, the NCR varies from
0.1 to 5, which means that the best path for fast-moving
UAVs is difficult to find since the neighbor changes may
not be captured accurately. And it also results in higher
E2ED, energy consumption and lower PDR, and the overhead
will also increase with the communication links frequently
disconnected.

GPSR-EE-Hello: The GPSR-EE-Hello is worse than our
TARRAQ in all aspects, although the low overhead is known
as the specialty of EE-Hello. The SI is about 2 to 5 times larger
than the actual NCIT according to statistics, and the greater
the upper limit of speed, the greater the difference. Even if the
number of Hello messages is reduced owing to the deliberately
increased SI, a large number of valuable links information
will be lost, which results in more route errors. That is the
reason why its energy consumption is worse than QTAR even
though the Hello messages are reduced. Due to the perimeter
forwarding mechanism of GPSR, the number of hops may
increase and accordingly, resulting in poor E2ED. Note that the
PDR of GPSR-EE-Hello gradually becomes better than that of
MPVR as the speed increases, since it adjusts SI to ensure
more accurate neighbor information. However, the residual
LD, which is a crucial factor to ensure a better PDR in a
rapidly changing network, is not considered, thus its PDR is
worse than QTAR and our TARRAQ.

QTAR: As proved in [37], QTAR indeed has an overwhelm-
ing E2ED advantage owing to the consideration of required ve-
locity and velocity offered by the two-hop potential forwarding
pairs. Besides, The simulation results demonstrate that QTAR
outperforms GPSR-EE-Hello and MPVR in all metrics except
overhead since it works via the two-hop neighbor information
regardless of scenarios. However, there is still a little gap with
our TARRAQ in terms of PDR and energy consumption. As
inherited from [32], QTAR presents an intuitive approach for
calculating LD and SI, which is designed for UAV swarm
networks rather than FANETs. It may not apply to FANETs
since the topology changes faster. Besides, there will be a large
calculation error of LD and SI once the displacement of two
nodes is large yet their relative distance changes little, and
thus resulting in an inaccurate neighbor relationship and poor
PDR. In addition, LD is ignored when designing the reward
function, which means that the relay will be selected without
considering the path duration, and thus a poor PDR appears.

TARRAQ: Our protocol shows the best performance advan-

tages in terms of PDR, energy consumption and overhead, and
is only slightly worse than QTAR in E2ED. First of all, the
topology dynamic analysis model based on queuing theory in
section IV guides the proper setting of SI, and the coupling
relationship between NCR and dynamic features is described
accurately. Thus a resilient SI is determined and the lowest
overhead can be achieved owing to the proposed expected
sensing delay, which means that the most accurate neighbor
information can be obtained with the lowest overhead. Besides,
thanks to the service duration time derived in (11), the accurate
residual LD can be predicted by KF procedure via (41) and
(42), which provides an expiration timer for available links and
ensures a better PDR than other protocols. Furthermore, the
predicted residual LD is working as a link metric to guarantee
stable and reliable links, and the node that has more useful
neighbors and lower NCR is preferred to avoid frequent link
disconnection. By giving more rewards to the neighbors who
are closer to the destination and at the proper location, our
TARRAQ achieves a lower energy consumption owing to the
limited forwarding distance.

It is worth emphasizing that TARRAQ has strong adaptabil-
ity in a rapidly changing environment. The DEWMA process
of NCR not only guarantees sensitivity to dynamic topology
but also prevents nodes from making abnormal decisions due
to fluctuations in network conditions, thus TARRAQ can adapt
to changes in SINR threshold and speed. More importantly,
the self-adaptation ability is also reflected in different traffic
and topology changes, which is intuitively shown by the
turning points marked in Fig. 9 and 10. Specifically, NCR
will be greater than TAR once the SINR threshold drops
or speed increases to a certain value, and the minimum of
NCR and TAR is used to determine SI. Thus the overhead
and energy degradation of TARRAQ is the slowest since it
undoubtedly reduces the spread of useless Hello messages.
In addition, the exploitation and exploration scheme of Q-
learning is adaptively adjusted based on the estimated residual
LD, which improves the sensitivity of routing decisions to the
rapidly changing environment.

As one of the most crucial contributions, the on-demand
performance of TARRAQ is verified by simulation results.
The different expected sensing delays are realized by various
δ. A smaller overhead with inferior link accuracy is achieved
via lager δ, and vice versa. Thus, it provides a method to
achieve resilient routing performance. The two red curves in
Fig. 9 and 10 demonstrate that the TARRAQ with δ = 0.55
has a poor overhead and energy level, while the PDR and
E2ED are improved. Conversely, the TARRAQ with δ = 0.65
sacrifices PDR and E2ED in exchange for overhead and
energy efficiency. No matter what kind of performance is
compromised, our TARRAQ is better than the comparison
schemes on most metrics. The average comparison results are
presented in Table IV.

C. Computation Complexity Comparison

As shown in Table V, we present a comparative analysis of
the computation complexity by comparing TARRAQ to other
state-of-art protocols. For each UAV of the active route, the
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TABLE IV: The performance improvement of TARRAQ when
compared with GPSR-EE-Hello, MPVR and QTAR.

Protocol Overhead E2ED PDR Energy
Consumption

GPSR-EE-Hello 13.73% 40.32% 16.70% 11.31%
MPVR 20.24% 28.72% 14.77% 15.65%
QTAR 25.23% -22.57% 9.41% 5.12%

TABLE V: The comparison of computation complexity.

Protocol Complexity Protocol Complexity

TARRAQ O(N+Kmax) QTAR O(N2 +Kmax)
MPVR O(2N) GPSR-EE-Hello O(2N)

best decision should be made from N available neighbors by
each round. During the neighbor discovery and maintenance
phase, it should be emphasized that only (34) and (42) need to
be calculated additionally in our TARRAQ. Thus a complexity
of O(N) is necessary, which can be considered the same as
other algorithms except for QTAR, since it considers two-hop
neighbors and has a complexity of O(N2). During the relay
selection phase, the MPVR and GPSR-EE-Hello choose the
best hop among N candidate relays according to a certain
criterion, thus O(N) appears. For QTAR and our TARRAQ,
Kmax iterations should be performed in the worst case, which
is generally larger than MPVR and GPSR-EE-Hello since
there are probably hundreds of iterations for learning before
convergence. But it is affordable and worthwhile since the
learning-based decentralized methods that adapt to dynamic
networks without the need for global knowledge are more
suitable for UAV networks. Overall, our protocol constantly
adapts to abrupt changes hence leading to a higher PDR
and efficiency as well as maximal connectivity. Therefore,
compared with MPVR and GPSR-EE-Hello, the slightly larger
complexity of TARRAQ is justified by the increased network
performance. Besides, it provides better performances while
having a lower complexity with respect to QTAR.

VII. CONCLUSION

In this work, we propose a novel protocol called TAR-
RAQ to accurately capture topology changes with the lowest
overhead and make routing decisions in a distributed and
autonomous way. To reveal the mapping relationship between
NCR and dynamic behavior of UAVs, we analyze the topology
change characteristics of FANETs via queuing theory, and
the closed-form solutions of NCR and neighbor change inter-
arrival time distribution are derived. Based on this, TARRAQ
defines the expected sensing delay, performs a DEWMA
procedure on the real-time NCR, and determines the validity
period of links by predicting the residual link duration. The
proposed TARRAQ can make distributed and autonomous
routing decisions via an adaptive Q-learning approach, where
the reward function is designed to find a stable path. It can
also achieve adaptive learning from the variable network envi-
ronment owing to the dynamic adjustment of action selection,
learning rate and discount factor.

As our future work, we will extend TARRAQ to various
architectures and scenarios, e.g. UAV swarm networks, and
pay more attention to the traffic and aerial channel character-
istics. In addition, designing different queuing models and RL
techniques (DQN and DDPG, etc.) for more UAV networks
(cluster-based and multi-layer networks, etc.) will be another
interesting future work.

APPENDIX A
JOINT PROBABILITY DENSITY OF RELATIVE SPEED

Here, we derive the joint PDF of v, αv and βv , namely
f (v, αv, βv) for the UAVs that enter Ωc, as illustrated in Fig.
3(a). The PDF of moving direction and speed of So are given
by fβvo

(βvo) = fαvo
(αvo) = 1/2π and

fvo (vo) =
u (vo − vl)− u (vo − vu)

vu − vl
. (46)

Thus, their joint PDF is given by

fvo,βvo ,αvo
(vo, βvo , αvo) =

u (vo − vl)− u (vo − vu)
4π2 (vu − vl)

,

(47)
and the joint PDF of v, αv and βv can be calculated as

fv,αv,βv (v, αv, βv) =
fvo,βvo ,αvo

(vo, βvo , αvo)

|J (vo, βvo , αvo)|
, (48)

where J (vo, βvo , αvo) is the Jacobian matrix, and its deter-
minant is calculated by

|J (vo, βvo , αvo)| =
∣∣∣∣ ∂ (v, βv, αv)

∂ (vo, βvo , αvo)

∣∣∣∣
=

vo√
v2o + v2c − 2vcvocosβvo

.
(49)

We have vo =
√
v2 + v2c + 2vvccosβv by solving equations

(9) and (10), and equation (49) can be further converted to

|J (vo, βvo , αvo)| =
√
v2 + v2c + 2vvccosβv

v
. (50)

Thus, equation (48) can be further simplified as

f (v, αv, βv) =
vg (v, vc, βv)

4π2 (vu − vl)
, (51)

where

g (v, vc, βv) =
u (h (v, vc, βv)− vl)− u (h (v, vc, βv)− vu)

h (v, vc, βv)
,

(52)
h (v, vc, βv) =

√
v2 + v2c + 2vvccosβv, (53)

and u (·) is the unit step function.

APPENDIX B
THE CALCULATION OF Vu

Here, we derive the volume of SRu, namely Vu, in the
following two cases.

Case I: As shown in Fig. 11(a), there is no overlapping
region when vt>2R. Hence the volume of SRu is given by

V2 (v, t) =
πR2 (4R+ 3vt)

3
. (54)



17

(a) vt>2R. (b) vt ≤ 2R.

Fig. 11: The region where UAVs will enter or leave Ωc with
a velocity v within the upcoming t seconds.

Case II: As shown in Fig. 11(b), there is an overlapping
region that does not belong to SRu, when vt ≤ 2R. Hence
the volume of the overlapping region can be calculated by

Voverlap (v, t) = 2

∫ R− vt
2

0

π

[
R2 −

(
vt

2
+ x

)2
]
dx

=
2π

3

(
R− vt

2

)2(
2R+

vt

2

)
,

(55)

and the volume of SRu is calculated by

V3 (v, t) =
πR2 (4R+ 3vt)

3
− Voverlap (v, t)

=
πvt

(
24R2 − v2t2

)
12

.

(56)
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