
Topology­aware routing in structured peer­to­peer overlay
networks

Miguel Castro
�

Peter Druschel
✁

Y. Charlie Hu
✂

Antony Rowstron
�

�

Microsoft Research, 7 J J Thomson Close, Cambridge, CB3 0FB, UK.
✁

Rice University, 6100 Main Street, MS-132, Houston, TX 77005, USA.
✂

Purdue University, 1285 EE Building, West Lafayette, IN 47907, USA.

Technical Report

MSR-TR-2002-82

Structured peer-to-peer (p2p) overlay networks like CAN, Chord, Pastry and Tapestry offer a novel plat-

form for a variety of scalable and decentralized distributed applications. They provide efficient and

fault-tolerant routing, object location and load balancing within a self-organizing overlay network. One

important aspect of these systems is how they exploit network proximity in the underlying Internet. We

present a study of topology-aware routing approaches in p2p overlays, identify proximity neigbor selec-

tion as the most promising technique, and present an improved design in Pastry. Results obtained via

analysis and via simulation of two large-scale topology models indicate that it is possible to efficiently

exploit network proximity in self-organizing p2p substrates. Proximity neighbor selection incurs only a

modest additional overhead for organizing and maintaining the overlay network. The resulting locality

properties improve application performance and reduce network usage in the Internet substantially. Fi-

nally, we show that the impact of proximity neighbor selection on the load balancing in the p2p overlay is

minimal.

Microsoft Research

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

http://www.research.microsoft.com

1 Introduction

Several recent systems (e.g., CAN, Chord, Pastry and

Tapestry [7, 13, 10, 16, 6]) provide a self-organizing sub-

strate for large-scale peer-to-peer applications. Among

other uses, these systems can implement a scalable, fault-

tolerant distributed hash table, in which any item can be

located within a bounded number of routing hops, using

a small per-node routing table. While there are algorith-

mic similarities among each of these systems, one impor-

tant distinction lies in the approach they take to consider-

ing and exploiting proximity in the underlying Internet.

Chord in its original design, for instance, does not con-

sider network proximity at all. As a result, its protocol

for maintaining the overlay network is very light-weight,

but messages may travel arbitrarily long distances in the

Internet in each routing hop.

In a version of CAN, each node measures its network

delay to a set of landmark nodes, in an effort to deter-

mine its relative position in the Internet and to construct

an Internet topology-aware overlay. Tapestry and Pastry

construct a topology-aware overlay by choosing nearby

nodes for inclusion in their routing tables. Early results

for the resulting locality properties are promising. How-

ever, these results come at the expense of a significanly

more expensive overlay maintenance protocol, relative to

Chord. Also, proximity based routing may compromise

the load balance in the p2p overlay network. Moreover,

it remains unclear to what extent the locality properties

hold in the actual Internet, with its complex, dynamic,

and non-uniform topology. As a result, the cost and ef-

fectiveness of proximity based routing in these p2p over-

lays remain unclear.

This paper presents a study of proximity based routing

in structured p2p overlay networks, and presents results

of an analysis and of simulations based on two large-

scale Internet topology models. The specific contribu-

tions of this paper include

� a comparison of approaches to proximity based

routing in structured p2p overlay networks, which

identifies proximity neighbor selection in prefix-

based protocols like Tapestry and Pastry as the most

promising technique;

� improved node join and overlay maintenance pro-

tocols for proximity neighbor selection in Pastry,

which significancly reduce the overhead of creating

and maintaining a topology-aware overlay;

� a study of the costs and benefits of proximity neigh-

bor selection via analysis and simulation based on

two large-scale Internet topology models;

� a study of the impact of proximity neighbor selec-

tion on the load balancing in the p2p overlay based

on simulations on a large-scale topology model.

Compared to the original Pastry paper [10], this work

adds a comparison with other proposed approaches to

topology-aware routing, new node join and overlay main-

tenance protocols that dramatically reduce the cost of

overlay construction and maintenance, a new protocol to

locate a nearby contact node, results of a formal analysis

of Pastry’s routing properties and extensive simulation

results on two different network topology models.

The rest of this paper is organized as follows. Pre-

vious work on structured p2p overlays is discussed in

Section 2. Approaches to topology-aware routing in p2p

overlays are presented in Section 3. Section 4 presents

Pastry’s implementation of proximity neighbor selection,

including new efficient protocols for node join and over-

lay maintenance. An analysis of Pastry’s locality proper-

ties follow in Section 5. Section 6 presents experimental

results, and we conclude in Section 7.

2 Background and prior work

In this section, we present some background on struc-

tured p2p overlay protocols like CAN, Chord, Tapestry

and Pastry. (We do not consider unstructured p2p over-

lays like Gnutella and Freenet in this paper [1, 2]). Space

limitations prevent us from a detailed discussion of each

protocol. Instead, we give a more detailed description of

Pastry, as an example of a structured p2p overlay net-

work, and then point out relevant differences with the

other protocols.

2.1 Pastry

Pastry is a scalable, fault resilient, and self-organizing

peer-to-peer substrate. Each Pastry node has a unique,

uniform randomly assigned nodeId in a circular 128-bit

identifier space. Given a 128-bit key, Pastry routes an

associated message towards the live node whose nodeId

is numerically closest to the key. Moreover, each Pastry

node keeps track of its neighboring nodes in the names-

pace and notifies applications of changes in the set.

1

0

x

1

x

2

x

3

x

4

x

5

x

7

x

8

x

9

x

a

x

b

x

c

x

d

x

e

x

f

x

6

0

x

6

1

x

6

2

x

6

3

x

6

4

x

6

6

x

6

7

x

6

8

x

6

9

x

6

a

x

6

b

x

6

c

x

6

d

x

6

e

x

6

f

x

6

5

0

x

6

5

1

x

6

5

2

x

6

5

3

x

6

5

4

x

6

5

5

x

6

5

6

x

6

5

7

x

6

5

8

x

6

5

9

x

6

5

b

x

6

5

c

x

6

5

d

x

6

5

e

x

6

5

f

x

6

5

a

0

x

6

5

a

2

x

6

5

a

3

x

6

5

a

4

x

6

5

a

5

x

6

5

a

6

x

6

5

a

7

x

6

5

a

8

x

6

5

a

9

x

6

5

a

a

x

6

5

a

b

x

6

5

a

c

x

6

5

a

d

x

6

5

a

e

x

6

5

a

f

x

Figure 1: Routing table of a Pastry node

with nodeId
�✂✁☎✄✝✆✟✞

, ✠☛✡✌☞ . Digits are in

base 16,
✞

represents an arbitrary suffix.

d46a1c

Route(d46a1c)

d462ba

d4213f

d13da3

65a1fc

d467c4

d471f1

O 2128 - 1

Figure 2: Routing a message from node�✂✁☎✄✝✆✎✍✑✏
with key ✒✓☞ �☎✄✝✆✔✏ . The dots depict

live nodes in Pastry’s circular namespace.

Node state: For the purpose of routing, nodeIds and

keys are thought of as a sequence of digits in base ✕✗✖
(✠ is a configuration parameter with typical value 4). A

node’s routing table is organized into
✆ ✕✂✘✓✙☎✕✚✖ rows and ✕✂✖

columns. The ✕✂✖ entries in row ✛ of the routing table con-

tain the IP addresses of nodes whose nodeIds share the

first ✛ digits with the present node’s nodeId; the ✛✢✜ ✆
th

nodeId digit of the node in column ✣ of row ✛ equals ✣ .

The column in row ✛ that corresponds to the value of the

✛✢✜ ✆
’s digits of the local node’s nodeId remains empty.

Figure 1 depicts a sample routing table.

A routing table entry is left empty if no node with the

appropriate nodeId prefix is known. The uniform random

distribution of nodeIds ensures an even population of the

nodeId space; thus, on average only ✤✦✥★✧✪✩ ✁✬✫✮✭✰✯ levels are

populated in the routing table. Each node also maintains

a leaf set. The leaf set is the set of ✥ nodes with nodeIds

that are numerically closest to the present node’s nodeId,

with ✥✱✙☎✕ larger and ✥✱✙☎✕ smaller nodeIds than the current

node’s id. A typical value for ✥ is approximately ✤★✘✳✲
✥★✧✪✩ �✵✴ ✭✰✯ . The leaf set ensures reliable message delivery

and is used to store replicas of application objects.

Message routing: At each routing step, a node seeks to

forward the message to a node whose nodeId shares with

the key a prefix that is at least one digit (or ✠ bits) longer

than the current node’s shared prefix. If no such node can

be found in the routing table, the message is forwarded

to a node whose nodeId shares a prefix with the key as

long as the current node, but is numerically closer to the

key than the present node’s id. Several such nodes can

normally be found in the routing table; moreover, such

a node is guaranteed to exist in the leaf set unless the

message has already arrived at the node with numerically

closest nodeId or its immediate neighbor. And, unless all

✥✱✙☎✕ nodes in one half of the leaf set have failed simulta-

neously, at least one of those nodes must be live.

The Pastry routing procedure is shown in Figure 3.

Figure 2 shows the path of an example message. Analy-

sis shows that the expected number of forwarding hops is

slightly below ✤✦✥★✧✪✩ ✁✬✫✮✭✰✯ , with a distribution that is tight

around the mean. Moreover, simulation shows that the

routing is highly resilient to node failures.

2.2 CAN, Chord, Tapestry

Next, we briefly describe CAN, Chord and Tapestry, with

an emphasis on the differences of these protocols when

compared to Pastry.

Tapestry is very similar to Pastry but differs in its ap-

proach to mapping keys to nodes in the sparsely popu-

lated id space, and in how it manages replication. In

Tapestry, there is no leaf set and neighboring nodes in

the namespace are not aware of each other. When a

node’s routing table does not have an entry for a node

that matches a key’s ✛ th digit, the message is forwarded

to the node with the next higher value in the ✛ th digit,

modulo ✕✂✖ , found in the routing table. This procedure,

called surrogate routing, maps keys to a unique live node

if the node routing tables are consistent. For fault toler-

ance, Tapestry inserts replicas of data items using differ-

ent keys.

Like Pastry, Chord uses a circular id space. Unlike

Pastry, Chord forwards messages only in clockwise di-

2

(1) if (�✂✁ ✄✆☎✞✝✠✟✞✡☞☛✌✟✍✟✞✎✑✏✓✒✕✔✗✖ ✘✚✙✜✛✚✒✑✖ ✘✚✙✞✢)
(2) // � is within range of local leaf set (mod ✣✥✤ ✙✚✦)
(3) forward to ✒★✧ , s.th. ✩ �✫✪✬✒✭✧✚✩ is minimal;

(4) else

(5) // use the routing table

(6) Let ✮✰✯✱☎✍✲✂✮✳✏✓�✂✛✚✴✵✢ ;
(7) if (✶✸✷✺✹✖ exists and is live)

(8) forward to ✶ ✷✺✹✖ ;

(9) else

(10) // rare case

(11) forward to ✡★✻✼✒✾✽✿✶ , s.th.

(12) ☎✍✲✂✮✳✏❀✡✺✛✚�✥✢★❁❂✮ ,
(13) ✩ ✡❃✪✬�❄✩✥❅❆✩ ✴✫✪✬�❄✩

Figure 3: Pastry routing procedure, executed when a

message with key ✒ arrives at a node with nodeId
✄
. ❇✿❈❉ is

the entry in the routing table ❇ at column ❊ and row ✥ . ❋ ❈
is the i-th closest nodeId in the leaf set ❋ , where a nega-

tive/positive index indicates counterclockwise/clockwise

from the local node in the id space, respectively. ❋❍● ❉ ■ ✁

and ❋ ❉ ■ ✁ are the nodes at the edges of the local leaf set.

✒ ❉ represents the ✥ ’s digit in the key ✒ . ❏▲❑ ✥✺▼ ✄❖◆ ✠✜P is the

length of the prefix shared among
✄

and ✠ , in digits.

rection in the circular id space. Instead of the prefix-

based routing table in Pastry, Chord nodes maintain a

finger table, consisting of up to
✆ ✕✂✘ pointers to other live

nodes. The ❊ th entry in the finger table of node ✛ refers

to the live node with the smallest nodeId clockwise from

✛ ✜ ✕▲❈ ● �

. The first entry points to ✛ ’s successor, and

subsequent entries refer to nodes at repeatedly doubling

distances from ✛ . Each node also maintains pointers to

its predecessor and to its ✛ successors in the id space (the

successor list). Similar to Pastry’s leaf set, this successor

list is used to replicate objects for fault tolerance. The

expected number of routing hops in Chord is
�

✁ ✥★✧✪✩ ✁ ✭ .

CAN routes messages in a ✒ -dimensional space, where

each node maintains a routing table with ◗✾▼★✒❄P entries

and any node can be reached in ◗✾▼★✒ ✭ � ■❙❘ P routing hops.

The entries in a node’s routing table refer to its neighbors

in the ✒ -dimensional space. Unlike Pastry, Tapestry and

Chord, CAN’s routing table does not grow with the net-

work size, but the number of routing hops grows faster

than ✥★✧✪✩ ✭ in this case.

3 Topology-aware routing

In this section, we describe and compare three ap-

proaches to topology-aware routing in structured over-

lay networks that have been proposed, namely topology-

based nodeId assignment, proximity routing, and proxim-

ity neighbor selection [9].

Proximity routing: With proximity routing, the overlay

is constructed without regard for the physical network

topology. The technique exploits the fact that when a

message is routed, there are potentially several possible

next hop neighbors that are closer to the message’s key

in the id space. The idea is to select, among the possi-

ble next hops, the one that is closest in the physical net-

work or one that represents a good compromise between

progress in the id space and proximity. With ❚ alternative

hops in each step, the approach can reduce the expected

delay in each hop from the average delay between two

nodes to the expected delay of the nearest among ❚ nodes

with random locations in the network. The main limita-

tion is that the benefits depend on the magnitude of ❚ ;

with practical protocols, ❚ is small. Moreover, depend-

ing on the overlay protocol, greedily choosing the closest

hop may lead to an increase in the total number of hops

taken. While proximity routing can yield significant im-

provements over a system with no topology-aware rout-

ing, its performance falls short of what can be achieved

with the following two approaches. The technique has

been used in CAN and Chord [7, 4].

Topology-based nodeId assignment: Topology-based

nodeId assignment attempts to map the overlay’s logi-

cal id space onto the physical network such that neigh-

bouring nodes in the id space are close in the physical

network. The technique has been successfully used in a

version of CAN, and has achieved delay stretch results

of two or lower [7, 8]. However, the approach has sev-

eral drawbacks. First, it destroys the uniform popula-

tion of the id space, causing load balancing problems in

the overlay. Second, the approach does not work well

in overlays that use a one-dimensional id space (Chord,

Tapestry, Pastry), because the mapping is overly con-

strained. Lastly, neighboring nodes in the id space are

more likely to suffer correlated failures, which can have

implications for robustness and security in protocols like

Chord and Pastry, which replicate objects on neighbors

in the id space.

Proximity neighbour selection: Like the previous

technique, proximity neighbor selection constructs a

3

topology-aware overlay. However, instead of biasing the

nodeId assignment, the idea is to choose routing table en-

tries to refer to the topologically nearest among all nodes

with nodeId in the desired portion of the id space. The

success of this technique depends on the degree of free-

dom an overlay protocol has in choosing routing table

entries without affecting the expected number of rout-

ing hops. In prefix-based protocols like Tapestry and

Pastry, the upper levels of the routing table allow great

freedom in this choice, with lower levels leaving expo-

nentially less choice. As a result, the expected delay of

the first hop is very low, it increases exponentially with

each hop, and the delay of the final hop dominates. As

one can show, this leads to low delay stretch and other

useful properties. A limitation of this technique is that it

does not work for overlay protocols like CAN and Chord,

which require that routing table entries refer to specific

points in the id space.

Discussion: Proximity routing is the most light-weight

technique, since it does not construct a topology-aware

overlay. But, its performance is limited since it can only

reduce the expected per-hop delay to the expected delay

of the nearest among a small number ❚ of nodes with

random locations in the network. With topology-aware

nodeId assignment, the expected per-hop delay can be

as low as the average delay among neighboring overlay

nodes in the network. However, the technique suffers

from load imbalance and requires a high-dimensional id

space to be effective.

Proximity-neighbor selection can be viewed as a com-

promise that preserves the load balance and robust-

ness afforded by a random nodeId assignment, but still

achieves a small constant delay stretch. In the follow-

ing sections, we show that proximity neighbor selec-

tion can be implemented in Pastry and Tapestry with

low overhead, that it achieves comparable delay stretch

to topology-based nodeId assignment without sacrific-

ing load balancing or robustness, and that is has addi-

tional route convergence properties that facilitate effi-

cient caching and multicasting in the overlay. Moreover,

we confirm these results via simulations on two large-

scale Internet topology models.

4 Proximity neighbor selection: Pastry

This section shows how proximity based neighbor se-

lection is used in Pastry. We describe new node join

and overlay maintenance protocols that significantly re-

duce the overhead compared to the original protocols de-

scribed in [10]. Moreover, we present a new protocol

that allows nodes that wish to join the overlay to locate

an appropriate contact node.

It is assumed that each Pastry node can measure its dis-

tance, in terms of a scalar proximity metric, to any node

with a known IP address. The choice of a proximity met-

ric depends on the desired qualities of the resulting over-

lay (e.g., low delay, high bandwidth, low network utiliza-

tion). In practice, average round-trip time has proven to

be a good metric.

Pastry uses proximity neighbor selection as introduced

in the previous section. Selecting routing table entries to

refer to the precisely nearest node with an appropriate

nodeId is expensive in a large system, because it requires

◗✾▼ ✭ P communication. Therefore, Pastry uses heuristics

that require only ◗✾▼★✥★✧✪✩ ✁✬✫ ✭ P communication but only en-

sure that routing table entries are close but not necessarily

the closest. More precisely, Pastry ensures the following

invariant for each node’s routing table:

Proximity invariant: Each entry in a node � ’s routing

table refers to a node that is near � , according to the

proximity metric, among all live Pastry nodes with the

appropriate nodeId prefix.

In Section 4.1, we show how Pastry’s node joining pro-

tocol maintains the proximity invariant. Next, we con-

sider the effect of the proximity invariant on Pastry’s

routing. Observe that as a result of the proximity in-

variant, a message is normally forwarded in each rout-

ing step to a nearby node, according to the proximity

metric, among all nodes whose nodeId shares a longer

prefix with the key. Moreover, the expected distance

traveled in each consecutive routing step increases ex-

ponentially, because the density of nodes decreases ex-

ponentially with the length of the prefix match. From

this property, one can derive three distinct properties of

Pastry with respect to network locality:

Total distance traveled (delay stretch): The expected

distance of the last routing step tends to dominate the

total distance traveled by a message. As a result, the av-

erage total distance traveled by a message exceeds the

distance between source and destination node only by a

small constant value.

Local route convergence: The paths of two Pastry mes-

sages sent from nearby nodes with identical keys tend to

converge at a node near the source nodes, in the prox-

imity space. To see this, observe that in each consecutive

4

routing step, the messages travel exponentially larger dis-

tances towards an exponentially shrinking set of nodes.

Thus, the probability of a route convergence increases in

each step, even in the case where earlier (smaller) rout-

ing steps have moved the messages farther apart. This re-

sult has significance for caching applications layered on

Pastry. Popular objects requested by a nearby node and

cached by all nodes along the route are likely to be found

when another nearby node requests the object. Also, this

property is exploited in Scribe [12] to achieve low link

stress in an application level multicast system.

Locating the nearest replica: If replicas of an object

are stored on ❚ nodes with adjacent nodeIds, Pastry mes-

sages requesting the object have a tendency to first reach

a node near the client node. To see this, observe that

Pastry messages initially take small steps in the proxim-

ity space, but large steps in the nodeId space. Applica-

tions can exploit this property to make sure that client

requests for an object tend to be handled by a replica that

is near the client. Exploiting this property is application-

specific, and is discussed in [11].

An analysis of these properties follows in Section 5.

Simulation and measurement results that confirm and

quantify these properties follow in Section 6.

4.1 Maintaining the overlay

Next, we present the new protocols for node join, node

failure and routing table maintenance in Pastry and show

how these protocols maintain the proximity invariant.

The new node join and routing table maintenance pro-

tocols supersede the “second phase” of the join protocol

described in the original Pastry paper, which had much

higher overhead [10].

When joining the Pastry overlay, a new node with

nodeId � must contact an existing Pastry node � . � then

routes a message using � as the key, and the new node

obtains the ✛ th row of its routing table from the node

encountered along the path from � to � whose nodeId

matches � in the first ✛✂✁ ✆
digits. We will show that

the proximity invariant holds on � ’s resulting routing ta-

ble, if node � is near node � , according to the proximity

metric.

First, consider the top row of � ’s routing table, ob-

tained from node � . Assuming the triangle inequality

holds in the proximity space, it is easy to see that the en-

tries in the top row of � ’s routing table are also close to

� . Next, consider the ✛ th row of � ’s routing table, ob-

tained from the node �☎✄ encountered along the path from

� to � . By induction, this node is Pastry’s approxima-

tion to the node closest to � that matches � ’s nodeId in

the first ✛✆✁ ✆
digits. Therefore, if the triangle inequal-

ity holds, we can use the same argument to conclude that

the entries of the ✛ th row of �☎✄ ’s routing table should be

close to � .

At this point, we have shown that the proximity invari-

ant holds in � ’s routing table. To show that the node join

protocol maintains the proximity invariant globally in all

Pastry nodes, we must next show how the routing tables

of other affected nodes are updated to reflect � ’s arrival.

Once � has initialized its own routing table, it sends the

✛ th row of its routing table to each node that appears as

an entry in that row. This serves both to announce its

presence and to propagate information about nodes that

joined previously. Each of the nodes that receives a row

then inspects the entries in the row, performs probes to

measure if � or one of the entries is nearer than the cor-

responding entry in its own routing table, and updates its

routing table as appropriate.

To see that this procedure is sufficient to restore the

proximity invariant in all affected nodes, consider that �
and the nodes that appear in row ✛ of � ’s routing table

form a group of ✕✂✖ nearby nodes whose nodeIds match

in the first ✛ digits. It is clear that these nodes need to

know of � ’s arrival, since � may displace a more distant

node in one of the node’s routing tables. Conversely, a

node with identical prefix in the first ✛ digits that is not

a member of this group is likely to be more distant from

the members of the group, and therefore from � ; thus,

� ’s arrival is not likely to affect its routing table and,

with high probability, it does not need to be informed of

� ’s arrival.

Node failure: Failed routing tables entries are repaired

lazily, whenever a routing table entry is used to route a

message. Pastry routes the message to another node with

numerically closer nodeId. If the downstream node has a

routing table entry that matches the next digit of the mes-

sage’s key, it automatically informs the upstream node of

that entry.

We need to show that the entry supplied by this proce-

dure satisfies the proximity invariant. If a numerically

closer node can be found in the routing table, it must

be an entry in the same row as the failed node. If that

node supplies a substitute entry for the failed node, its

expected distance from the local node is therefore low,

since all three nodes are part of the same group of nearby

5

nodes with identical nodeId prefix. On the other hand,

if no replacement node is supplied by the downstream

node, we trigger the routing table maintenance task (de-

scribed in the next section) to find a replacement entry.

In either case, the proximity invariant is preserved.

Routing table maintenance: The routing table entries

produced by the node join protocol and the repair mech-

anisms are not guaranteed to be the closest to the local

node. Several factors contribute to this, including the

heuristic nature of the node join and repair mechanisms

with respect to locality. Also, many practical proxim-

ity metrics do not strictly satisfy the triangle inequality

and may vary over time. However, limited imprecision

is consistent with the proximity invariant, and as we will

show in Section 6, it does not have a significant impact

on Pastry’s locality properties.

However, one concern is that deviations could cascade,

leading to a slow deterioration of the locality properties

over time. To prevent a deterioration of the overall route

quality, each node runs a periodic routing table mainte-

nance task (e.g., every 20 minutes). The task performs

the following procedure for each row of the local node’s

routing table. It selects a random entry in the row, and

requests from the associated node a copy of that node’s

corresponding routing table row. Each entry in that row

is then compared to the corresponding entry in the local

routing table. If they differ, the node probes the distance

to both entries and installs the closest entry in its own

routing table.

The intuition behind this maintenance procedure is to

exchange routing information among groups of nearby

nodes with identical nodeId prefix. A nearby node with

the appropriate prefix must be know to at least one mem-

ber of the group; the procedure ensures that the entire

group will eventually learn of the node, and adjust their

routing tables accordingly.

Whenever a Pastry node replaces a routing table entry

because a closer node was found, the previous entry is

kept in a list of alternate entries (up to ten such entries

are saved in the implementation). When the primary en-

try fails, one of the alternates is used until and unless a

closer entry is found during the next periodic routing ta-

ble maintenance.

4.2 Locating a nearby node

Recall that for the node join algorithm to preserve the

proximity invariant, the starting node � must be close to

(1)discover(seed)

(2) nodes = getLeafSet(seed)

(3) forall node in nodes

(4) nearNode = closerToMe(node,nearNode)

(5) depth = getMaxRoutingTableLevel(nearNode)

(6) while (depth � 0)

(7) nodes = getRoutingTable(nearNode,depth - -)

(8) forall node in nodes

(9) nearNode = closerToMe(node,nearNode)

(10) end while

(11) do

(12) nodes = getRoutingTable(nearNode,0)

(13) currentClosest = nearNode

(14) forall node in nodes

(15) nearNode = closerToMe(node,nearNode)

(16) while (currentClosest != nearNode)

(17) return nearNode

Figure 4: Simplified nearby node discovery algorithm.

seed is the Pastry node initially known to the joining

node.

the new node � , among all live Pastry nodes. This begs

the question of how a newly joining node can detect a

nearby Pastry node. One way to achieve this is to per-

form an “expanding ring” IP multicast, but this assumes

the availability of IP multicast. In Figure 4, we present a

new, efficient algorithm by which a node may discover a

nearby Pastry node, given that it has knowledge of some

Pastry node at any location. Thus, a joining node is only

required to obtain knowledge of any Pastry node through

out-of-band means, as opposed to obtaining knowledge

of a nearby node. The algorithm exploits the property

that location of the nodes in the seeds’ leaf set should

be uniformly distributed over the network. Next, hav-

ing discovered the closest leaf set member, the routing

table distance properties are exploited to move exponen-

tially closer to the location of the joining node. This is

achieved bottom up by picking the closest node at each

level and getting the next level from it. The last phase re-

peats the process for the top level until no more progress

is made.

5 Analysis

In this section, we present analytical results for Pastry’s

routing properties. First, we analyze the distribution of

the number of routing hops taken when a Pastry message

with a randomly chosen key is sent from a randomly cho-

6

sen Pastry node. This analysis then forms the basis for an

analysis of Pastry’s locality properties. Throughout this

analysis, we assume that each Pastry node has a perfect

routing table. That is, a routing table entry may be empty

only if no node with an appropriate nodeId prefix exists,

and all routing table entries point to the nearest node, ac-

cording to the proximity metric. In practice, Pastry does

not guarantee perfect routing tables. Simulation results

presented in Section 6 show that the performance degra-

dation due to this inaccuracy is minimal. In the follow-

ing, we present the main analytical results and leave out

the details of the proofs in Appendix A.

5.1 Route probability matrix

Although the number of routing hops in Pastry is asymp-

totically ✤✦✥★✧✪✩ ✁✬✫ ✭✰✯ , the actual number of routing hops is

affected by the use of the leafset and the probability that

the message key already shares a prefix with the nodeId

of the starting node and intermediate nodes along the

routing path. In the following, we analyze the distribu-

tion of the number of routing hops based on the statistical

population of the nodeId space. Since the assignment of

nodeIds is assumed to be randomly uniform, this popula-

tion can be captured by the binomial distribution (see, for

example, [3]). For instance, the distribution of the num-

ber of nodes with a given value of the most significant

nodeId digit, out of ✭ nodes, is given by ✠✥▼☞❚✁� ✭ ◆✎✆ ✙☎✕✚✖✍P .
Recall from Figure 3 that at each node, a message can

be forwarded using one of three branches in the forward-

ing procedure. In case ✂☎✄ , the message is forwarded us-

ing the leaf set ❋ (line 3); in case ✂✝✆ using the routing

table ❇ (line 8); and in case ✂✝✞ using a node in ❋✠✟ ❇
(lines 11-13). We formally define the probabilities of tak-

ing these branches as well as of two special cases in the

following.

Definition 1 Let ✡☞☛✂✧✂✠✥▼☞❑ ◆ ✥ ◆ ✭ ◆ ✂✍✌ P denote the probabil-

ity of taking branch ✂✎✌ ◆ �✑✏✍✒ � ◆✔✓ ◆✖✕✘✗
, at the ▼☞❑ ✜ ✆ P th

hop in routing a message with random key, starting from

a node randomly chosen from ✭ nodes, with a leaf set

of size ✥ . Furthermore, we define ✡☞☛✂✧✂✠✥▼☞❑ ◆ ✥ ◆ ✭ ◆ ✂✚✙✄ P as

the probability that the node encountered after the ❑ -

th hop is already the numerically closest node to the

message, and thus the routing terminates, and define✡☞☛✂✧✂✠✥▼☞❑ ◆ ✥ ◆ ✭ ◆ ✂✛✙✆ P as the probability that the node en-

countered after the ❑ -th hop already shares the ▼☞❑✳✜ ✆ P
digits with the key, thus skipping the ▼☞❑ ✜ ✆ P th hop.

We denote ✡☞☛✂✧✂✠✥▼☞❑ ◆ ✥ ◆ ✭ ◆ ✂✍✌ P ◆ ❑✜✏✣✢ ✤ ◆✎✆ ✕✂✘✓✙☎✠ ✁ ✆✖✥✆◆ �✦✏✒ � ◆ �✧✙ ◆✔✓ ◆✔✓ ✙ ◆✖✕✘✗ as the probability matrix of Pastry rout-

ing. The following Lemma gives the building block for

deriving the full probability matrix as a function of ✭
and ✥ .

Lemma 1 Assume branch ✂✝✆ has been taken during the
first ❑ hops in routing a random message ★ , i.e. the mes-
sage ★ is at an intermediate node � which shares the
first ❑ digits with ★ . Let ✩ be the total number of ran-
dom uniformly distributed nodeIds that share the first ❑
digits with ★ . The probabilities in taking different paths
at the ▼☞❑ ✜ ✆ P th hop is✪✫✫✫✫

✬
✭✯✮✱✰✳✲ ✏ ✲✰✛✚✮✆✛✵✴✾✛✵✶✁✷❃✢✭✯✮✱✰✳✲ ✏ ✲✰✛✚✮✆✛✵✴✾✛✵✶✹✸✷ ✢✭✯✮✱✰✳✲ ✏ ✲✰✛✚✮✆✛✵✴✾✛✵✶✁✺★✢✭✯✮✱✰✳✲ ✏ ✲✰✛✚✮✆✛✵✴✾✛✵✶✹✸✺ ✢✭✯✮✱✰✳✲ ✏ ✲✰✛✚✮✆✛✵✴✾✛✵✶✁✻✑✢

✼✾✽✽✽✽
✿ ✯

✙❁❀✳✔ ✤❂
✷❁❃❅❄

❆❂❇❉❈ ❃❅❄
✲ ✏ ❊ ❄●❋ ✴✾✛■❍✣●❏ ✢✁❑

❆ ✔ ❇❉❈❂❇ ❃❅❄
✲ ✏ ❊ ❋ ✴ ✪▲❊ ❄ ✛ �

✣●❏❃✪ ❍ ✢✁❑ ✭✯✮✱✰✳✲ ✭ ✴ ✲◆▼ ✏ ❊ ✛❖❊ ❄ ✛✵✴ ✪▲❊ ❄ ✪▲❊ ✛❙✲✰✛✚✮ ✢
where ✡☞☛✂✧✂✠ ✡ ✄ ✠ ✏ ▼◗P ❉ ◆ P✳❘ ◆ P✱❙ ◆ ❑ ◆ ✥✆P calculates the five prob-

abilities assuming there are P ❉ ◆ P✳❘ ◆ P✱❙ nodeIds that shared

the first ❑ digits with ★ , but whose ▼☞❑✳✜ ✆ P th digits are

smaller than, equal to, and larger than that of ★ , respec-

tively.

Since the randomly uniformly distributed nodeIds that

fall in a particular segment of the namespace containing

a fixed prefix of ❑ digits follow the binomial distribution,

the ❑ th row of the probability matrix can be calculated

by summing over all possible nodeId distributions in that

segment of the namespace the probability of each distri-

bution multiplied by its corresponding probability vector

given by Lemma 1. Figure 5 plots the probabilities of

taking branches ✂✎✄ , ✂✎✆ , and ✂✎✞ at each actual hop (i.e.

after the adjustment of collapsing skipped hops) of Pas-

try routing for ✭ ✡ � ✤❚✤❚✤❚✤ , with ✥ ✡❱❯✂✕ and ✠✳✡ ☞ . It

shows that the ✥★✧✪✩ �✵✴ ▼ ✭ P -th hop is dominated by ✂☎✄ hops

while earlier hops are dominated by ✂❲✆ hops. The above

probability matrix can be used to derive the distribution

of the numbers of routing hops in routing a random mes-

sage. Figure 6 plots this distribution for ✭ ✡ � ✤❚✤❚✤❚✤
with ✥ ✡❳❯✂✕ and ✠ ✡ ☞ . The probability matrix can also

be used to derive the expected number of routing hops in

Pastry routing according to the following theorem.

7

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4P
ro

ba
bi

lit
ie

s
of

 ta
ki

ng
 b

ra
nc

he
s

P
A

, P
B

, a
nd

 P
C

Hop number h

N=60000, l=32, b=4, Expected (hops) = 3.67

prob(h,l,N,Pa)
prob(h,l,N,Pb)
prob(h,l,N,Pc)

Figure 5: Probabilities ✶ ✮ ✏ ✲✰✛✚✮✆✛✁� ✛✵✶ ✷ ✢ , ✶ ✮ ✏ ✲✰✛✚✮✆✛✁� ✛✵✶✁✺★✢ ,✶ ✮ ✏ ✲✰✛✚✮✆✛✁� ✛✵✶✁✻✭✢ and expected number of hops for � ✯✄✂✆☎✆☎✆☎✆☎ ,

with ✮❖✯✄✝▲✣ and ✲ ✯✟✞ . (From analysis.)

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

P
ro

ba
bi

lit
y

Number of routing hops

N=60000, l=32, b=4, Expected (hops) = 3.67

Figure 6: Distribution of the number of routing hops per mes-

sage for � ✯✄✂✆☎ ✛✁☎✆☎✆☎ , with ✮✰✯✠✝▲✣ and ✲ ✯✄✞ . (From analysis.)

Theorem 1 Let the expected number of additional hops
after taking ✂☎✞ for the first time, at the ❑ th hop, be de-
noted as

✕☛✡✌☞ ▼☞❑ ◆ ✥ ◆ ✭ ◆ ✂✎✞✌P . The expected number of rout-
ing hops in routing a message with random key ★ start-
ing from a node randomly chosen from the ✭ nodes is

✤ ✙✚✦❙✘ ❏ ✔ ✤❂
✍ ❃❅❄

✭✯✮✱✰✳✲ ✏ ✲✰✛✚✮✆✛✁� ✛✵✶✁✷ ✢ ✪ ✭✯✮✱✰✳✲ ✏ ✲✰✛✚✮✆✛✁� ✛✵✶ ✸✷ ✢✏✎
✭✯✮✱✰✳✲ ✏ ✲✰✛✚✮✆✛✁� ✛✵✶✁✺★✢ ✪ ✭✯✮✱✰✳✲ ✏ ✲✰✛✚✮✆✛✁� ✛✵✶ ✸✺ ✢✏✎✭✯✮✱✰✳✲ ✏ ✲✰✛✚✮✆✛✁� ✛✵✶✁✻✑✢✑✎✠✒✔✓✖✕✭✏ ✲✰✛✚✮✆✛✁� ✛✵✶✁✻✭✢ ❑ ✭✯✮✱✰✳✲ ✏ ✲✰✛✚✮✆✛✁� ✛✵✶✁✻✭✢

5.2 Expected routing distance

The above routing hop distribution is derived solely

based on the randomly uniform distribution of nodeIds in

the namespace. Coupled with proximity neighbor selec-

tion in maintaining the entries in Pastry’s routing tables,

the routing hop distribution can be used to analyze the

expected total route distance.

To make the analysis tractable, it is assumed that the

locations of the Pastry nodes are random uniformly dis-

tributed over the surface of a sphere, and that the proxim-

ity metric used by Pastry equals the geographic distance

between pairs of Pastry nodes on the sphere. The uniform

distribution of node locations and the use of geographic

distance as the proximity metric are clearly not realistic.

In Section 6 we will present two sets of simulation re-

sults, one for conditions identical to those assumed in the

analysis, and one based on Internet topology models. A

comparison of the results indicates that the impact of our

assumptions on the results is limited.

Since Pastry nodes are uniformly distributed in the

proximity space, the average distance from a random

node to the nearest node that shares the first digit, the first

two digits, etc., can be calculated based on the density of

such nodes. The following Lemma gives the average dis-

tance in each hop traveled by a message with a random

key sent from a random starting node, as a function of

the hop number and the hop type.

Lemma 2 (1) In routing message ★ , after ❑ ✂❲✆ hops,

if ❇ ✗✔✘✙ is not empty, the expected ❑ ✧✾✡ ✒ ❊✚❏✛✚✜▼☞❑ ◆ ❇ ◆ ✂✝✆ P is

❇ ✏ ✧✵❏ ● � ▼ ✆ ✁
✁ ✫✢✜ ✘✤✣✦✥★✧✩✣✦✥✪ P .

(2) In routing message ★ , if path ✂☎✄ is taken at any given

hop, the hop distance ❑ ✧✾✡ ✒ ❊✚❏✛✚✜▼☞❑ ◆ ❇ ◆ ✂☎✄ P is ✫✭✬ ✮✁ .

(3) In routing message ★ , after ❑ hops, if path✂✎✞ is taken, the hop distance ❑ ✧✾✡ ✒ ❊✚❏✛✚✜▼☞❑ ◆ ❇ ◆ ✂✝✞✌P is

❑ ✧✾✡ ✒ ❊✚❏✛✚✜▼☞❑ ✁ ✆✥◆ ❇ ◆ ✂✎✆ P , which with high probability is

followed by a hop taken via ✂☎✄ , i.e. with distance ✫✭✬ ✮✁ .

The above distance ❑ ✧✾✡ ✒ ❊✚❏✛✚✜▼☞❑ ◆ ❇ ◆ ✂☎✆ P comes from

the density argument. Assuming nodeIds are uniformly

distributed over the surface of the sphere, the average dis-

tance of the next ✂☎✆ hop is the radius of a circle that

contains on average one nodeId (i.e. the nearest one) that

share ▼☞❑ ✜ ✆ P digits with ★ .

Given the vector of the probabilities of taking branches✂✍✄ , ✂✎✆ , and ✂✎✞ at the actual ❑ th hop (e.g. Figure 5), and

the above vector of per-hop distance for the three types of

hops at the ❑ th hop, the average distance of the ❑ th actual

hop is simply the dot-product of the two vectors, i.e. the

weighted sum of the hop distances by the probabilities

that they are taken. These results are presented in the

next section along with simulation results.

8

5.3 Local route convergence

Next, we analyze Pastry’s route convergence property.

Specifically, when two random Pastry nodes send a mes-

sage with the same randomly chosen key, we analyze the

expected distance the two messages travel in the proxim-

ity space until the point where their routes converge, as a

function of the distance between the starting nodes in the

proximity space.

To simplify the analysis, we consider three scenarios.

In the worst-case scenario, it is assumed that at each rout-

ing hop prior to the point where their routes converge,

the messages travel in opposite directions in the prox-

imity space. In the average-case scenario, it is assumed

that prior to convergence, the messages travel such that

their distance in the proximity space does not change. In

the best case scenario, the messages travel towards each

other in the proximity space prior to their convergence.

For each of the above three scenarios, we derive the

probability that the two routes converge after each hop.

The probability is estimated as the intersecting area of

the two circles potentially covered by the two routes at

each hop as a percentage of the area of each circle. Cou-

pling this probability vector with the distance vector (for

different hops) gives the expected distance till route con-

vergence.

Theorem 2 Let
✕ ✆

and
✕ ✕ be the two starting nodes

on a sphere of radius ❇ from which messages with an
identical, random key are being routed. Let the distance
between

✕ ✆
and

✕ ✕ be ✒✯✤ . Then the expected distance
that the two messages will travel before their paths merge
is

� ✄✆☎ ✡ ✏✓�✖☎ ✛✚✶✸✢✑✯
✖ �✂✁☎✄ ❀ ✆❂❇ ❃❅❄

✧✞✝ ❇✟
✧ ❃❅❄ ✏ ❍ ✪ ✭✯✮✱✰✳✲ ✲ ✰❁✭ ✏❀✄❙✛✚�✖☎ ✛✚✶✸✢✳✢✳✲ ✰❁✭ � ✄✆☎ ✡ ✏ ❊ ✛✚✶✸✢

where ✡☞☛✂✧✂✠ ❑ ✧✾✡ ▼◗P ◆ ✒✯✤ ◆ ❇ P ✡ ✠☛✡
✙✌☞✎✍ ❘ ❈✞✏✂✑ ✡ ✒✔✓ ✮✖✕ ✓ ❘ ✒✔✓ ✮✖✕✠✘✗✎✙✛✚✢✜✤✣✤✥✎✦✧✡

✙✌☞✎✍ ❘ ❈✞✏✂✑ ✡ ✒✔✓ ✮✖✕ ✓ ✮✖✕ ,✒✵P ✡ ✒✯✤ ✜ ✕✩★✫✪✭✬✘✮✯✒✬✱✰✳✲ ❑ ✧✾✡ ✒ ❊✚❏✛✚✜▼◗P ◆ ❇ P in the worst case,

or ✒✵P ✡ ✒✯✤ in the average case, or ✒✵P ✡ ✣ ✄✚✞ ▼❖✤ ◆ ✒✯✤ ✁
✕✴★✯✪✭✬✘✮✯✒✬✱✰✳✲ ❑ ✧✾✡ ✒ ❊✚❏✛✚✜▼◗P ◆ ❇ P✺P in the best case, respectively,✵ ▼ ☛ ◆ ✒ ◆ ❇ P denotes the intersecting area of two circles of

radius ☛ centered at two points on a sphere of radius ❇
that are a distance of ✒✷✶✌✕ ☛ apart, and

✵
✏✂✸ ❙✔✹✱✺✾❘✂✻ ▼ ☛ ◆ ❇ P

denotes the surface area of a circle of radius ☛ on a

sphere of radius ❇ .

Figure 7 plots the average distance traveled by two

messages sent from two random Pastry nodes with the

same random key, as a function of the distance between

the two starting nodes. Results are shown for the “worst

case”, “average case”, and “best case” analysis.

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500 3000 3500

A
ve

ra
ge

 P
as

tr
y

di
st

an
ce

 to
 c

on
ve

rg
en

ce
 p

oi
nt

Network distance between source nodes

Worst case, N=60k
Average case, N=60k

Best case, N=60k

Figure 7: Distance among source nodes routing messages

with the same key, versus the distance traversed until the two

paths converge, for a 60,000 node Pastry network, with l=32

and b=4. (From analysis.)

6 Experimental results

Our analysis of proximity neighbor selection in Pastry

has relied on assumptions that do not generally hold in

the Internet. For instance, the triangle inequality does

not generally hold for most practical proximity metrics

in the Internet. Also, nodes are not uniformly distributed

in the resulting proximity space. Therefore, it is neces-

sary to confirm the robustness of Pastry’s locality prop-

erties under more realistic conditions. In this section, we

present experimental results quantifying the performance

of proximity neighbor selection in Pastry under realis-

tic conditions. The results were obtained using a Pastry

implementation running on top of a network simulator,

using Internet topology models. The Pastry parameters

were set to ✠✰✡ ☞ and the leafset size ✥ ✡ ❯✂✕ . Unless

otherwise stated, results where obtained with a simulated

Pastry overlay network of 60,000 nodes.

6.1 Network topologies

Three simulated network topologies were used in the ex-

periments. The “Sphere” topology corresponds to the

topology assumed in the analysis of Section 5. Nodes

are placed at uniformly random locations on the surface

of a sphere with radius 1000. The distance metric is

9

based on the topological distance between two nodes on

the sphere’s surface. Results produced with this topol-

ogy model should correspond closely to the analysis, and

it was used primarily to validate the simulation environ-

ment. However, the sphere topology is not realistic, be-

cause it assumes a uniform random distribution of nodes

on the Sphere’s surface, and its proximity space is very

regular and strictly satisfies the triangle inequality.

A second topology was generated using the Georgia

Tech transit-stub network topology model [15]. The

round-trip delay (RTT) between two nodes, as provided

by the topology graph generator, is used as the proximity

metric with this topology. We use a topology with 5050

nodes in the core, where a LAN with an average of 100

nodes is attached to each core node. Out of the result-

ing 505,000 LAN nodes, 60,000 randomly chosen nodes

form a Pastry overlay network. As in the real Internet, the

triangle inequality does not hold for RTTs among nodes

in the topology model.

Finally, we used the Mercator topology and routing

models [14]. The topology model contains 102,639

routers and it was obtained from real measurements of

the Internet using the Mercator program [5]. The authors

of [14] used real data and some simple heuristics to as-

sign an autonomous system to each router. The resulting

AS overlay has 2,662 nodes. Routing is performed hier-

archically as in the Internet. A route follows the shortest

path in the AS overlay between the AS of the source and

the AS of the destination. The routes within each AS fol-

low the shortest path to a router in the next AS of the AS

overlay path.

We built a Pastry overlay with 60,000 nodes on this

topology by picking a router for each node randomly and

uniformly, and attaching the node directly to the router

with a LAN link. Since the topology is not annotated

with delay information, the number of routing hops in

the topology was used as the proximity metric for Pastry.

We count the LAN hops when reporting the length of

the Pastry routes. This is conservative because the cost

of these hops is usually negligible and Pastry’s overhead

would be lower if we did not count LAN hops.

6.2 Pastry routing hops and distance ratio

In the first experiment, 200,000 lookup messages are

routed using Pastry from randomly chosen nodes, using a

random key. Figure 8 shows the number of Pastry routing

hops and the distance ratio for the sphere topology. Dis-

tance ratio is defined as the ratio of the distance traversed

by a Pastry message to the distance between its source

and destination nodes, measured in terms of the proxim-

ity metric. The distance ratio can be interpreted as the

penalty, expressed in terms of the proximity metric, as-

sociated with routing a messages through Pastry instead

of sending the message directly in the Internet.

Four sets of results are shown. “Expected” represents

the results of the analysis in Section 5. “Normal routing

table” shows the corresponding experimental results with

Pastry. “Perfect routing table” shows results of experi-

ments with a version of Pastry that uses perfect routing

table. That is, each entry in the routing table is guar-

anteed to point to the nearest node with the appropriate

nodeId prefix. Finally, “No locality” shows results with a

version of Pastry where the locality heuristics have been

disabled.

3.67 3.68 3.68 3.69

1.26 1.33 1.37

3.68

0

0.5

1

1.5

2

2.5

3

3.5

4

Expected Perfect
Routing
Table

Normal
Routing
Table

No
Locality

Expected Perfect
Routing
Table

Normal
Routing
Table

No
Locality

Number of hops Distance ratio

Figure 8: Number of routing hops and distance ratio,

sphere topology.

All experimental results correspond well with the re-

sults of the analysis, thus validating the experimental ap-

paratus. As expected, the expected number of routing

hops is slightly below ✥★✧✪✩ �✵✴ � ✤ ◆ ✤❚✤❚✤ ✡ ❯✁� ✂☎✄ and the dis-

tance ratio is small. The reported hop counts are virtu-

ally independent of the network topology, therefore we

present them only for the sphere topology.

The distance ratio obtained with perfect routing tables

is only marginally better than that obtained with the real

Pastry protocol. This confirms that the node join proto-

col produces routing tables of high quality, i.e., entries

refer to nodes that are nearly the closest among nodes

with the appropriate nodeId prefix. Finally, the distance

ratio obtained with the locality heuristics disabled is sig-

nificantly worse. This speaks both to the importance of

topology-aware routing, and the effectiveness of proxim-

ity neighbor selection.

10

6.3 Routing distance

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5
Hop number

P
er

-h
op

 d
is

ta
nc

e

Expected

Perfect Routing Table

Normal Routing Table

No Locality

Figure 9: Distance traversed per hop, sphere topology.

Figure 9 shows the distance messages travel in each

consecutive routing hop. The results confirm the expo-

nential increase in the expected distance of consecutive

hops up to the fourth hops, as predicted by the analysis.

Note that the fifth hop is only taken by a tiny fraction

(0.004%) of the messages. Moreover, in the absence of

the locality heuristics, the average distance traveled in

each hop is constant and corresponds to the average dis-

tance between nodes (
✆✎✁☎✄✗✆ ✡ ▼✁�✄✂ ☛✂P✬✙☎✕ , where r is the

radius of the sphere).

0

100

200

300

400

500

600

1 2 3 4 5

Hop Number

P
e

r-
h

o
p

 d
is

ta
n

c
e

Normal Routing Tables

Perfect Routing Tables

No locality

Figure 10: Distance traversed per hop, GATech topology.

Figures 10 and 11 show the same results for the GAT-

ech and the Mercator topologies, respectively. Due to

the non-uniform distribution of nodes and the more com-

plex proximity space in these topologies, the expected

distance in each consecutive routing step no longer in-

creases exponentially, but it still increases monotonically.

Moreover, the node join algorithm continues to produce

routing tables that refer to nearby nodes, as indicated by

the modest difference in hop distance to the perfect rout-

ing tables in the first three hops.

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5
Hop Number

P
er

-h
op

 d
is

ta
nc

e

Normal Routing Tables

Perfect Routing Tables

No Locality

Figure 11: Distance traversed per hop, Mercator topol-

ogy.

The proximity metric used with the Mercator topol-

ogy makes proximity neighbor selection appear in an un-

favorable light. Since the number of nodes within ❚ IP

routing hops increases very rapidly with ❚ , there are very

few “nearby” Pastry nodes. Observe that the average dis-

tance traveled in the first routing hop is almost half of

the average distance between nodes (i.e., it takes almost

half the average distance between nodes to reach about

16 other Pastry nodes). As a result, Pastry messages tra-

verse relatively long distances in the first few hops, which

leads to a relatively high distance ratio. Nevertheless,

these results demonstrate that proximity neighbor selec-

tion works well even under adverse conditions.

Figures 12, 13 and 14 show raster plots of the distance

messages travel in Pastry, as a function of the distance

between the source and destination nodes, for each of the

three topologies, respectively. Messages were sent from

20,000 randomly chosen source nodes with random keys

in this experiment. The mean distance ratio is shown in

each graph as a solid line.

The results show that the distribution of the distance

ratio is relatively tight around the mean. Not surpris-

ingly, the sphere topology yields the best results, due to

its uniform distribution of nodes and the geometry of its

proximity space. However, the far more realistic GAT-

ech topology yields still very good results, with a mean

distance ratio of 1.59, a maximal distance ratio of about

8.5, and distribution that is fairly tight around the mean.

Even the least favorable Mercator topology yields good

results, with a mean distance ration of 2.2 and a maxi-

mum of about 6.5.

11

0

1000

2000

3000

4000

5000

6000

7000

0 400 800 1200 1600 2000 2400 2800 3200

Distance between source and destination

D
is

ta
n

c
e

 t
ra

v
e

le
d

 b
y

 P
a

s
tr

y
 m

e
s

s
a

g
e

Mean = 1.37

Figure 12: Distance traversed versus distance between

source and destination, sphere topology.

0

500

1000

1500

2000

2500

0 200 400 600 800 1000 1200 1400

Distance between source and destination

D
is

ta
n

c
e

 t
ra

v
e

le
d

 b
y

 P
a

s
tr

y
 m

e
s

s
a

g
e

Mean = 1.59

Figure 13: Distance traversed versus distance between

source and destination, GATech topology.

6.4 Local route convergence

The next experiment evaluates the local route conver-

gence property of Pastry. In the experiment, 10 nodes

were selected randomly, and then for each of these nodes,

6,000 other nodes were chosen such that the topological

distance between each pair provides good coverage of the

range of possible distances. Then, 100 random keys were

chosen and messages where routed via Pastry from each

of the two nodes in a pair, with a given key.

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30 35 40 45

Distance between source and destination

D
is

ta
n

c
e

 t
ra

v
e

le
d

 b
y

 P
a

s
tr

y
 m

e
s

s
a

g
e Mean = 2.2

Figure 14: Distance traversed versus distance between

source and destination, Mercator topology.

To evaluate how early the paths convergence, we use

the metric ▼ ❘✁�❘✁�✄✂ ✏
✥

✥ ✜ ❘✁�❘✁�✄✂ ✏ ☎✥ P✬✙☎✕ where,
✏ ❘ is the distance

traveled from the node where the two paths converge to

the destination node, and ❏ �❘ and ❏ ✁❘ are the distances trav-

eled from each source node to the node where the paths

converge. The metric expresses the average fraction of

the length of the paths traveled by the two messages that

was shared. Note that the metric is zero when the paths

converge in the destination. Figures 15, 16 and 17 show

the average of the convergence metrics versus the dis-

tance between the two source nodes. As expected, when

the distance between the source nodes is small, the paths

are likely to converge quickly. This result is important

for applications that perform caching, or rely on efficient

multicast trees [11, 12].

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 400 800 1200 1600 2000 2400 2800 3200

Distance between two source nodes

C
o

n
v

e
rg

e
n

c
e

 m
e

tr
ic

Figure 15: Convergence metric versus the distance be-

tween the source nodes, sphere topology.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000 1200

Distance between two source nodes

C
on

ve
rg

en
ce

 m
et

ric

Figure 16: Convergence metric versus distance between

the source nodes, GATech topology.

6.5 Overhead of node join protocol

Next, we measure the overhead incurred by the node join

protocol to maintain the proximity invariant in the rout-

ing tables. We quantify this overhead in terms of the

number of probes, where each probe corresponds to the

12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20 25 30 35 40

Distance between two source nodes

C
o

n
v

e
rg

e
n

c
e

 M
e

tr
ic

Figure 17: Convergence metric versus distance between

the source nodes, Mercator topology.

communication required to measure the distance, accord-

ing to the proximity metric, among two nodes. Of course,

in our simulated network, a probe simply involves look-

ing up the corresponding distance according to the topol-

ogy model. However, in a real network, probing would

likely require at least two message exchanges. The num-

ber of probes is therefore a meaningful measure of the

overhead required to maintain the proximity invariant.

The average number of probes performed by a newly

joining node was 29, with a minimum of 23 and a maxi-

mum of 34. These results were virtually independent of

the overlay size, which we varied from 1,000 to 60,000

nodes. In each case, the probes performed by the last

ten nodes that joined the Pastry network were recorded,

which are the nodes likely to perform the most probes

given the size of the network at that stage. The corre-

sponding average number of probes performed by other

Pastry nodes during the join was about 70, with a mini-

mum of 2 and a maximum of 200.

It is assumed here that once a node has probed another

node, it stores the result and does not probe again. The

number of nodes contacted during the joining of a new

node is ▼ ✕✂✖ ✁ ✆ P ✥★✧✪✩ ✁✬✫✮✭ ✜ ✥ , where N is the number of

Pastry nodes. This follows from the expected number of

nodes in the routing table, and the size of the leaf set.

Although every node that appears in the joining node’s

routing table receives information about all the entries

in the same row of the joining node’s routing table, it is

very likely that the receiving node already knows many

of these nodes, and thus their distance. As a result, the

number of probes performed per node is low (on average

less than 2). This means that the total number of nodes

probed is low, and the probing is distributed over a large

number of nodes. The results were virtually identical for

the GATech and the Mercator topologies.

6.6 Node failure

In the next experiment, we evaluate the node failure re-

covery protocol (Section 4.1) and the routing table main-

tenance (Section 4.1). Recall that leaf set repair is instan-

taneous, failed routing table entries are repaired lazily

upon next use, and a periodic routing table maintenance

task runs periodically (every 20 mins) to exchange infor-

mation with randomly selected peers.

In the experiment, a 50,000 node Pastry overlay is cre-

ated based on the GATech topology, and 200,000 mes-

sages from random sources with random keys are routed.

Then, 20,000 randomly selected nodes are made to fail

simultaneously, simulating conditions that might occur in

the event of a network partition. Prior to the next periodic

routing table maintenance, a new set of 200,000 random

message are routed. After another periodic routing table

maintenance, another set of 200,000 random messages

are routed.

Figure 18 shows both the number of hops and the dis-

tance ratio at various stages in this experiment. Shown

are the average number of routing hops and the average

distance ratio, for 200,000 messages each before the fail-

ure, after the failure, after the first and after the second

round of routing table maintenance. The “no failure”

result is included for comparison and corresponds to a

30,000 node Pastry overlay with no failures. Moreover,

to isolate the effects of the routing table maintenance, we

give results with and without the routing table mainte-

nance enabled.

3.6

4.2

3.8
3.6

3.5

1.6

1.9
1.7 1.6 1.6

3.6

4.2
4.1 4.1

3.5

1.6

1.9 1.8 1.8
1.6

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Before
failure

After
failure

After 1
round

After 2
rounds

No
failure

Before
failure

After
failure

After 1
round

After 2
rounds

No
failure

50000 30000 50000 30000

Number of Hops Distance Ratio

Routing Table Maintenance Enabled

Routing Table Maintenance Disabled

Figure 18: Routing hops and distance ratio for a 50,000

node Pastry overlay when 20,000 nodes simultaneously

fail, GATech topology.

During the first 200,000 message transmissions after

the massive node failure, the average number of hops and

average distance ratio increase only mildly (from 3.54 to

4.17 and 1.6 to 1.86, respectively). This demonstrates the

13

robustness of Pastry in the face of massive node failures.

After each round, the results improve and approach those

before the failure after two rounds.

With the routing table maintenance disabled, both the

number of hops and the distance ratio do not recover as

quickly. Consider that the routing table repair mecha-

nism is lazy and only repairs entries that are actually

used. Moreover, a repair generally involves an extra rout-

ing hop, because the message is routed to a node that does

not share a longer prefix with the key. Each consecutive

burst of 200,000 messages is likely to encounter different

routing table entries that have not yet been fixed (about

95,000 entries were repaired during each bursts). The pe-

riodic routing table maintenance, on the other hand, re-

places failed entries that have not yet been used as part of

its routine. It is intuitive to see why the distance ratio re-

covers more slowly without routing table maintenance.

The replacement entry provided by the repair mecha-

nisms is generally relatively close, but not necessarily

among the closest. The periodic routing table mainte-

nance performs probing and is likely to replace such an

entry with a better one. Finally, we point out that routing

table maintanance also takes care of changing distances

among nodes over time.

We also measured the cost of the periodic routing table

maintenance, in terms of network probes, to determine

the distance of nodes. On average, less than 20 nodes

are being probed each time a node performs routing table

maintenance, with a maximum of 82 probes. Since the

routing table maintenance is performed every 20 minutes

and the probes are likely to target different nodes, this

overhead is not significant.

6.7 Load balance

Next, we consider how maintaining the proximity invari-

ant in the routing tables affects load balance in the Pastry

routing fabric. In the simple Pastry algorithm without the

locality heuristics, or in protocols like Chord that don’t

consider network proximity, the “indegree” of a node,

i.e., the number of routing table entries referring to a any

given node, should be balanced across all nodes. This is

a desirable property, as it tends to balance message for-

warding load across all participating nodes in the overlay.

When routing tables entries are initialized to refer to

the nearest node with the appropriate prefix, this prop-

erty may be compromised, because the distribution of in-

degrees is now influenced by the structure of the underly-

ing physical network topology. Thus, there is an inherent

tradeoff between proximity neighbor selection and load

balance in the routing fabric. The purpose of the next

experiment is to quantify the degree of imbalance in in-

degrees of nodes, caused by the proximity invariant.

Figure 19 shows the cumulative distribution of inde-

grees for a 60,000 node Pastry overlay, based on the

GATech topology. As expected, the results show that

the distribution of indegrees is not perfectly balanced.

The results also show that the imbalance is most signif-

icant at the top levels of the routing table (not shown in

the graph), and that the distribution has a thin tail. This

suggests that it is appropriate to deal with these poten-

tial hotspots reactively rather than proactively. If one of

the nodes with a high indegree becomes a hotspot, which

will depend on the workload, it can send backoff mes-

sages. The nodes that receive such a backoff message

find an alternative node for the same slot using the same

technique as if the node was faulty. Since the most sig-

nificant imbalance occurs at the top levels of the routing

table, changing routing table entries to point to an alter-

native node will not increase the distance ratio signifi-

cantly. There are many alternative nodes that can fill out

these slots and the distance traversed in the first hops ac-

counts for a small fraction of the total distance traversed.

We conclude that imbalance in the routing fabric as a re-

sult of the proximity invariant does not appear to be a

significant problem.

0

10000

20000

30000

40000

50000

60000

1 10 100 1000 10000

In-degree

C
u

m
a

la
ti

v
e

 n
u

m
b

e
r

o
f

n
o

d
e

s 1023

Figure 19: Indegree distribution of 60,000 Pastry nodes,

GATech topology.

6.8 Discovering a nearby seed node

Next, we evaluate the discovery algorithm used to find a

nearby node, presented in Section 4.2. In each of 1,000

trials, we chose a pair of nodes randomly among the

60,000 Pastry nodes. One node in the pair is considered

14

Exact Average Average Number

closest Distance RT0 Distance Probes

Sphere 95.3% 11.0 37.1 157

GATech 83.7% 82.1 34.1 258

Mercator 32.1% 2.6 6.0 296

Table 1: Results for the closest node discovery algorithm.

the joining node that wishes to locate a nearby Pastry

node, the other is treated as the seed Pastry node known

to the joining node. Using this seed node, the node dis-

covery algorithm was used to discover a node near the

joining node, according to the proximity metric. Table 1

shows the results for the three different topologies. The

first column shows the number of times the algorithm

produced the closest existing node. The second column

shows the average distance, according to the proximity

metric, of the node produced by the algorithm, in the

cases where the nearest node was not found. For com-

parison, the third column shows the average distance be-

tween a node and its row zero routing table entries. The

fourth column shows the number of probes performed

per trial.

In the sphere topology, over 95% of the found nodes

are the closest. When the closest is not found, the aver-

age distance to the found node is significantly less than

the average distance to the entries in the first level of

the routing table. More interestingly, this is also true

for the Mercator topology, even though the number of

times the closest node was found is low with this topol-

ogy. The GATech result is interesting, in that the fraction

of cases where the nearest node was found is very high

(almost 84%), but the average distance of the produces

node in the cases where the closest node was not found

is high. The reason is that the highly regular structure of

this topology causes the algorithm to sometimes get into

a “local minimum”, by getting trapped in a nearby net-

work. Overall, the algorithm for locating a nearby node is

effective. Results show that the algorithms allows newly

joining nodes to efficiently discover a nearby node in the

existing Pastry overlay.

6.9 Testbed measurements

Finally, we performed preliminary measurements in a

small testbed of about 20 sites throughout the US and

Europe. The measured results were as expected, but the

testbed is too small to obtain interesting an representative

results. We expect that a current initiative by a number

of organizations to put together a larger wide-area testbed

will allow us to include such results in the final version

of this paper.

7 Conclusion

This paper presents a study of topology-aware routing

in structured p2p overlay protocols. We compare ap-

proaches to topology-aware routing and identify prox-

imity neighbor selection as the most promising tech-

nique. We present improved protocols for proximity

based neighbor selection in Pastry, which significantly

reduce the overhead of topology-aware overlay construc-

tion and maintenance. Analysis and simulations confirm

that proximity neighbor selection yields good perfor-

mance at very low overhead. We conclude that topology-

aware routing can be accomplished effectively and with

low overhead in a self-organizing, structured peer-to-peer

overlay network.

References

[1] The Gnutella protocol specifi cation, 2000.

http://dss.clip2.com/GnutellaProtocol04.pdf.

[2] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong.

Freenet: A distributed anonymous information storage

and retrieval system. In Workshop on Design Issues

in Anonymity and Unobservability, pages 311–320, July

2000. ICSI, Berkeley, CA, USA.

[3] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Intro-

duction to Algorithms. The MIT Press, Cambridge, MA,

1990.

[4] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and

I. Stoica. Wide-area cooperative storage with cfs. In

18th ACM Symposium on Operating Systems Principles,

Oct. 2001.

[5] R. Govindan and H. Tangmunarunkit. Heuristics for in-

ternet map discovery. In Proc. 19th IEEE INFOCOM,

pages 1371–1380, Tel Aviv, Israel, March 2000. IEEE.

[6] P. Maymounkov and D. Mazières. Kademlia: A peer-

to-peer information system based on the xor metric. In

Proceedings of the 1st International Workshop on Peer-

to-Peer Systems (IPTPS’02), Boston, MA, Mar. 2002.

[7] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and

S. Shenker. A Scalable Content-Addressable Network.

In Proc. of ACM SIGCOMM, Aug. 2001.

15

[8] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker.

Topologically-aware overlay construction and server se-

lection. In Proc. 21st IEEE INFOCOM, New York, NY,

June 2002.

[9] S. Ratnasamy, S. Shenker, and I. Stoica. Routing algo-

rithms for dhts: Some open questions. In Proceedings of

the 1st International Workshop on Peer-to-Peer Systems

(IPTPS’02), Boston, MA, Mar. 2002.

[10] A. Rowstron and P. Druschel. Pastry: Scalable, dis-

tributed object location and routing for large-scale peer-

to-peer systems. In International Conference on Dis-

tributed Systems Platforms (Middleware), Nov. 2001.

[11] A. Rowstron and P. Druschel. Storage management and

caching in PAST, a large-scale, persistent peer-to-peer

storage utility. In 18th ACM Symposium on Operating

Systems Principles, Oct. 2001.

[12] A. Rowstron, A.-M. Kermarrec, M. Castro, and P. Dr-

uschel. Scribe: The design of a large-scale event noti-

fi cation infrastructure. In Third International Workshop

on Networked Group Communications, Nov. 2001.

[13] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and

H. Balakrishnan. Chord: A scalable peer-to-peer lookup

service for internet applications. In Proceedings of the

ACM SIGCOMM ’01 Conference, San Diego, California,

August 2001.

[14] H. Tangmunarunkit, R. Govindan, D. Estrin, and

S. Shenker. The impact of routing policy on internet

paths. In Proc. 20th IEEE INFOCOM, Alaska, USA,

Apr. 2001.

[15] E. Zegura, K. Calvert, and S. Bhattacharjee. How to

model an internetwork. In INFOCOM96, 1996.

[16] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph.

Tapestry: An infrastructure for fault-resilient wide-area

location and routing. Technical Report UCB//CSD-01-

1141, U. C. Berkeley, April 2001.

Appendix A: Proofs of analytical results

We give proofs for the Lemmas and Theorems stated in

Section 5. Their numberings here may be different from

before.

A.1 Route probability matrix

Lemma 1 states the probability of taking path ✂✝✄ at a

specific hop during the routing of a random message.

Lemma 1 Assume path ✂☎✆ has been taken during the

first ❑ hops in routing message with key ★ , i.e. the mes-

sage is at a node � that shares the first ❑ digits with ★ . If

there exist P ❉ nodeIds smaller than ★ that share the same

❑ digits with ★ , and P✳❙ nodeIds larger than ★ that share

the same ❑ digits with ★ , then the probability that node

� will forward the message using ✂☎✄ (i.e., ★ is within

� ’s leaf set) is

✡☞☛✂✧✂✠ ✡ ✄ ▼◗P ❉ ◆ P✱❙ ◆ ❑ ◆ ✥✆P ✡
� ❉

✒✂✁ ✂ ✒ ✚ if h = 0

min ✡ ✒✂✁ ✓ ❉ ■ ✁ ✕ ✂ min ✡ ✒ ✚ ✓ ❉ ■ ✁ ✕
✒✂✁ ✂ ✒ ✚ if h ✄ 0

Proof: Assume the numerically closest nodeId always

shares some prefix with the message key. When the

message key is within ✥✱✙☎✕ nodes from the boundary

of the subdomain sharing the same prefix of ❑ dig-

its, the number of nodes in the subdomain whose leaf-

sets cover ★ drops to min ▼◗P ❉ ◆ ✥✱✙☎✕ P ✜ min ▼◗P✱❙ ◆ ✥✱✙☎✕ P , and

thus the probability that ✂☎✄ will be taken next is
min ✡ ✒✂✁ ✂ ❉ ■ ✁ ✕ ✂ min ✡ ✒ ✚ ✂ ❉ ■ ✁ ✕

✒✂✁ ✂ ✒ ✚ . In the very first hop, the pre-

fix is of zero length, thus there is no bundary effect.

Since the numerically closest nodeId to message ★
may not share any leading digits with the key, the above

probability fails to account for one additional routing hop

in such cases. Since this case is rare in practice, it has vir-

tually no effect on the above probability.

Lemma 2 Assume branch ✂✝✆ has been taken during the
first ❑ hops in routing a random message ★ , i.e. the mes-
sage ★ is at a node � which shares the first ❑ digits with★ . Let ✩ be the total number of random uniformly dis-
tributed nodeIds that share the first ❑ digits with ★ . The
probabilities in taking different branches at the ▼☞❑ ✜ ✆ P th
hop is

☎ ✏ ✲✰✛✚✮✆✛✵✴ ✢✑✯

✪✫✫✫✫
✬
✭✯✮✱✰✳✲ ✏ ✲✰✛✚✮✆✛✵✴✾✛✵✶✁✷ ✢✭✯✮✱✰✳✲ ✏ ✲✰✛✚✮✆✛✵✴✾✛✵✶ ✸✷ ✢✭✯✮✱✰✳✲ ✏ ✲✰✛✚✮✆✛✵✴✾✛✵✶✁✺★✢✭✯✮✱✰✳✲ ✏ ✲✰✛✚✮✆✛✵✴✾✛✵✶✹✸✺ ✢✭✯✮✱✰✳✲ ✏ ✲✰✛✚✮✆✛✵✴✾✛✵✶✁✻✭✢

✼✾✽✽✽✽
✿ ✯

✙❁❀✚✔ ✤❂
✷❁❃❅❄

❆❂❇✝✆ ❃❅❄
✲ ✏ ❊ ✍ ❋ ✴✾✛■❍✣●❏ ✢ ❑

❆ ✔ ❇✝✆❂❇ ❃❅❄
✲ ✏ ❊ ❋ ✴ ✪▲❊ ✍ ✛ �

✣●❏❃✪ ❍ ✢✁❑ ✭✯✮✱✰✳✲ ✭ ✴ ✲◆▼ ✏ ❊ ✛❖❊ ✍ ✛✵✴ ✪▲❊ ✍ ✪▲❊ ✛❙✲✰✛✚✮ ✢
Proof: There are ✕✂✖ subdomains of nodeIds that share the

first ❑ digits as ★ but differ in the ▼☞❑ ✜ ✆ P th digit. With

equal probabilities, ★ and � can fall into any of these

✕☎✖ subdomains. Within each subdomain, the number of

nodes P ✙ follows the binomial distribution, i.e. with prob-

ability ✠✥▼◗P ✙ �✔✩ ◆ �

✁✬✫ P , P ✙ nodes can end up in each subdo-

main. Depending on which subdomain ★ falls into, there

16

can be between ✤ and up to ✕✓✖ ✁ ✆
subdomains to the left

of ★ ’s subdomain. If there are ✒ subdomains to the left of★ ’s subdomain, the number of nodeIds P in those subdo-

mains follows binomial distribution ✠✥▼◗P❅� ✭ ✁ P ✙ ◆ ❘
✁✬✫ ● � P .

Each iteration in the innermost summation corre-

sponds to a particular distribution of P ❉ ,P✳❘ , and P✱❙ , the

number of nodeIds to the left of, within the same as,

to the right of ★ ’s subdomain. In the formula above,

these values are P ◆ P ✙ , and ✩ ✁ P ✙ ✁ P . The vector func-

tion ✡☞☛✂✧✂✠ ✡ ✄ ✠ ✏ ▼◗P ❉ ◆ P✳❘ ◆ P✱❙ ◆ ❑ ◆ ✥✆P takes such a distribution,

and assumes equal probability that � can be any of theP ❉ ✜ P✳❘✑✜ P✱❙ nodeIds and ★ can be anywhere in the name

space spanned by these nodeIds, and calculates the prob-

abilities that node � will forward message ★ using ✂❲✄ ,✂✛✙✄ , ✂✎✆ , ✂✛✙✆ , or ✂✎✞ , respectively.

Function ✡☞☛✂✧✂✠ ✡ ✄ ✠ ✏ ▼◗P ❉ ◆ P✳❘ ◆ P✱❙ ◆ ❑ ◆ ✥✆P is calculated as fol-

lows. If P●❘ ✡ ✤ , ★ ’s subdomain is empty, the next

routing hop takes either ✂☎✄ or ✂✎✞ . The probability

of ✂✍✄ is ✡☞☛✂✧✂✠ ✡ ✄ ▼◗P ❉ ◆ P✱❙ ◆ ❑ ◆ ✥✆P , and that of ✂✎✄ is
✆ ✁✡☞☛✂✧✂✠ ✡ ✄ ▼◗P ❉ ◆ P✱❙ ◆ ❑ ◆ ✥✆P . Since we assume uniform distribu-

tion of ▼◗P ❉ ✜ P✱❙ P in the subdomain of the namespace, the

probability of ✂ ✙✄ , i.e. � is numerically closest to ★ , is✆ ✙❄▼◗P ❉ ✜ P✱❙ P . If P✳❘ ✄ ✤ , ★ ’s subdomain is not empty, the

next routing hop takes either ✂☎✄ or ✂✎✆ , and the probabil-

ity of ✂✛✙✄ is
✆ ✙❄▼◗P ❉ ✜ P✳❘ ✜ P✱❙ P . Since there are P●❘ nodeIds

that share the first ▼☞❑ ✜ ✆ P digits with ★ , there can be

▼◗P✳❘ ✜ ✆ P intervals in ★ ’s subdomain that ★ can fall in

with equal probability. For each interval, probabilities of✂✍✄ and ✂✎✆ are caculated before. Furthermore, if ✂✝✄ is

not taken and ✂☎✆ is taken, there is a certain probability

that � is among the P●❘ nodes that already shares the next

digit with ★ , in which case the next hop is skipped. This

probability contributes to ✂✚✙✆ . The probability equals the

number of nodeIds among the P ❘ nodes that are not within

✥✱✙☎✕ from ★ , over the ▼◗P ❉ ✜✠P✳❘ ✜✠P✱❙ P possible candidates

of � .

Lemma 3 Let ✭ be the total number of random uni-

formly distributed nodeIds. Row 0 of the route prob-

ability matrix, i.e. the probabilities in taking differ-

ent branches at the first hop in routing a random mes-

sage from a random starting nodeId, is
✁ ▼❖✤ ◆ ✥ ◆ ✭ P ✡✂ ▼❖✤ ◆ ✥ ◆ ✭ P .

To calculate the probabilities at subsequent hops, note

that value P ✲ gives the number of nodeIds that share the

first digit with message ★ , and the probabilities at the

second hop is conditioned on the P ✲ value. One way of

calculating them is thus to repeat the above case analysis

recursively using P ✲ at the second hop, P � at the third hop,

etc. The following theorem gives the probabilities at the

▼☞❑☛✜ ✆ P th hop.

Theorem 1 Let N be the total number of random uni-
formly distributed nodeIds. Row ❑ of the route prob-
ability matrix, i.e. the probabilities in taking different
branches at the ▼☞❑ ✜ ✆ P th hop in routing a random mes-
sage ★ starting from a random nodeId, is

✄ ✏ ✲✰✛✚✮✆✛✁� ✢ ✯

✪✫✫✫✫
✬
✭✯✮✱✰✳✲ ✏ ✲✰✛✚✮✆✛✁� ✛✵✶✁✷ ✢✭✯✮✱✰✳✲ ✏ ✲✰✛✚✮✆✛✁� ✛✵✶✹✸✷ ✢✭✯✮✱✰✳✲ ✏ ✲✰✛✚✮✆✛✁� ✛✵✶✁✺★✢✭✯✮✱✰✳✲ ✏ ✲✰✛✚✮✆✛✁� ✛✵✶✹✸✺ ✢✭✯✮✱✰✳✲ ✏ ✲✰✛✚✮✆✛✁� ✛✵✶✁✻✭✢

✼✾✽✽✽✽
✿ ✯✱✣ ❏ ✆❂❇❉❈ ❃❅❄

✲ ✏ ❊ ❄●❋ � ✛ ❍✣●❏ ✢ ❑

✣ ❏ ❇❉❈❂❇✆☎ ❃❅❄
✲ ✏ ❊ ✤ ❋ ❊ ❄ ✛■❍✣●❏ ✢ ❑ ✁ ✁ ✁✳❑✍✣ ❏

❇✝✆✞✝ ✄❂❇✝✆✞✝ ☎ ❃❅❄
✲ ✏ ❊ ✍ ✔ ✤ ❋ ❊ ✍ ✔❄✙ ✛■❍✣●❏ ✢ ❑ ☎ ✏ ✲✰✛✚✮✆✛❖❊ ✍ ✔ ✤ ✢

Theorem 2 Let the expected number of additional hops
after first time taking ✂✝✞ at the ❑ th hop be denoted as✕ ✡✌☞ ▼☞❑ ◆ ✥ ◆ ✭ ◆ ✂✎✞✌P . The expected number of routing hops
in routing a message with random key ★ starting from a
node randomly chosen from the ✭ nodes is

✤ ✙✚✦❙✘ ❏ ✔ ✤❂
✍ ❃❅❄

✭✯✮✱✰✳✲ ✏ ✲✰✛✚✮✆✛✁� ✛✵✶✁✷ ✢★✪ ✭✯✮✱✰✳✲ ✏ ✲✰✛✚✮✆✛✁� ✛✵✶ ✸✷ ✢ ✎
✭✯✮✱✰✳✲ ✏ ✲✰✛✚✮✆✛✁� ✛✵✶✁✺★✢★✪ ✭✯✮✱✰✳✲ ✏ ✲✰✛✚✮✆✛✁� ✛✵✶ ✸✺ ✢ ✎✭✯✮✱✰✳✲ ✏ ✲✰✛✚✮✆✛✁� ✛✵✶✁✻✭✢ ✎ ✒✔✓✖✕✭✏ ✲✰✛✚✮✆✛✁� ✛✵✶✁✻✑✢ ❑ ✭✯✮✱✰✳✲ ✏ ✲✰✛✚✮✆✛✁� ✛✵✶✁✻✭✢

Proof: The sum ✡☞☛✂✧✂✠✥▼☞❑ ◆ ✥ ◆ ✭ ◆ ✂✎✄✕P✗✜▲✡☞☛✂✧✂✠✥▼☞❑ ◆ ✥ ◆ ✭ ◆ ✂✎✆ P✗✜✡☞☛✂✧✂✠✥▼☞❑ ◆ ✥ ◆ ✭ ◆ ✂✎✞ P is the probability that the routing takes

the ▼☞❑ ✜ ✆ P th hop, and out of ✡☞☛✂✧✂✠✥▼☞❑ ◆ ✥ ◆ ✭ ◆ ✂✝✆ P , with

probability ✡☞☛✂✧✂✠✥▼☞❑ ◆ ✥ ◆ ✭ ◆ ✂ ✙✆ P , the routing skips future

hops by one, and out of ✡☞☛✂✧✂✠✥▼☞❑ ◆ ✥ ◆ ✭ ◆ ✂☎✄✕P , with proba-

bility ✡☞☛✂✧✂✠✥▼☞❑ ◆ ✥ ◆ ✭ ◆ ✂ ✙✄ P , the routing skips the ✂☎✄ hop at

the ▼☞❑✳✜ ✆ P th hop. If the intermediate node after taking

❑ hops shares additional digits other than the ▼☞❑ ✜ ✆ P th
digit, the additional skipped hops will be accounted for

by ✡☞☛✂✧✂✠✥▼☞❑ ✜ ✆✥◆ ✥ ◆ ✭ ◆ ✂✛✙✆ P , ✡☞☛✂✧✂✠✥▼☞❑ ✜ ✕ ◆ ✥ ◆ ✭ ◆ ✂✛✙✆ P , etc.

Lemma 4 Assume that branch ✂✝✆ was taken during

the first ❑ hops in routing a message with key ★ ,

branch ✂☎✞ is taken in the ▼☞❑ ✜ ✆ P th hop, and there

are ❚ nodeIds sharing the first ▼☞❑ ✜ ✆ P digits as mes-

sage ★ . The probability that the routing finishes in

the next hop is ✡☞☛✂✧✂✠ ✡ ✏ ▼☞❚ ◆ ✥✆P ✡ ✪ ❉ ■ ✁

✒ ✰ � ✠✥▼◗P❅� ❚ ◆ �

✁✬✫ P ✜
✪ ✬✒ ✰ ❉ ■ ✁ ✂ � ✠✥▼◗P❅� ❚ ◆ �

✁✬✫ P ★ ❉ ■ ✁

✒ .

17

Proof: Let the node reached after taking branch ✂■✞ for

the first time be node � . Recall � is selected from ❋ ✟ ❇
that is numerically closest to ★ whose nodeId also shares

the first ❑ digits with ★ . Let
✵✂✁

be the set of nodeIds in

� ’s subdomain, i.e. sharing the first ▼☞❑✳✜ ✆ P digits with

� . The routing finishes in one step after � if

�
✵✄✁✆☎ ✥✱✙☎✕ . The probability is ✪ ❉ ■ ✁

✒ ✰ � ✠✥▼◗P❅� ❚ ◆ �

✁✬✫ P . Or,

�
✵✄✁ ✄ ✥✱✙☎✕ , and the ✂☎✞ hop reached one of the right-

most ✥✱✙☎✕ nodes in
✵✝✁

. The probability of
✵✂✁ ✄ ✥✱✙☎✕

is ✪ ✬✒ ✰ ❉ ■ ✁ ✂ � ✠✥▼◗P❅� ❚ ◆ �

✁✬✫ P . The probability of later is❉ ■ ✁

✠✟✞ , because under random uniform distribution, the

probability of any of the rightmost ✥✱✙☎✕ nodes in
✵✂✠

shows up as any node’s routing table entry is
❉ ■ ✁

✠☛✡ .

The distribution of ✡☞☛✂✧✂✠✥▼☞❑ ◆ ✥ ◆ ✭ ◆ ✂✝✞ P shows that its

value only becomes not insignificant when ❑✰✡ ✥★✧✪✩ ✁✬✫ ✭ ,

when the value ❚ above follows binomial distribution

✠✥▼☞❚✁� ✭ ◆✎✆ ✙☎✕☎✖ ✙ P . In such cases, ✡☞☛✂✧✂✠ ✡ ✏ ▼☞❚ ◆ ✥✆P ✄ ✤ � ✂ ✂☎✄ .
Thus, for non-insignificant values of ✡☞☛✂✧✂✠✥▼☞❑ ◆ ✥ ◆ ✭ ◆ ✂❲✞ P ,
with very high probability, the routing takes one extra

hop after taking ✂☎✞ , i.e.
✕ ✡✌☞ ▼☞❑ ◆ ✥ ◆ ✭ ◆ ✂✎✞✌P✌☞ ✆

.

A.2 Local route convergence

Theorem 3 Let
✕ ✆

and
✕ ✕ be the two starting nodes

on a sphere of radius ❇ from which messages with an
identical, random key are being routed. Let the distance
between

✕ ✆
and

✕ ✕ be ✒✯✤ . Then the expected distance
that the two messages will travel before their paths merge
is

� ✄✆☎ ✡ ✏✓�✖☎ ✛✚✶✸✢✑✯
✖ �✂✁ ✄ ❀ ✆❂❇ ❃❅❄

✧✞✝ ❇✟
✧ ❃❅❄ ✏ ❍ ✪

✭✯✮✱✰✳✲ ✲ ✰❁✭ ✏❀✄❙✛✚�✖☎ ✛✚✶✸✢✳✢✳✲ ✰❁✭ � ✄✆☎ ✡ ✏ ❊ ✛✚✶✸✢
where ✡☞☛✂✧✂✠ ❑ ✧✾✡ ▼◗P ◆ ✒✯✤ ◆ ❇ P ✡ ✠☛✡

✙✌☞✎✍ ❘ ❈✞✏✂✑ ✡ ✒✔✓ ✮✖✕ ✓ ❘ ✒✔✓ ✮✖✕✠✘✗✎✙✛✚✢✜✤✣✤✥✎✦✧✡
✙✌☞✎✍ ❘ ❈✞✏✂✑ ✡ ✒✔✓ ✮✖✕ ✓ ✮✖✕ ,✒✵P ✡ ✒✯✤ ✜ ✕✩★✫✪✭✬✘✮✯✒✬✱✰✳✲ ❑ ✧✾✡ ✒ ❊✚❏✛✚✜▼◗P ◆ ❇ P in the worst case,

or ✒✵P ✡ ✒✯✤ in the average case, or ✒✵P ✡ ✣ ✄✚✞ ▼❖✤ ◆ ✒✯✤ ✁
✕✴★✯✪✭✬✘✮✯✒✬✱✰✳✲ ❑ ✧✾✡ ✒ ❊✚❏✛✚✜▼◗P ◆ ❇ P✺P in the best case, respectively,✵ ▼ ☛ ◆ ✒ ◆ ❇ P denotes the intersecting area of two circles of

radius ☛ centered at two points on a sphere of radius ❇
that are a distance of ✒✷✶✌✕ ☛ apart, and

✵
✏✂✸ ❙✔✹✱✺✾❘✂✻ ▼ ☛ ◆ ❇ P

denotes the surface area of a circle of radius ☛ on a

sphere of radius ❇ .

Proof: Without loss of generality, we assume the two

starting nodes are on the equator of the sphere. The

expected distance of the first hop traveled in Pas-

try routing is ❑ ✧✾✡ ✒ ❊✚❏✛✚✜▼❖✤ ◆ ❇ P . If we draw two cir-

cles around the two starting nodes with radius of

❑ ✧✾✡ ✒ ❊✚❏✛✚✜▼❖✤ ◆ ❇ P , the intersecting area of the two cir-

cles will be
✵ ▼☞❑ ✧✾✡ ✒ ❊✚❏✛✚✜▼❖✤ ◆ ❇ P ◆ ✒ ◆ ❇ P . Thus the prob-

ability that, after the first hop, the two paths con-

verge into the same node is ✡☞☛✂✧✂✠ ❑ ✧✾✡ ▼❖✤ ◆ ✒✯✤ ◆ ❇ P ✡✵ ▼☞❑ ✧✾✡ ✒ ❊✚❏✛✚✜▼❖✤ ◆ ❇ P ◆ ✒✯✤ ◆ ❇ P✬✙ ✵ ✏✂✸ ❙✔✹✱✺✾❘✂✻ ▼☞❑ ✧✾✡ ✒ ❊✚❏✛✚✜▼❖✤ ◆ ❇ P ◆ ❇ P .
If the two paths did not converge after the first hop, in

the worst case, the two messages move in opposite di-

rections, and the distance between the two nodes reached

by the two messages is ✒ ✆ ✡ ✒✯✤ ✜ ✕✵❑ ✧✾✡ ✒ ❊✚❏✛✚✜▼❖✤ ◆ ❇ P ; in

the best case, ✒ ✆ ✡ ✣ ✄✚✞ ▼❖✤ ◆ ✒✯✤ ✁ ✕✵❑ ✧✾✡ ✒ ❊✚❏✛✚✜▼❖✤ ◆ ❇ P✺P ; and

since with equal probability the hop may move in all di-

rections, ✒ ✆ ✡ ✒✯✤ in the average case.

Since the expected distance of the second hop trav-

eled in Pastry routing is ❑ ✧✾✡ ✒ ❊✚❏✛✚✜▼ ✆✥◆ ❇ P , the prob-

ability that after second hop, the two paths con-

verge into the same node is ✡☞☛✂✧✂✠ ❑ ✧✾✡ ▼ ✆✥◆ ✒✯✤ ◆ ❇ P ✡✵ ▼☞❑ ✧✾✡ ✒ ❊✚❏✛✚✜▼ ✆✥◆ ❇ P ◆ ✒ ✆✥◆ ❇ P✬✙ ✵ ✏✂✸ ❙✔✹✱✺✾❘✂✻ ▼☞❑ ✧✾✡ ✒ ❊✚❏✛✚✜▼ ✆✥◆ ❇ P ◆ ❇ P .
The analysis for subsequent hops is analogous.

18

