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Abstract

In cluster physics, the determination of the ground-state structure of medium-sized and large-sized 
clusters is a challenge due to the number of local minimal values on the potential energy surface 
growing exponentially with cluster size. Although machine learning approaches have had much 
success in materials sciences, their applications in clusters are often hindered by the geometric 
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complexity clusters. Persistent homology provides a new topological strategy to simplify 
geometric complexity while retaining important chemical and physical information without having 
to “downgrade” the original data. We further propose persistent pairwise independence (PPI) to 
enhance the predictive power of persistent homology. We construct topology-based machine 
learning models to reveal hidden structure–energy relationships in lithium (Li) clusters. We 
integrate the topology-based machine learning models, a particle swarm optimization algorithm, 
and density functional theory calculations to accelerate the search of the globally stable structure 
of clusters.

Graphical Abstract

The determination of the topography of the potential energy surfaces of various clusters is a 
subject of intensive research in cluster physics. One of the most challenging tasks is to 
determine the ground-state structure of medium and large clusters due to the fact that the 
number of local minima on the potential energy surface grows exponentially with the 
increase of cluster size.1 It is commonly believed that the binding energy of a cluster is 
mainly determined by the geometric structure of the cluster. Therefore, the understanding of 
the structure-energy relationship of clusters is the holy grail in cluster research. In particular, 
the prediction of structures with the global minimal energy and near minimal energies is of 
practical interest.

Several efficient global optimization methods, including random sampling,2 basin hopping,3 

minimal hopping,4 simulated annealing,5 genetic algorithm,6–8 and particle swarm 
optimization (PSO) algorithm,9 have been developed in the past few decades for searching 
structures with near-global minimal energies. Among them, the PSO algorithm, first 
proposed by Kennedy and Eberhart,9,10 is a relatively efficient one. Call et al. applied the 
PSO algorithm to the structure prediction of small clusters or isolated molecules.11 Recently, 
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Ma et al. have developed a PSO-based structure analysis method,12 which is widely applied 
to structure predictions. However, all the aforementioned methods are computationally 
expensive due to involved first-principle calculations of numerous local minimum values.1 

As shown in a recent review,13 machine learning (ML) has been proven to be an efficient 
strategy for estimating the density functional theory (DFT) energy of ground states of 
materials and for the prediction of material properties. It has the potential for material 
structure prediction as well.

Recently, machine learning has had tremendous success in science, engineering, finance, 
medicine, and various other industrial sectors. Initial successes of machine learning 
approaches were limited to image and video processing, computer vision, etc. For relatively 
simple data sets, such as images, advanced machine learning algorithms, such as a 
convolutional neural network (CNN), can automatically extract image patterns without 
handcrafted input features. Such predictive models involve two essential components, 
namely, data set and learning algorithm. However, for general data sets, particularly data sets 
with complex geometric structures in material sciences and molecular biology, the internal 
structural complexity hinders the performance of the aforementioned two-component 
machine learning approach. A predictive machine learning model for complex data consists 
of three essential components: the data set, learning algorithm, and data representation. The 
representations of data, called “descriptors” or “features”, play an essential role in 
constructing an efficient machine learning model for data sets with complex internal 
structures.

For complex three-dimensional (3D) cluster data, the representations used in machine 
learning vary greatly in their nature. Some representations are generated from Cartesian 
coordinates, geometric properties, electrostatics, atom types, and atomic partial charges.13–30 

The most direct and crude representation is Cartesian coordinates, but as regressive neural 
networks are numerical fitting methods, the output depends on the absolute values of the 
input coordinates. Since translation and rotation of a cluster should not change cluster 
intrinsic properties, Cartesian coordinate representation has a major limitation in energy 
predictions. The conventional solution is to describe cluster structures by using graph theory 
or symmetric functions that are invariant to translation and rotation. Graph-based 
representations have been successfully applied to predict molecular properties.31,32 

Meanwhile, many symmetric functions based on interatomic distances have been developed,
33–37 which are equally applicable to very different systems such as bulk metals, clusters or 
molecules. However, graph-based representations may neglect some geometric details, such 
as distortion, whereas symmetric function models often contain too complex structural detail 
and are frequently computationally intractable, due to its rather complicated conversion 
formula. Therefore, continuous, complete and simple low-dimensional representations that 
are invariant to translation and rotation are greatly desired.

Topology, free of metrics or coordinates, offers an entirely different approach and could 
provide the ultimate simplification of structural complexity. In fact, one only needs 
qualitative topological information to understand many physical properties. However, 
traditional topology oversimplifies data structures and leads to too much loss in geometric 
information. Persistent homology is a relatively new method that bridges geometry and 
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topology. It integrates multiscale geometric analysis and algebraic topology via a filtration 
process, rendering a low-dimensional representation of complex data.38–40 Persistent 
homology characterizes the geometric features in data without having to “downgrade” the 
original data as much as the original topology does. Topological invariants, i.e., the 
properties of topological spaces that do not vary with certain types of continuous 
deformations, are used as the key feature of persistent homology. Through filtration and 
persistence, topological invariants can capture geometric structures continuously over a 
range of spatial scales. Unlike commonly used computational homology, which results in 
truly metric free or coordinate-free representations, persistent homology is able to embed 
geometric information into topological invariants so that the “birth”, “death”, and 
“persistence” of isolated components, circles, holes, and void at all geometric scales can be 
monitored by topological measurements. The basic idea of size functions was introduced by 
Frosini and Landi41 and by Robins.42 Edelsbrunner et al.38 formulated persistent homology, 
and Zomorodian and Carlsson generalized the mathematical theory.39 Usually, topological 
persistence over the filtration is represented either in persistent diagrams or in persistent 
barcodes,43 in which various horizontal line segments or bars indicate homology generators. 
Persistent homology has been applied to a variety of fields, including image analysis,44–47 

image retrieval,48 chaotic dynamics verification,49,50 shape recognition,51 and computational 
biology.14,52–54 Wei and workers explored the utility of persistent homology for the 
quantitative analysis of protein54 and fullerene55 and proposed some of the first integrations 
of persistent homology and machine learning.56 It has been shown that persistent-homology-
based machine learning algorithms outperform other methods in D3R Grand Challenges, a 
worldwide competition series in computer-aided drug design.57

The objective of the present work is to introduce persistent homology as a unique 
representation of cluster structures. The persistent homology representation of cluster 
structures is realized using persistent barcodes. To enhance the predictive power of persistent 
barcode representation, we propose a new concept, persistent pairwise independence (PPI), 
as an auxiliary feature. The resulting topological fingerprints, including both persistent 
barcodes and PPI, are employed in a machine learning model to understand the structure–
energy relationship of clusters. In a further combination with the PSO algorithm and DFT 
calculation, a topology-ML-PSO–DFT protocol is developed for the high throughput screen 
of cluster structures with the global energy minima. Lithium (Li) is the lightest metallic 
element in the periodic table and Li cLuster is a subject of intense research in Li anode 
materials in storage battery. So Li cluster were studied by our topology-ML-PSO-DFT 
protocol as an illustration in this work. In fact, the idea about the combination of ML model 
with DFT-based structure prediction is not new.58–62 Among them, the Gaussian 
approximation potential (GAP) method is a relatively efficient one and has been successfully 
tested on many cases. However, these works focused on the acceleration of crystal structure 
relaxation with ML model learning and interatomic potential. In contrast, the part of 
acceleration in our work focused on the combination of ML model and stochastic global 
optimization algorithm to avoid the expensive DFT calculation on screening local minimum 
values.

In this work, persistent homology is used to characterize topological invariants, such as 
isolated components, circles, rings, loops, pockets, voids, and cavities, via topological 
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spaces and algebraic group representations. We associate each atom in a cluster with an 
ever-increasing diameter to systematically generate a multiscale representation. We use 
persistent barcodes to represent cluster atomic interactions. Topological invariants are 
combined with PPIs to describe cluster molecules in our machine learning modeling. The 
global optimization algorithm and the first principle calculation used in this work are also 
discussed.

Simplicial Homology.

Let {v0, v1, …, vn} be an affine independent sets in ℝn, and a k-simplex, σk, is a k-

dimensional polytope that is the convex hull of above k + 1 vertices, expressed as

σk = λ0v0 + λ1v1 + ⋯ + λnvn ∣ ∑
i = 0

k

λi = 1 0 ≤ λi ≤ 1, i = 0, 1, …, k (1)

To combine these geometric components, such as vertices, edges, triangles, and tetrahedrons 
together under certain rules, a simplicial complex K is constructed, which is a set of 
simplices that satisfies the following two conditions. The first is that any face of a simplex 
from K is also in K. The second is that the intersection of any two simplices in K is either 
empty or a shared face of both simplices.

A k-chain [σk] is a linear combination Σi
k
αiσi

k of k-simplex σk. The coefficients αi can be 

chosen from rational number field ℚ, integers ℤ, and prime field ℤρ with prime number ρ. 

For simplicity, in this work the coefficients αi is chosen from ℤρ, for which the addition 

operation between two chains is the modulo 2 addition for the coefficients of their 
corresponding simplices. The set of all k-chains of simplicial complex K together with the 
addition operation forms an Abelian group Ck(K, ℤ2). The homology of a topological space 

is represented by a series of Abelian groups satisfying certain relations.

Let ∂k be a boundary operator ∂k: Ck → Ck−1. The boundary of a k-simplex is given by

∂kσk = ∑
i = 0

k

v0, …, vi, …, vn (2)

where v0, …, vi, …, vn  means the elimination of vertex vi from the simplex. The most 

important topological property is that a boundary has no boundary. In other words, a k-chain 
will be mapped to an empty set by the twice applications of boundary operations ∂k−1∂k = . 
The kth cycle group Zk and the kth boundary group Bk are the subgroups of Ck defined 
respectively as

Zk = Ker ∂k = c ∈ Ck ∣ c = (3)

and

Bk = Im ∂k + 1 = c ∈ Ck ∣ ∃d ∈ Ck + 1:c = ∂k + 1 + d (4)
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The kth homology group Hk, defined by the kth cycle group Zk and the kth boundary group 
Bk, is given by the quotient group

Hk = Ker ∂k /Im ∂k + 1 = Zk/Bk (5)

The homology group extracts low-dimensional topological invariants from original data, 
which can lie in a very high dimensional space. In practical applications, it is the Betti 
number (βk), one of the most important topological invariants, that is employed in our 
computation. For a given cluster structure, roughly speaking, the number of independent 
components, rings and cavities are topological invariants and they are referred to as β0, β1, 
and β2, respectively.20 With the homology group Hk, the kth Betti number is given by

βk = Rank Hk (6)

However, as mentioned earlier, the Betti number alone leads to a severe topological 
abstraction of real-world data.

Persistent Homology, Barcode, and Persistent Pairwise Independence.

Persistent homology addresses the aforementioned oversimplification issue by introducing a 
multiscale geometric analysis to the original homology. Specifically, it systematically creates 
a family of inclusive topological spaces from a filtration process and then defines a nested 
family of homology groups over the filtration. In a filtration process, a chain complex, 
including a family of ordered subcomplexes, is created from a given simplicial complex K 
by a parameter ϵ,

∅ = K0 ⊆ K1 ⊆ ⋯ ⊆ Kn = K (7)

In our case, a simple choice of ϵ is the atomic diameter, which goes from 0 to a given 
maximal length ϵmax. A simplex is a geometric generalization of a triangle to arbitrary 
dimensions, namely, a 0-simplex is a vertex, a 1-simplex is an edge, a 2-simplex is a 
triangle, and a 3-simplex represents a tetrahedron. Simplexes can describe very complicated 
geometric shapes and are much more computationally tractable than the original shapes that 
they represent. There are actually many different types of simplicial complex constructions 
that can be used in persistent homology. The Vietoris Rips complex,63 a type of a simplicial 
complex derived from the connectivity of ϵ-balls in a given metric space, is used in this 
work as it is fairly easy to describe and reasonably practical for point cloud data. For 
example, a 1-simplex is formed if two points with diameter ϵ contact with each other. 
Vietoris Rips complex models the pairwise interaction of atoms. Specifically, for ϵ 
sufficiently small, one has only isolated points, i.e., 0-simplexes, whereas, for ϵ sufficiently 
large, one can have high-dimensional simplex. As such, a nested sequence of subcomplexes 
is defined when we grow diameter ϵ-ball around each atom in a cluster, as shown in eq 7. 
For each subcomplex in a chain complex, homology groups and the corresponding 
topological invariants can be computed. The resulting family of topological invariants in 
terms of persistent Betti numbers record the “birth” and/or “death” of all topological features 
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in data, giving rise to topological fingerprints. Therefore, the evolution of topological 
invariants over the filtration process can be recorded as a barcode43 or a persistence diagram.

The proposed persistent pairwise independence (PPI) counts the independence of each pair 
of atoms (or points) over the filtration. Initially, all atoms are not connected. The number of 
PPI bars is equal to the number of pairs of independent atoms. As the filtration parameter 
increases, some pairs of atoms become connected and their persistent bars terminate. The 
proposed PPI barcode is more informative than the β0 persistent barcode. As shown in 
Figure 1, it can be used together with topological invariants to describe material structures.

Topological Fingerprints as Machine Learning Features.

A basic assumption of persistent homology as applied to cluster binding energy predictions 
is that vectors of topological invariants and PPI are able to effectively represent cluster 
structures. We call such vector topological fingerprints (TFs).14,54,55 To convert barcodes of 
β0, β1, β2, and PPI to 1D vector applied in machine learning, we combine the birth, death, 
and persistence patterns of β0, β1, β2, and PPI. In practice, the abscissas of barcodes from 0 
to ϵmax are divided into n equal length subintervals. Then, the patterns of topological 
invariants and PPI are counted and recorded on each subinterval, further transformed to four 
n-length vectors V0, V1, V2, and VPPI. As shown in Figure 1, on the basis of the point cloud 
data of a cluster, represented by a distance matrix, we calculate topological invariants and 
PPI from 0 to ϵmax according to definition mentioned above and present all this information 
in four barcodes, corresponding to β0, β1, β2, and PPI. With [0, ϵmax] divided evenly into 

[ϵ1, ϵ2, …, ϵi, ϵi+1, …, ϵmax], V i
0 represents how many persistent β0 within [ϵi, ϵi+1], V i

1

represents how many persistent β1 within [ϵi, ϵi+1], V i
2 represents how many persistent β2 

within [ϵi, ϵi+1], and V i
PPI represents how many PPI within range [ϵi, ϵi+1]. Finally, these 

vectors were combined together as TFs, V 1
0, …, V n

0, V 1
1, …, V n

1
V 1

2, …, V n
2, V 1

PPI, …, V n
PPI , a 4n-

length vector.

To further demonstrate the advantage and benefit of TFs using the barcode representation, 
Figure 2 illustrates the structures of a quadrilateral Li4 cluster and an octahedral Li6 cluster 
at various filtration diameters. The horizontal axis represents the filtration parameter ϵ. From 
top to bottom, the behaviors of β0, β1, β2, and PPI are depicted in four individual subfigures. 
It is seen that as ϵ increases, initially isolated atoms will gradually grow into ϵ-balls with 
increasing diameter. Once two ϵ-ball overlap with each other, one β0 bar is terminated. As 
shown in Figure 2, at the very beginning, all ϵ-balls do not overlap with one another. There 
are four purple bars in the first subfigure, meaning that there are four isolated β0 bars. When 
the filtration parameter reaches 3 Å, each ϵ-ball overlaps with its closest two balls, forming a 
connected square. Therefore, four bars of β0 (purple bars) turn into one bar and a β1 (blue 
bars) bar appears, which represents the emergence of an independent noncontractible 
quadrilateral structure (loops). In the end when the filtration parameter reaches around 4.2 
Å, the β1 bar disappears, leaving only a β0 bar persistent in all subfigures. As can be seen 
from the last subfigure, Li4 cluster has two different kinds of bars of PPI with lengths around 
3 and 4.2 Å, respectively, indicating its two types of interatomic distances. Similarly, an 
octahedral structure is captured by bars β0 and β2 (orange bars) in Figure 2b. First, there are 

Chen et al. Page 7

J Phys Chem Lett. Author manuscript; available in PMC 2020 July 10.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



β0 bars at the beginning. As the filtration progress, there are only one β0 bar and one β2 bar, 
which corresponds to void structure in the center of the cage. The initial six β0 bars imply 
this void structure having six vertices. It is obvious that polygon and polyhedron structures, 
even with perturbations, could be described by β0, β1, and β2 bars. More specific examples 
of barcode representation are shown in the Supporting Information.

Machine Learning Models.

The success of a machine learning model for material sciences depends not only on the 
quality of original data, appropriate descriptors but also on learning algorithms. Gradient 
boosting regression (GBR)64 and neural network (NN)65 have been the methods of choice 
for modeling atomic interactions. In particular, the GBR is known to be robust to small data 
sets and less prone to overfitting. Compared with NN, GBR is very easy to train and much 
more efficient. Essentially, GBR constructs a strong regressor from an ensemble of weak 
regressors. Here, we choose GBR to optimize feature parameters, including the structure of 
the TFs, the number of subintervals in each angstrom, and ϵmax.

Once the optimized feature parameters are obtained, we further choose the neural network 
method for deep learning. Neural networks are modeled after the function of neurons in the 
brain. A neural network applies activation functions, called perceptrons, to inputs. During 
the training, weights of the neurons are updated through the backpropagation to minimize a 
loss function over many epochs, or passes of an entire training data set. The detail of the 
machine learning models used in this work was listed in the Supporting Information). In this 
work, to evaluate the performance of our models, mean absolute error (MAE) and Pearson 
correlation coefficient (PCC) were used. The MAE is given by

MAE =
1
N

∑
i = 1

N

|fi − yi| (8)

where N is the number of samples and fi and yi are the prediction and true value of sample i, 
respectively. Given a pair of random variables (X, Y), the formula of PCC is

PCC =
cov(X, Y )

σxσy
(9)

where the cov(X, Y) is the covariance of X and Y and σx and σy are the standard deviations 
of X and Y, respectively.

Particle Swarm Optimization (PSO).

The next vital ingredient required in the prediction of the global stable structure of a cluster 
is a stochastic global optimization algorithm. Particle swarm optimization (PSO) strategy is 
based on behaviors of swarms of flocks of birds, where a displacement velocity updates the 
position of each candidate particle. In this work, a candidate cluster structure is regarded as a 
particle. The jth dimension of ith particle is updated over a unit time according to
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xi, j
t + 1 = xi, j

t + vi, j
t + 1 (10)

where t denotes the generation index, xi, j
t  is the coordinate of the jth dimension of the ith 

particle, and vi, j
t  is its correspond displacement velocity per unit time. Each velocity vij

t + 1 is 

determined according to the formula

vi, j
t + 1 = wvi, j

t + c1r1 xi, j
t (sbest) − xi, j

t + c2r2 xi, j
t (ibest) − xi, j

t (11)

where w is the inertia coefficient, xi, j
t (sbest) is the value of the given coordinate from the best 

solution seen by the swarm, xi, j
t (ibest) is the value of the given coordinate from the best 

solution seen by the ith particle, and c1 and c2 are constants. Here, r1 and r2 are random 
numbers. The methodology has been demonstrated to be efficient and powerful for global 
structural convergence.12,66,67 The first generation of clusters are stochastically generated 
from crystal structures.

Topology-ML-PSO-DFT Protocol.

Our topology-ML-PSO-DFT protocol consists of mainly four steps as depicted in the 
flowchart of Figure 3. First, the initial structures are randomly generated from crystal 
structures. Once a new structure generated, the TFs are calculated and used to examine the 
consistency of this structure with all the previous ones. When the TFs of the two structures 
are the same, we conclude that they are identical and discard the new structure. In this work, 
the number of subintervals in each angstrom is the essential parameter of our model and 
ultimately determines the length of the TFs and the precision for deduplication. The larger 
the number of subintervals per unit length, the more compatible the deduplication process is. 
Then, the PSO procedure is applied to generate new structures for the next generation. After 
all the structures of the final generation have been generated, the three lowest energy 
structures of every generation determined by the machine learning model were collected in a 
low-energy set. Eventually, the structures in the low-energy set are further optimized using 
DFT calculation to obtain more stable structures, among them the structure with the lowest 
binding energy was picked as the final globally stable structure.

DFT Calculation.

For Lin clusters, to match the results of previous studies,12,67 the DFT calculations were 
performed using the same method, namely, the plane-wave projector-augmented wave 
method68,69 implemented in the Vienna ab initio simulation package (VASP)70 with an 
energy cutoff of 520 eV. The generalized gradient approximation (GGA) with the Perdew–
Burke–Enzerhoff parametrization (PBE)71 was chosen as the exchange–correlation 
potential. The binding energy, the energy to form a cluster with joint atoms from isolated 
atoms in a vacuum, is defined as

Ebind = Ecluster − nEatom /n (12)
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where Ecluster, Eatom, and n is the energy of cluster, the energy of the sole atom, and the 
numbers of atoms, respectively. The energy was divided by n is to make clusters with a 
different number of atoms comparable.

Data and Model Availability.

To ensure the reproducibility of the results, the code and data used in this work were 
uploaded to Github. More details are given in the Supporting Information.

First, we generate some data of small-size clusters for machine learning and optimize 
essential parameters. With generated data and optimized parameters, the comparisons of the 
algorithm of GBR and NN were also carried out. Then, we apply the model to predict the 
most stable isomer for medium-size clusters.

Data Generation.

Li is the lightest metallic element in the periodic table. Li clusters are thus considered to be 
prototype systems for understanding the various physical properties of simple metal clusters. 
Numerous theoretical studies have been performed to understand the structures of Li 
clusters.12,72–78 Here, we use the PSO method to generate the structures of Lin clusters, 
where n = 3, 4, …, 10, for optimizing the essential parameters and training our machine 
learning models. For each cluster, a search with a population size of 50 was performed and 
stopped at the 21st generations. All the above-mentioned DFT calculations were performed 
with ion step below 20. A total of 136 617 structures was produced. Meanwhile, it has also 
carried on the processing of duplication removal for similar structures with identical TFs. 
Finally, 70% of structures are used as the training set, with the other 30% being used as the 
testing set.

Parameter Optimization.

First, the structure of TFs, i.e., the number of subintervals in each angstrom and ϵmax, should 
be optimized. The number of subintervals in each angstrom, ns, is an essential parameter of 
our model and ultimately determines the length of the TFs and the precision for 
deduplication, which means that the ns affects the number of distinct structures we finally 
collect. Thus, we first optimize the structure of TFs and ϵmax with ns = 10. Subsequently, ns 

could be optimized. As for the structure of TFs, the topological invariants and PPI could be 
described by birth, death, and persistence.

We are interested in examining the utility of the newly proposed PPI. In the comparison of 
the statistics in the first three lines in Table 1, the MAE of the TFs without PPI is0.039 eV/
atom, and with PPI used the MAE is below 0.030 eV/atom. Therefore, it can be concluded 
that the accuracy of the present model has been significantly improved by the application of 
PPI as an auxiliary feature. More specifically, the death of PPI is more effective than the 
persistence of PPI.

As shown in Table 1, the combination of the persistence of β0, β1, and β2 and the death of 
PPI would provide the lowest MAE and the highest PCC when the value of ϵmax was the 
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same. However, it is obvious when the structures of TFs were the same, the PCC would be 
increased in accordance with the increase of the value of ϵmax, but the increase was not 
obvious when ϵmax was greater than 10 Å. Thus, we choose the combination of the 
persistence of β0, β1, and β2 and death of PPI with ϵmax of 10 Å as our TFs. These results 
are further compared with previous ML model, GAP,60 with GBR as the base ML algorithm. 
More details are shown in Supporting Information. The PCC of GAP the GAP model is 
0.990.

In this work, since the structure of TFs and ϵmax were settled, 119 219, 130 099, and 132 
874 distinct structures linked to the binding energy were acquired after deduplication 
process from initial 136 617 structures with ns of 5, 10, and 20, respectively. We compared 
the MAE and PCC of the algorithm of the GBR and NN and found the latter algorithm had a 
better predictive ability. As shown in Figure 4, the MAEs of ns = 10 and ns = 20 by NN were 
minimal, and their PCCs were higher than others. A higher value of ns indicates a longer 
time training model needs. Thus, the followed work was all based on the algorithm of NN 
with ns of 10.

Performance on Lin.

Additionally, we use the same method to generate only two generation of Li20 and Li40 

clusters for further testing our model. The learning task is to predict the cluster binding 
energy of Li20 and Li40 clusters with model learning on Lin (n = 3, 4, …, 10) clusters. As 
shown in Figure 5, the model trained on Lin (n = 3, 4, …, 10) cluster data performed well on 
Lin (n = 3, 4, …, 10) (PCC = 0.993) and Li20 clusters (PCC = 0.990) but did not do well on 
Li40 clusters (PCC = 0.950). The MAEs of both Li20 and Li40 are larger than MAE of Lin (n 
= 3, 4, …, 10). The larger MAEs were caused by the systematical error (overall migration of 
prediction compared to true value). Since we only concerned about relative energy values 
rather than absolute energy values (it has no effect on global stable structure search when all 
prediction energy values shift to lower or higher values overall), the quality of the model was 
evaluated by the PCC. The results showed that our model could be applied in a certain range 
(Li2n, n was the maximum value of number of atoms learned) with wide adaptability and 
exactitude. The reason for its large deviation on Li40 is that there are some contributions 
from long-range interactions in large clusters that cannot be learned from small-sized 
clusters. These results are further compared with GAP, as shown in Figure 5, on Li20, TF 
model performs better.

Putative Globally Stable Structures of Li20 and Li40.

As a case study, we test our structure prediction protocol on Li20 and Li40 clusters. Our 
topology-ML-PSO-DFT protocol mainly consists of two steps. First, a search with the 
population size of 2000 was performed and stopped at the 15th generation through the 
machine learning model, which avoided the expensive DFT calculation on screening local 
minimum values. Second, three predicted lowest energy structures (determined by our 
machine learning model) of every generation were collected for deduplication and optimized 
through DFT calculations. For each cluster, two independently topology-ML-PSO-DFT 
structural searchs were performed and both searchs found the same lowest energy structure.
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Our predicted lowest energy structures of Li20 is composed of three centered trigonal prisms 
with five additional capped atoms, as shown in Figure 6a. This is in agreement with the 
result of Ma et al. obtained by CALYPSO12,67 and Fournier et al. obtained by using the Tabu 
search in the descriptor space.77 The second and the third lowest energy structures are very 
similar. The only difference is that the middle layer of the first one is an isosceles trapezoid 
(Figure 6b) whereas the other is hexagonal (see Figure 6c). Ma et al. found the latter 
structure but not the former. As shown in Figure 6d, our predicted lowest energy structure of 
Li40 is a 45-atom polyicosahedron with five missing vertex atoms. This is also in agreement 
with the previous work,12 more detail of this structure could be found in the Supporting 
Information. In order to demonstrate the role of the ML model in the structure prediction, 
three independent topology-ML-PSO-DFT searches of Li20 and three independently PSO-
DFT searches of Li20 with a population size of 20 were performed and stopped when the 
lowest energy structures were found. Since the DFT calculation is far more computationally 
expensive than the ML model prediction, only the DFT calculation is used to measure the 
efficiency. The average number of DFT calculations taken of topology-ML-PSO-DFT is 21 
and of PSO-DFT is 480. The ratio of average CPU time used of topology-ML-PSO-DFT/
PSO-DFT is 1:25. Of course, a large DFT-based data set is required for training the ML 
model, which is even more computationally expensive than the structure search. However, if 
we did not carry out just one, but two or more structure searches, the ML-PSO-DFT would 
reach orders of magnitude speedup compared to PSO-DFT. For example, ML model training 
on Lin (n = 3, 4, …, 10) could be applied to the structure search of Lin (n = 11, 12, …, 20).

In conclusion, data representation is one of three major ingredients of machine learning 
(ML) studies. It becomes more important as the data complexity increases. A wide variety of 
data representation has been proposed for material sciences. However, topology has been 
hardly introduced to the field. In this work, we introduce persistent homology, a new branch 
of algebraic topology, as a new tool for representing metal cluster structures. Unlike 
conventional topology, persistent homology bridges geometry and topology, achieving an 
interplay between geometry and topology without downgrading important geometric 
information of structures. Persistent homology extracts low-dimensional topological 
invariants from high-dimensional data. It has been successfully applied to various data 
science problems. To enhance the predictive power of persistent homology, we propose 
persistent pairwise independence (PPI) as an auxiliary feature. Persistent barcodes of both 
topological invariants and PPI are utilized as cluster descriptors. Our topology-based ML 
models are found to offer highly accurate predictions of lithium (Li) cluster binding 
energies. Then, a systematic predictive protocol for generating the globally stable cluster 
structure is constructed by integrating a topology-based ML, particle swarm optimization 
(PSO), and density functional theory (DFT) calculation. The proposed topology-ML-PSO-
DFT protocol is validated on medium-sized Lin clusters. The predicted globally stable 
structure is in agreement with that in the literature. Therefore, the current methodology has 
been proved to be a reliable approach for cluster structure prediction. It is worthy to mention 
that this is the first time that topology and ML are applied to avoid the expensive DFT 
calculation on screening local minimum values. However, there are many aspects to be 
improved, such as the precision and generalization. Moreover, the method accelerating 
crystal structure relaxation by ML could be integrated with our method to further accelerate 
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structure prediction in future work. This work is a precursor for the prediction of 
multielement clusters and the structure prediction of complex crystal surface adsorption.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Flowchart illustrating the workflow from a geometric structure, distance matrix, topological 
barcodes, and vectors of topological invariants (V0, V1, V2) and persistent PPI (VPPI), to 
final topological fingerprints.
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Figure 2. 
Illustration of barcode changes for two clusters. The diameter-based filtration process and 
barcodes for (a) Li4 cluster and (b) Li6 cluster. With the increase of their diameter ϵ, the 
balls connect to form higher-dimensional simplexes. In this manner, the previously formed 
simplicial complex is included in the latter ones. Four panels from top to bottom are β0, β1, 
β2, and PPI barcodes, respectively. The horizontal axis is the filtration parameter (Å).
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Figure 3. 
Flowchart of a topology-ML-PSO-DFT protocol
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Figure 4. 
Comparison between persistent homology prediction results and DFT calculation results of 
the binding energy of Lin (n = 3, 4, …, 10) with the number of subintervals in 1 Å being (a) 
5 with GBR, (b) 10 with GBR, (c) 20 with GBR, (d) 5 with NN, (e) 10 with NN, and (f) 20 
with NN.
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Figure 5. 
Comparison between persistent homology prediction and DFT calculation of the binding 
energy of (a) TFs on Li20, (b) GAP on Li40, and (c) TFs on Li40.
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Figure 6. 
(a) Putative global stable structure of Li20. Two metastable structures of Li20 are depicted in 
(b), (c). (d) Putative global stable structure of Li40. The internal and external atoms are 
shown in red and green, respectively.
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Table 1.

List of Mean Absolute Error (MAE), Pearson Correlation Coefficient (PCC), and ϵmax Used in the Present 

Work
a

structure of TFs ϵmax MAE (eV/atom) PCC

p(β0)+p(β1)+p(β2) 10 0.039 0.979

p(β0)+p(β1)+p(β2)+p(PPI) 10 0.028 0.986

p(β0)+p(β1)+p(β2)+d(PPI) 10 0.026 0.990

p(β1)+p(β2)+d(PPI) 10 0.031 0.981

bd(β0)+bd(β1)+bd(β2)+d(PPI) 10 0.030 0.983

bpd(β1)+bpd(β1)+bpd(β2)+d(PPI) 10 0.026 0.988

p(β0)+p(β1)+p(β2)+d(PPI) 5 0.028 0.986

p(β0)+p(β1)+p(β2)+d(PPI) 15 0.026 0.989

a
b(*), p(*), and d(*) represent the birth, the persistence, and the death of topological invariant *, respectively. Here, bd(*) represents b(*)+d(*) and 

bpd(*) represents b(*)+p(*)+d(*).
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