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Abstract

Flow visualization research has made rapid advances in recent years, especially in

the area of topology-based flow visualization. The ever increasing size of scientific

data sets favors algorithms that are capable of extracting important subsets of the

data, leaving the scientist with a more manageable representation that may be visu-

alized interactively. Extracting the topology of a flow achieves the goal of obtaining

a compact representation of a vector or tensor field while simultaneously retaining

its most important features. We present the state of the art in topology-based flow vi-

sualization techniques. We outline numerous topology-based algorithms categorized

according to the type and dimensionality of data on which they operate and accord-

ing to the goal-oriented nature of each method. Topology tracking algorithms are

also discussed. The result serves as a useful introduction and overview to research

literature concerned with the study of topology-based flow visualization.

Keywords: flow visualization, feature-based flow visualization, flow topology, state

of the art report

1.1 Introduction

Research in topology-based flow visualization is making rapid advances. Helman and

Hesselink introduced the visualization community to the notion of flow topology in

1989 [21, 23]. Classical flow oriented topology research is based on the detection

and classification of critical points in the vector field, as shown in Figure 1.2. What

makes topology-based methods attractive is their ability to represent very large data

sets in a concise and compact manner. Unlike other flow visualization approaches

⋆ Robert S. Laramee’s current affiliation is: The Department of Computer Science, University

of Wales, Swansea, UK, e-mail: r.s.laramee@swansea.ac.uk
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Fig. 1.1. Visualization of flow around a critical point using texture advection and dye injec-

tion [35]. In contrast to these methods, topology-based methods extract and visualize critical

points directly.
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Fig. 1.2. Vector field topology: critical points are usually classified by the eigenvalues of the

Jacobian [21]. R represents the real components and I the imaginary components of the Jaco-

bian.

(Figure 1.1), critical points of a data set are extracted and the relationships between

those points are depicted accordingly. We refer the reader to Abraham and Shaw for

an introduction to topological analysis [1].

Topology-based research in flow visualization has come a long way since 1989

–the progress of which we will describe in Section 1.2. Yet, despite the many ad-

vances, there are still many unanswered questions in the field of topology-based re-

search. There are still topic areas completely untouched by researchers at the time of

this writing, e.g., vector and tensor field topology simplification in three-dimensions,

for both steady and time-dependent (or unsteady) data.

Here, we summarize the progress that has been made up to this point in the field.

We introduce a novel classification of topology-based methods in flow visualization
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based on topology extraction and simplification of vector and tensor fields (Sec-

tion 1.2). The classification points out clearly those areas rich in previous work and

some areas which still remained unaddressed by the visualization community.

1.2 Topology-Based Methods in Flow Visualization, The State of

the Art

In this section, we review the current state of the art in topology-based methods in

flow visualization. We start off with a description of our classification before describ-

ing the algorithms themselves. Our overview relates different research results with

one another and highlights relative advantages and disadvantages of each approach.

1.2.1 Classification

Topology Extraction Topology Simplification

Scalar Static Dynamic Static Dynamic

Data 2D [19] 2D [5] [6]

2.5D [44] [26] [45] [7] 2.5D [13] [16] [61]

3D [40] [62] 3D [17]

Vector Steady Unsteady Steady Unsteady

Field 2D [55] [56] [87] [73] [21] [53] [80] [89] 2D [8] [10] [9] [38]

Data [83] [68] [71] [72] [77] [82] [76] [64]

[67] [66]

2.5D [22] [30] [32] [75] 2.5D

[84]

3D [37]v [27]v [59]v [29]v [2]v [3]v [49]v [4]v 3D [85]

[31]v [51]v [18]v [46]v
[28]v [41]v [58]v [54]v
[23] [39] [88] [43] [15]

[42] [70] [41] [14]

[74] [60] [86] [33]

Tensor Steady Unsteady Steady Unsteady

Field 2D [91] [11] [79] 2D [78] [82] [81]

Data 2.5D 2.5D

3D [24] [90] [92] [93] 3D

[25]

Table 1.1. An overview and classification of topology-based methods in visualization. Re-

search is divided up into topology extraction and topology simplification literature. Methodol-

ogy is further classified according to scalar vs. vector vs. tensor field data analysis. Finally, a

sub-classification is made based on data dimensionality, both spatial and temporal. References

are listed in chronological order within each spatio-temporal dimensionality. In Section 1.2.

we focus on the research with bold emphasis–topological analysis of vector field data. Refer-

ences subscripted with a v denote research related to vortex core extraction.
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Table 1.1 illustrates our classification of topology-based methods in visualiza-

tion. At the broadest level of classification, we have divided up the literature into

work that focuses on either extraction of topological features, i.e., topological analy-

sis or simplification of a given topology. Conceptually, simplification can be thought

of as an extension of extraction. We separate the literature focused on simplification

because much of it is dedicated to simplification of an a priori topology, especially

in the area of flow visualization–the focus of this overview. We have further divided

up the literature into vector and tensor field analysis. Each sub-classification is then

further classified based on the spatial and temporal dimensionality of the vector or

tensor field data to which the respective algorithm is applied. The topology research

on scalar data is divided into static and dynamic cases rather than steady and un-

steady in order to be more general. Dynamic analysis of scalar data sets can also

include a transformation from one static surface to another surface [7]. Within a

single spatio-temporal dimension, references are listed in chronological order. Our

overview focuses on those categories with bold emphasis, namely, topological anal-

ysis and extraction of vector field data. The focus on vector field analysis was chosen

in order to limit the scope of the review. The topics of scalar and tensor field topol-

ogy can be covered in future state of the art reviews. Note that within the category

of 3D, vector field extraction, literature which focuses on vortex core extraction is

denoted with subscript (v). We now describe the literature in increasing order of di-

mensionality, grouped together by topic. Another overview is given by Scheuermann

and Tricoche [57].

Although the topology of scalar fields serves as a third category of research,

our review of the literature does not focus on the topological analysis of scalar

fields [19, 26, 62] which includes the extraction of features such as ridge and val-

ley lines and extremal features. Our survey of scalar topology analysis is also not

exhaustive, but supplies the reader references for further reading. Here we briefly

mention some research in the field. Monga et al. [44] compute ridge lines on isoin-

tensity surfaces in 3D volume data and use them for data registration and automatic

atlas generation. Interrante et al. [26] use ridge and valley lines in order to perceptu-

ally, enhance the visualization of multiple, transparent surfaces in 3D. Szymczak and

Vanderlyde describe an algorithm that extracts topologically simple isosurfaces [61].

Morse theory has been applied to extract the topology of arbitrary surfaces by Ni et

al. [45].

1.2.2 Topology Extraction of Vector Field Data

2D, Steady

Extraction of Higher-Order Critical Points: Most critical point detection algo-

rithms are based on piecewise linear or bilinear approximation. These methods do

not properly represent local topology if nonlinear behavior is present. Scheuermann

et al. [55, 56] choose a polynomial approximation in areas with nonlinear behav-

ior and apply a suitable visualization–streamlines seeded at the critical points with

additional annotations.
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Extraction of Closed Streamlines: Wischgoll and Scheuermann [87] present

an algorithm for detecting closed streamlines in planar flows. Closed streamlines

are of interest because they may indicate regions of recirculating flow. It is based

on monitoring streamlines as they enter, exit, and re-enter cells of the vector field

domain. We urge the reader to use caution when interpreting the visualization results.

This is because an spatial dimension inherent to the applied domain has been left out

of the analysis.

The first approach to detecting closed streamlines in planar flow was based

on monitoring polygon-based entrance and exit events of a streamline during in-

tegration [87], This approach is extended to time-dependent flows by Wischgoll et

al. [89]. At each time step, closed streamlines are extracted. Afterwards, a time-

dependent correspondence between individual streamlines is computed. Theisel et

al. [73] present an alternative approach to computing closed streamlines. A 2D vec-

tor field is transformed into a 3D vector field. This can be done by representing time

as a third spatial dimension. Then streamsurfaces are seeded in the 3D domain. Fi-

nally, closed streamlines are detected by intersecting streamsurfaces. The difference

to previous work is that this approach avoids mesh-based dependency, e.g., examin-

ing and testing individual mesh polygons.

Vector Field Design: Theisel presents a novel method that allows the user to

design higher order vector fields of arbitrary topology [64]. The technique is based

on control polygons that let the user specify the characteristics of critical points. This

enables a mechanism by which to test topology extraction algorithms. The result can

also be used for compression purposes. We note that this research does not fit cleanly

into our classification partially because it spans more than one area.

2D, Unsteady

Detection and Classification of Critical Points: Helman and Hesselink introduced

the visualization community to flow topology [21]. Their analysis included the de-

tection, classification, and visualization of critical points in planar flows (Figure 1.3).

They applied their algorithms to both steady-state and unsteady flow. They represent

time as a third spatial dimension for the case of time-dependent, planar flow.

Vortex Detection Based on Streamline Geometry: Sadarjoen and Post [53]

present two methods for detecting vortex structures in 2D vector fields. They are

both based on an analysis of streamline geometry. The first method uses local cu-

mulations of curvature that may indicate a group of vortices in very close proximity

to one another. The second method looks at the curvature of a single streamline and

computes a winding angle–a metric of geometric curvature. One advantage of this

technique is that it detects weak vortices because it does not depend on velocity mag-

nitude at a single point. A disadvantage, however, is the large number of streamlines

that must be seeded and computed in order to maintain complete coverage of the

flow.

Detection of Topological Transitions: A novel topology-based method for the

visualization of time-dependent 2D flows is given by Tricoche et al. [80]. Extending

the work of Helman and Hesselink [21, 23], they identify and visualize topological
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Fig. 1.3. Here, the topology of a hurricane is visualized and depicted with the SimVis sys-

tem [12].

transitions–the qualitative change of topology structure from one stable state to an-

other over time. Three types of transitions are investigated: (1) a Hopf-like transition–

a transition of a singular point from an attracting focus (i.e. sink) to a repelling focus

(i.e. a source), (2) a fold-like transition–the pairwise annihilation or creation of a sad-

dle and a source or sink, (3) a basin transition–the case when two saddle points start

independent of one another, join briefly, and again separate. Again we caution the

reader when interpreting these results. A spatial dimension inherent to the original

domain has been omitted from the analysis.

Critical Point Tracking: Theisel and Seidel introduce an alternative critical

point tracking method for 2D, unsteady flow based on streamlines [68]. The tem-

poral dimension of the planar flow is represented as a third spatial dimension and

streamlines are traced along critical points as they evolve. This space-time repre-

sentation is called a feature flow field. In addition to visualizing the path of critical

points over time, events such as fold bifurcations are visualized.

Streamline and Pathline Oriented Topology: Topological methods often seg-

ment vector fields using curves based on streamlines, e.g., separatrices or stream-

surfaces such as separating streamsurfaces. In addition to streamline oriented topol-

ogy, Theisel et al. [71, 72] also consider pathline oriented topology. In the study

of streamline oriented topology, they propose new approaches to detect bifurcations

like saddle connections and cyclic fold bifurcations. Saddle connections are bifur-
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cations that appear when two separatrices originating from saddle points coincide.

A cyclic fold bifurcation is the case of when two closed streamlines collapse and

disappear. The also propose a novel approach to detect and track closed streamlines

in 2D, time-dependent vector fields. In the study of pathline oriented topology, they

segment the vector field into regions where pathlines show attracting, repelling, or

saddle-like behavior.

Vector Field Comparison: Although it does not fit cleanly into our classifica-

tion, we briefly mention a closely related topic–vector field comparison. Theisel et

al. [65] introduce a topology-based metric by which vector fields can be compared

or related to one another. Preliminary approaches based on comparison metrics (i.e.,

distance measures) were based on local deviations of direction and magnitude of flow

vectors [20, 63]. These previous distance functions yield a fast comparison of vector

fields, but do not take into account any structural information. Levin et al. [36] intro-

duce the first topology-based approach to vector field metrics with the Earth Mover’s

Distance (EMD [52]), a technique from image retrieval. The limitations of this algo-

rithm are that: (1) it’s critical point coupling strategy does not consider the location

of critical points in the vector fields and (2) all critical points are compared to one

another which can lead to a worst case complexity of o(n!) where n is the number

of critical points. To overcome these critical point coupling limitations, Theisel et

al. [65] introduce a comparison metric that uses feature flow fields [68].

2.5D, Steady

Separation and Attachment Lines: Separation and attachment lines correspond

to loci where flow leaves or converges at a surface. Prior to Kenwright [30], the

only algorithm that could automatically detect separation and attachment lines was

presented by Helman and Hesselink [22]. Previous approaches were generally based

on observations. Helman and Hesselink’s technique is based on vector field topology.

Their algorithm detects closed separation lines, that is, lines that begin at a saddle or

node and end at another saddle or node. Kenwright’s algorithm also detects open

separation, i.e., lines that do not always start or end at critical points in the vector

field. This algorithm is based on phase plane analysis.

Kenwright et al. [32] expand the work of Kenwright [30] by introducing another

algorithm, the parallel vector algorithm, for detecting open separation and attach-

ment lines. The parallel vectors algorithm is based on the observation that one of the

eigenvector directions was always parallel to the local streamlines in regions where

streamlines asymptotically converged. The advantage of this approach is that it pro-

vides a local test that may be performed at any point in the vector field. Kenwright et

al. show that the parallel vectors algorithm is slightly superior to their previous algo-

rithm (called the phase plane algorithm), however, it is more difficult to implement.

The phase plane algorithm uses self-contained analysis within each triangle, making

it well suited for unstructured meshes. The parallel vector algorithm requires cal-

culation of vector gradients on irregular triangulations. But for curvilinear meshes,

the parallel vector algorithm is best because vector gradients can be calculated using
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central differences. The parallel vector algorithm also resolves the line discontinuity

problem associated with the phase plane algorithm.

Tricoche et al. [75] propose a method for the detection of separation of attach-

ment lines in 2D flows defined over arbitrary surfaces in 3D. They build primarily

on the work of Kenwright and Haimes [30, 32] by improving performance. They do

so by using both local flow properties and global structural information such that

feature searching and extraction is fast and accurate.

Boundary Switch Connectors: Weinkauf et al. [84] extend the work of Theisel

et al. [70] with the introduction of boundary switch connectors, a topological ele-

ment that complements saddle connectors. Theisel et al. [70] considered separation

surfaces emanating from saddle points only. Weinkauf et al. [84] extend this work to

include separating surfaces starting from boundary switch curves. The intersection

of separating surfaces emanating from boundary switch curves results in boundary

switch connectors.

3D, Steady

Vortex Core Line Extraction: Sujudi and Haimes [59] present a line-based vortex

core extraction algorithm that locates points that satisfy the following two criteria:

(1) the velocity gradient tensor contains complex eigenvalues and (2) the velocity

in the plane perpendicular to the real eigenvector is zero. The individual points are

then connected to form the vortex core line. The disadvantage here is that it is not

always possible to form a continuous line. This problem is addressed by Haimes

and Kenwright [18] who present adapt the algorithm to be face-based rather than

cell-based.

Vortices can cause many undesirable effects for aircraft, such as reduced lift and

noise. They can lead to structural fatigue and even premature airframe failure in se-

vere cases. Kenwright and Haimes [29, 31] applied the eigenvector method of Sujudi

and Haimes to flow analysis around an aircraft.

Roth and Peikert build on the work of Sujudi and Haimes [59] by introducing a

higher-order method for vortex core line extraction. While the eigenvector method

of Sujudi and Haimes [59] is correct for linear vector fields, it fails to detect curved

vortex core lines, especially in the case of turbomachinery data sets. Roth and Peikert

demonstrated this limitation previously [50]. Their method overcomes the previous

limitations stemming from the use of a linear vector field for vortex core line extrac-

tion by introducing higher-order derivatives that can be used to detect bent vortex

cores.

This vortex core line extraction algorithm is later formulated at a higher level of

abstraction, namely as a parallel vectors operator by Peikert and Roth [46]. The basic

idea behind the parallel vectors approach is to derive two vector fields from a given

3D vector field such that vortex core lines are locations where the two derived vector

fields are parallel.

Some vortex core extraction methods, like that from Jeong and Hussain [27],

can be described as Galilean invariant, i.e., they are invariant when a constant vector

field is added. This is because their computation uses only derivatives of the vector
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field. Many vortex core line extraction algorithms are Galilean variant because they

depend on a certain reference [2, 3, 46, 59]. Sahner et al. [54] present an approach to

extracting vortex core lines that is Galilean invariant, i.e., the result does not depend

on the frame of reference. The extracted features remain unchanged when adding

a constant vector field. They do so by considering ridge or valley lines of Galilean

invariant vortex region quantities.

Vortex Core Region Extraction: A general problem with vortex core line ex-

traction algorithms is their computational complexity and that they may generate

more than one vortex core line within a vortex core region. Mahrous et al. [41]

present a vortex core region detection based on Sperner’s lemma–adapting a notion

from combinatorial topology. The approach analyzes the behavior of a vector field

based on the vectors found at the boundaries of each grid cell. Velocity vectors ex-

hibit characteristic patterns in the neighborhood of a vortex. The algorithm searchers

for these patterns.

In our overview, we focus on vortex core line extraction rather than vortex

core region extraction. Thus the method of Jeong and Hussain, known as the λ2

method [27] is not described in detail here (Stegmaier and Ertl present a GPU-based

implementation of the λ2 method [58]). Similarly, we do not focus on vortex core ex-

traction based on isosurface extraction in a scalar field [37]. A more general overview

of vortex analysis from a feature-based flow visualization point of view is given by

Post et al. [47].

Separating Surfaces: Helman and Hesselink build on their previous work [21]

and extract surface topology and separating surfaces of flow in 3D [23]. A surface

topology skeleton is extracted and visualized by projecting the 3D vector field in the

neighborhood of the surface onto the plane tangent to the body and applying a 2D de-

tection algorithm. They also compute streamsurfaces which separate 3D vector fields

into disparate regions of flow. Included is a description of how these streamsurfaces

are tessellated in an efficient manner. They also uses icons such as arrows and disks

to display critical points in 3D.

Mahrous et al. [41, 42] present an algorithm for efficient computation of sepa-

ratrices in 3D vector fields. They present methods that accelerate the extraction of

separatrices. Enhancements are made to reduce the number of sample streamlines

and their length. Streamlines are seeded in a more meaningful and a efficient matter

rather than using a brute-force approach of seeding streamlines at all cell locations.

Texture advection is applied to stream surfaces by Laramee et al [34].

Dynamical Systems: Löffelmann and Gröller [39] visualize the topology of dy-

namical systems. Dynamical systems provide a mathematical model comprised of

a set of state variables whose goal is to characterize real world phenomena, e.g., a

stock market, a chemical reaction, or a food chain. Their visualization couples char-

acteristic streamlines emanating from fixed points in the domain with a thread of

streamlets. The characteristic streamlines play the role of seed points for a thread

of streamlets. The large number of streamlets provide more information about the

behavior of the dynamical system in the neighborhood its characteristic trajectories.

Thus a trade-off between domain coverage and perceptibility is realized in 3D.
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Fig. 1.4. Visualization of flow past a circular cylinder using critical points and saddle connec-

tors [70]. Image courtesy of H. Theisel et al.

Detection of Closed Streamlines: Wischgoll and Scheuermann [88] extend their

previous work [87] of detecting closed streamlines to 3D vector fields. The algo-

rithm is based on preventing infinite cycling during streamline integration. Saddle

Connectors: Theisel et al. [70] introduce a new topological element of vector fields

called a saddle connector. A saddle connector is a streamline that joins two sad-

dle points in a vector field (Figure 1.4). A saddle connector is found essentially by

computing the intersection of the separation surfaces of two saddle points. These

topological structures achieve a visually sparser, more compact topological repre-

sentation of the vector field, thus avoiding the visual complexity associated with

showing too many separating streamsurfaces.

Hybrid Visualization and Vortex Breakdown: Tricoche et al. [74] use a com-

bination of 3D volume rendering of a vector field’s scalar fields with vector field

topology projected onto a moving cutting plane. The goal is to gain insight into the

behavior of vortex breakdowns with this novel hybrid visualization (Figure 1.5).

Critical Point Modeling and Classification: Weinkauf et al. [85] extend the

work of Theisel [64] for designing vector fields. In particular they: (1) model 3D

vector fields of arbitrary topology. Previously, only first order points and the index

of higher order critical points were considered [43], (2) introduce a complete classi-

fication of 3D critical points and (3) adapt the notion of saddle connectors in order to

model the intersection curves of separation surfaces. Thus, the problem of modeling

a vector field is reduced to the problem of modeling the topological skeleton using

control polygons.
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Fig. 1.5. The visualization of a vortex breakdown bubble. Flow topology is depicted with stag-

nation points in red, singularity paths in yellow and streamlines in blue [74]. Image courtesy

of X. Tricoche et al.

Weinkauf et al. [86] extend the work of Tricoche et al. [77] to 3D. They intro-

duce an extraction and classification scheme for higher order critical points in 3D.

The approach is based on enclosing a critical point, or a cluster of critical points by

a bounding surface. The properties of the vector field at the boundary surface are

then examined in detail, i.e., subsets of the surface are divided up into inflow, out-

flow, hyperbolic, and elliptic regions of flow. The classification of critical points in

3D is then determined by the corresponding regions on the bounding surface. The

simplified structure of the flow within the bounded regions is then visualized with an

appropriate icon(s).

Applications of Topology-Based Flow Visualization: Sun et al. [60] apply a

topological analysis to visualize the power flow through a C-shaped nano-aperture.

Such an aperture may be very effective at power transmission with applications in-

cluding data storage, particle manipulation, and nano-scale photonic devices. Their

topological analysis of this data set results in a heightened understanding of the crit-

ical factors affecting power transmission of these apertures including: polarization

effects, efficiency, the size of interaction regions, resonant transmissions, and more.

Laramee et al. [33] apply topology-based flow visualization methods in order

to gain insight into the behavior of flow through a cooling jacket. This application is

discussed in more detail in a following chapter. Other applications of topology-based

flow visualization are discussed by Garth et al. [15] and Tricoche et al. [74].

3D, Unsteady

Vortex Core Line Extraction and Tracking: Banks and Singer [2, 3] developed

an algorithm for vortex tube reconstruction based on the assumption that a vortex

core is a vorticity line–a streamline in the vorticity field. and pressure is a minimum

in the core. The algorithm consists of four basic steps: (1) compute the vorticity



12 Robert S. Laramee1, Helwig Hauser1, Lingxiao Zhao2, and Frits H. Post2

Fig. 1.6. The visualization of vortex breakdown using transparent separation surfaces origi-

nating at stagnation (saddle) points [15]. Image courtesy of C. Garth et al.

along a vortex core line (seeded based on threshold vorticity magnitude and pres-

sure), (2) predict the next point along the core line by stepping in the vorticity vec-

tor’s direction, (3) compute the vorticity at the new predicted point, and (4) update

(or correct) the point to the location of minimum pressure in the plane perpendicular

to the core.

Reinders et al. [49] present an application which detects and tracks vortex tubes

in flow past a tapered cylinder. First, they apply the winding-angle method [53] is

used to detect the vortices on a number of horizontal slices. Second, the 3D vortex

tubes are constructed from the 2D vortices by applying a spatial feature tracking pro-

cedure based on attributes of the vortices [48]. The same feature tracking algorithm

is then applied in the temporal domain for vortex core tracking.

Theisel et al. [69] describe a novel method to extract parallel vectors [46] based

on the use of feature flow fields [68]. They derive appropriate vector fields such that

vortex core lines appear as streamlines (in the feature flow fields). Thus, the extrac-

tion of vortex core lines is reduced to a well-known streamline integration computa-

tion. They also introduce a novel classification of transitions (or events) associated

with time-dependent vortex core lines as well as the methodology used in tracking

core lines. The classification includes: (1) saddle transitions, (2) closed collapse tran-

sitions, (3) and inflow and outflow boundary transitions.

Singularity Tracking and Vortex Breakdown: Garth et al. [15] present a

method to efficiently track singularities in 3D, unsteady flow. The method also ap-

plies to data defined on unstructured grids. Conceptually, it is an extension of the

work of Tricoche et al. [83]. The concept of a singularity index is discussed and ex-

tended from the well known 2D case to the more complex 3D domain. The results

are particularly insightful for the study of vortex breakdown. Occurrences are vortex

breakdown (or bursting) are correlated with local extrema in physical quantities and

visualized with corresponding views from information visualization (Figure 1.6).

1.2.3 Discussion and Future Prospects

Table 1.1 clearly illustrates those areas with a heavy concentration of topology-based

research, e.g., 3D steady-state, and those areas with little to no work. In fact, Ta-

ble 1.1 highlights areas that remain untouched up to this point in time, e.g., topology

simplification in 3D tensor fields. Other areas still requiring research work include:
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• Interactive techniques to support topology extraction and tracking: At present,

topology-based techniques are, in general, still slower relative to traditional flow

visualization techniques such as particle tracing or texture-advection methods.

• Extraction and analysis of new types of topological structures: Surely, not all

important topological structures have been clearly identified and studied.

• Integration of topology-based methods with other flow visualization techniques

such as texture advection: A topological skeleton by itself, sometimes leaves out

other important properties of the flow such as downward and upstream direction.

• The practical application of topological methods outside the visualization com-

munity: Still, much work remains to be done in the application of topology-based

flow visualization to data sets from industry or some application domain area in

order to demonstrate their utility in a convincing manner.

• More theoretical development to support cognition of results: Topological anal-

ysis still leaves open questions with respect to interpretation of the results. For

example, how do we interpret pathline-oriented topology? More theory may be

needed to aid such cognition.

Thus, the field of topology-based methods in visualization is still rich in unsolved

problems.

However, there may be reasons why so much of the spatio-temporal domain in

our classification remains virtually unexplored in the research literature. Reasons

may include high levels of complexity and applicability to real-world problem do-

mains. We discuss possible reasons for this in a later chapter.
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65. H. Theisel, C. Rössl, and H. Seidel. Using Feature Flow Fields for Topological Com-

parison of Vector Fields. In Proceedings of the Conference on Vision, Modeling and

Visualization 2003 (VMV-03), pages 521–528, November 19–21 2003.
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