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Abstract. Topological states of fermionic matter can be induced by means of

a suitably engineered dissipative dynamics. Dissipation then does not occur as a

perturbation, but rather as the main resource for many-body dynamics, providing

a targeted cooling into topological phases starting from arbitrary initial states.

We explore the concept of topological order in this setting, developing and

applying a general theoretical framework based on the system density matrix

that replaces the wave function appropriate for the discussion of Hamiltonian

ground-state physics. We identify key analogies and differences to the more

conventional Hamiltonian scenario. Differences essentially arise from the fact

that the properties of the spectrum and of the state of the system are not as tightly

related as in the Hamiltonian context. We provide a symmetry-based topological

classification of bulk steady states and identify the classes that are achievable by

means of quasi-local dissipative processes driving into superfluid paired states.

We also explore the fate of the bulk-edge correspondence in the dissipative

setting and demonstrate the emergence of Majorana edge modes. We illustrate

our findings in one- and two-dimensional models that are experimentally realistic

in the context of cold atoms.
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1. Introduction

Symmetries, their spontaneous breaking and related order parameters were considered for a

long time as the paradigm for understanding ordered states of matter. A paradigm shift was

initiated in the late 1980s when the Landau–Ginzburg broken-symmetry theory of ordered

phases—widely thought to be exhaustive—proved unable to characterize a new kind of phases

with no local order parameter: topological phases, or phases with topological order [1, 2].

Instead of being distinguished by symmetries, topological phases are characterized by distinct

values of a non-local, topological order parameter and phases transitions occur whenever the

topology changes, signaled by discontinuities in this topological invariant. The existence of

topological order may be conditioned on the existence of symmetries. However, as long as

topological order is present, the underlying system generally exhibits topological features, i.e.

features that are robust against arbitrary (symmetry-preserving) quasi-local perturbations.

Spectral gap and ground-state degeneracy are typical topological properties which have

been theoretically shown to be robust for wide classes of Hamiltonians [3–5]. Whereas the

spectral gap is a property of the bulk—as topological order itself—the ground-state degeneracy

generally depends on the boundary conditions imposed at the edges of the system and on the

existence of topological defects in the bulk (e.g. vortices in a superfluid). Most importantly, the

degeneracy can be traced to the existence of zero-energy modes localized at the edges or bound

to topological defects, which are robust topological features as well. These objects can exhibit

exotic behavior under spatial exchange (or ‘braiding’) such as non-Abelian statistics [6–8],

which opens up exciting possibilities for practical applications such as topological quantum

memories and topological quantum computation [8–10].

The search for topological phases exhibiting quasiparticles with non-Abelian statistics has

brought p-wave paired superfluids and superconductors to the forefront of theoretical and ex-

perimental condensed-matter research [7, 8, 10–12]. Such systems have first been studied in two

dimensions (2D), where they have been predicted to support topological phases with gapless

chiral edges modes and quasiparticles known as Majorana zero modes, giving rise to Ising-type

non-Abelian exchange statistics [7, 11, 13]. Following a seminal paper by Kitaev [14], the focus

has moved more recently to networks of one-dimensional (1D) systems, which were shown to

allow for similar topological features (non-Abelian statistics, in particular) as genuine 2D sys-

tems [15, 16]. Recent proposals for solid-state [17, 18] and cold atom [19] systems have made

it possible for Majorana zero modes to enter the experimental stage, with promising first results

in solid-state devices [20–23] and the perspective of increased future experimental efforts.

In recent years, the quest for topological states was extended to non-equilibrium systems,

going beyond the Hamiltonian ground-state scenario. A first step in this direction was taken

with periodically driven Hamiltonian systems [24–26], in which the time coordinate plays

the role of an extra dimension, allowing for the realization of topological invariants with

no equilibrium ground-state counterpart. In this work, we focus on a different paradigm in

which Hamiltonian unitary dynamics is replaced by specifically designed dissipative dynamics

described by a quantum master equation. Such a scenario was originally proposed as a means

for quantum state preparation and quantum computation [27, 28] and relies on the proper

engineering of a coupling of the system to a suitable reservoir. In the context of cold atoms,

such reservoir engineering may be seen as a natural extension of the more conventional

Hamiltonian engineering, with similar advantages as compared to solid-state systems such as

precise microscopic control and tunability. In previous works, we have shown how this concept

can be utilized to ‘cool’ or drive ensembles of atomic fermions into topologically ordered states
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in 1D [29] and 2D [30] in a targeted way, starting from an arbitrary initial state described a

density matrix. The analysis of the many-body properties of the phases and phase transitions

arising in these examples has revealed similarities but also differences between the physics of

topological ground states of Hamiltonians and topological steady states resulting from a purely

dissipative evolution.

In this work we put the results obtained in our two previous case studies into a broader

theoretical perspective. We provide a framework for investigating non-equilibrium topological

states that can be reached by means of engineered dissipation, developing a formalism and

physical understanding that can also be used in situations where dissipation occurs as a

perturbation. The natural object to study is the density matrix of the system, which does not

necessarily correspond to a pure state described by a wave function alone. In the present paper

we focus on quadratic master equations with the aim of classifying topological states described

by density matrices in analogy to the Hamiltonian ground-state scenario. All information

contained in the density matrix is then equivalently encoded in the covariance matrix gathering

all static single-particle correlations. By identifying and exploiting the analogy between this

object and a quadratic Hamiltonian in a ‘first-quantized’ representation, we demonstrate how to

classify topological phases in a non-equilibrium context where mixed states are allowed. Our

analysis focuses on both bulk and edge properties.

As compared to a Hamiltonian ground-state scenario, key differences arise from the

fact that the dynamics—or the spectral properties of the system—and the properties of its

‘ground’ (steady) state—or the static correlation properties—are not as tightly related as in

the Hamiltonian context. As far as the bulk is concerned, this crucial difference manifests itself

in the fact that two independent spectral properties must be present to guarantee that the system

is in a stable topological state: the first quantity that we identify is the dissipative gap, which

corresponds to the lowest damping rate associated with modes belonging to the bulk of the

system and is a direct counterpart of the excitation gap of a Hamiltonian spectrum. The second

is the purity gap, which describes the purity of the mode belonging to the bulk which is most

strongly mixed. Here we take the viewpoint that the natural counterpart of a topological ground-

state degeneracy is the existence of a decoherence-free subspace that is non-local, i.e. spanned

by (pure) states that are locally indistinguishable. In complete analogy to the Hamiltonian

context, we define topologically ordered states as locally indistinguishable steady states of a

gapped quantum many-body Liouvillian, with a dissipative gap and a purity gap. Clearly, a

purity gap is always present in the Hamiltonian context, since Hamiltonian ground states are

by definition pure states. In our context, however, we argue that the system can undergo a

topological phase transition if either (or both) of these two different gaps vanishes in a particular

parameter regime.

The purity of the state plays a key role not only in the bulk, but also for the edge physics. In

the Hamiltonian context, bulk-edge correspondence theorems describe a tight relation between

the number of edge zero modes (i.e. modes that are decoupled from the Hamiltonian dynamics

and thus do not evolve) found at the interface between two topologically distinct phases and

the value of the topological invariant associated with each of the phases [12, 31–34]. We

formulate a dissipative variant of such bulk-edge correspondence: topological order ensures

the existence, at the interface, of a fermionic subspace that is isolated from the bulk (with a

dimension determined by the value of the topological invariant on both sides of the interface).

However, in contrast to the Hamiltonian case, topology does not guarantee the decoupling of

this subspace from the dynamics. As a result, the modes corresponding to this subspace can be
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either be zero-damping modes—i.e. modes that are decoupled from the dynamics similarly as in

the Hamiltonian setting—or emerge as zero-purity modes—i.e. modes that are in a completely

mixed state; in which no information can be stored. In the context of engineered dissipation,

the simultaneous appearance of both zero-damping and zero-purity modes may give rise to

intriguing physical effects, as we discuss in this work.

The fact that actual physical implementations of model Hamiltonians need often be

properly modeled as open systems due to particle losses or dephasing, e.g. has been recognized

in a number of theoretical works focusing on the stability of the edge modes [35–38] or on the

very definition of topological order in such circumstances [39]. We emphasize that our approach

is fundamentally different here, since dissipation does not occur as a perturbation but is rather

harnessed as the main resource to generate the dynamics.

Our paper is organized as follows. In section 2, we discuss the dissipative framework of

interest. We introduce the concept of ‘dark states’ in a many-body context, and explain the

main ideas behind the physical implementation of a dissipative counterpart of Kitaev’s quantum

wire, thereby illustrating how to engineer more general dissipative evolutions giving rise to

superfluid paired states. We also provide both a second- and a first-quantized formulation of

quadratic dissipative dynamics, and discuss the key properties that are necessary to understand

the bulk and edge physics of Gaussian states in terms of either the corresponding density matrix

or the associated covariance matrix. In section 3, we construct a symmetry-based topological

classification of driven-dissipative systems using the covariance matrix, and identify relevant

topological invariants in 1D and 2D. In section 4, we then apply this framework to identify the

classes D and BDI of Altland and Zirnbauer as the symmetry classes that can be dissipatively

targeted under physical constraints related to ‘typical’ implementation schemes. As is well

known, the edge modes of systems belonging to these two classes are Majorana fermions,

which explains the potential of dissipatively induced superfluids to exhibit such modes. We

also show that, in 2D, the quasi-locality of the dissipative operations acting on the system

density matrix alone implies a vanishing Chern number. In section 5, we discuss the fate of the

bulk-edge correspondence in the dissipative setting. We also show how to construct dissipative

Majorana modes explicitly in a translation-invariant setting, and examine the robustness of such

modes in the presence of typical imperfections. Section 6 is devoted to the discussion of the

physical role of the dissipative gap for adiabatic manipulations—in particular, for the braiding

of dissipative Majorana modes—showing that dissipative Majorana modes exhibit non-Abelian

exchange statistics just as their Hamiltonian counterparts. The remainder of the paper deals with

illustrative examples of our general framework and results. In section 7, we analyze a ‘zigzag’

dissipative quantum wire exhibiting topological phase transitions of the three possible types

allowed by the closure of the dissipative and/or purity gaps. In section 8, we illustrate in a 2D

model a dissipative mechanism that makes it possible to obtain unpaired Majorana modes in a

topological phase characterized by an even-valued integer topological invariant.

2. Dissipative framework

2.1. Quantum master equations for many-body systems

The quantum master equation describing the time evolution of the reduced system density

matrix ρ is given by

∂tρ = −i[H, ρ] +
∑

i

(

ℓiρℓ
†
i − 1

2
{ℓ†

i ℓi , ρ}
)

. (1)
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The commutator term familiar from the Heisenberg equation describes the coherent dynamics

generated by a system Hamiltonian H . The second part, often referred to as Liouville operator

or Liouvillian, describes the dissipative dynamics resulting from the interaction of the system

with an environment, or ‘bath’. In particular, it is defined in terms of a set of so-called Lindblad

operators (or ‘quantum jump’ operators) ℓi which describe the coupling to that bath. The

Liouville operator L has a characteristic Lindblad form: the anticommutator term describes

dissipation and must be accompanied by fluctuations in order to conserve the ‘norm’ Tr(ρ) of

the system density matrix. The corresponding term, where the Lindblad operators act from both

sides onto the density matrix, is called ‘recycling’ or ‘quantum jump’ term. Note that we have

absorbed the rates κi associated with each dissipative process into the definition of the Lindblad

operators, making them carry dimension of square root of energy. The rates are non-negative, so

that the density matrix evolution is completely positive, i.e. the eigenvalues of ρ remain positive

under the combined dynamics generated by H and L [40].

The quantum master equation provides an accurate description of a system–bath setting

with a strong separation of scales. More precisely, there must be a fast energy scale in the bath

(as compared to the system–bath coupling) that justifies to integrate out the bath in second-

order time-dependent perturbation theory. If, in addition, the bath has a broad bandwidth,

the combined Born–Markov and rotating-wave approximations are appropriate, resulting in

equation (1). Such a situation is generically realized in quantum optical few-level systems,

e.g. for a laser-driven atom undergoing spontaneous emission. On the other hand, typical

condensed matter systems do not display the necessary scale separations to justify a microscopic

description in terms of a master equation. In systems with engineered dissipation [41] as

investigated in this paper, we are interested in scenarios that share features from both quantum

optical systems—in that they are coupled to Markovian quantum baths—and condensed matter

systems—in that they dispose of a continuum of spatial degrees of freedom on a lattice. Using

the manipulation tools of quantum optics, the validity of a Markovian master equation can be

ensured, giving rise to a well-defined microscopic dissipative many-body dynamics. A similar

level of microscopic control as obtained in Hamiltonian engineering in a cold atom context

can be expected for this ‘Liouvillian engineering’, which therefore is a natural extension of

the former to a more general non-equilibrium situation. In this context, dissipation does not

occur as a perturbation but rather as the dominant resource for the many-body dynamics. For

simplicity—and in order to bring out the dissipative physics more clearly—we will consider the

case where the Hamiltonian is absent, i.e. H = 0.6 Such a scenario can be useful from a practical

point of view—for cooling systems into desired states—but also gives rise to novel interesting

many-body physics.

2.2. Dark states

In the long-time limit, a quantum system governed by equation (1) approaches a stationary

or steady state ρf = ρ(t → ∞) which generically corresponds to a mixed state. An interesting

situation appears if, instead, the many-body density matrix is driven toward a pure stationary

state, ρf = |ψ〉D〈ψ |D [27, 28]. In quantum optics, such pure states |ψ〉D that are obtained as

a result of a dissipative evolution are called dark states. Mathematically, dark states are zero

6 We remark that such a regime is well-justified in the context of a physical implementation with cold atoms in an

optical lattice, since the lattice can typically be made deep enough to suppress tunneling and the interactions can

be well-controlled.
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modes of the Liouville operator, such that L(|ψ〉D〈ψ |D)= 0. To satisfy this condition, they

must be zero modes shared by all Lindblad operators, i.e.

ℓi |ψ〉D = 0 for all i. (2)

The dark-state solution is the unique solution of the Liouville dynamics if (i) there exists

exactly one normalized dark state |ψ〉D and (ii) there are no stationary solutions other than

this dark state [28, 42]. In the specific case of interacting Liouville operators (involving terms

higher than quadratic in the creation and annihilation operators) [28, 42] or non-interacting

Liouville operators (involving terms quadratic in the creation and annihilation operators), the

fact that these conditions are satisfied can be proved rigorously. If present, the dynamics

described by equation (1) for H = 0 corresponds to a directed motion—in the Hilbert space

of the system—into the ‘sink’ provided by the dark state, which is reached independently of

the initial density matrix. In recent years, a number of theoretical [27, 43] and experimental

[44, 45] studies have focused on how to engineer Liouvillians such that, in the long-time limit,

a quantum system reaches a well-defined, pure many-body steady state or exhibits novel phase

transitions resulting from the competition between coherent and dissipative dynamics [46–49].

In particular, in the context of atomic fermions, it has been shown how to engineer number-

conserving dissipative dynamics that drives the system into a pure Bardeen–Cooper–Schrieffer

(BCS)-type paired state in the absence of conservative forces [50, 51]. The dissipative pairing

mechanism forms a basis for the targeted cooling into states with non-trivial topological

properties far from thermodynamic equilibrium.

2.3. Topological order

The concept of topological order was originally introduced in the context of closed

quantum systems described by a time-independent Hamiltonian (see e.g. [52] for a review).

In this vein, a paradigm has emerged in which topologically ordered states are defined

as locally indistinguishable ground states of a gapped quantum many-body Hamiltonian,

with characteristic features such as emergent degrees of freedom (quasiparticles) with

non-trivial geometric phases (non-Abelian exchange statistics, in particular), edge states,

topological entanglement entropy, etc. In this context, the spectral gap and the ground-state

degeneracy, along with other so-called ‘topological’ properties, are robust against arbitrary local

Hamiltonian perturbations that are weak as compared to the spectral gap (and possibly preserve

some symmetries, in which case topological order is ‘symmetry-protected’), up to corrections

O(e−L) that vanish exponentially in the limit of a large system size L (or in the limit of a large

separation L between relevant topological defects). Such robustness has been proved for wide

classes of Hamiltonians with topological order [3–5].

In this work, we address the question of whether realistic open quantum systems can

similarly exhibit topological order in the sense of exhibiting stable spectral features giving

rise to observable (and hopefully interesting) physical phenomena. We consider realistic

systems coupled to Markovian baths, which generically evolve according to equation (1), in

which case the relevant spectral properties to assess the existence of topological order are

contained in the Liouvillian L. The eigenvalues and eigenvectors of L can be obtained by

solving the eigenvalue equation L(ρ)= λρ, which can be expressed as a matrix equation.

Since the matrix corresponding to the Liouvillian is in general non-Hermitian, its eigenvalues

are generally complex, with real and imaginary parts describing damping and fluctuations,
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respectively7. Physically, the most relevant eigenvectors are those with λ= 0, which correspond

to steady states of the dynamics given by ∂tρ = L(ρ) (equation (1)). The latter form a so-called

decoherence-free subspace decoupled from the Liouvillian dynamics [53] which provides a

natural counterpart to the ground-state subspace of a Hamiltonian. Pushing the analogy further,

one might naively conclude from the above considerations that the natural counterpart of a

topological ground-state degeneracy—i.e. one that is robust against arbitrary (weak) local

Hamiltonian perturbations—is the existence of a decoherence-free subspace that is robust

against arbitrary (weak) local perturbations of the Liouvillian. However, we now argue that

such a claim must be nuanced.

Firstly, one has to realize that the evolution of the system is absent when restricted

to either the ground-state subspace of a Hamiltonian or the decoherence-free subspace of a

Liouvillian. The main difference between these scenarios lies in how the relevant subspaces are

isolated from the rest of the system: in the Hamiltonian context, the ground-state subspace is

isolated via an energy gap, whereas in the Liouvillian setting the decoherence-free subspace

is dynamically isolated via a dissipative gap, i.e. via a gap in the real part of the Liouvillian

spectrum providing a minimum damping rate ∼1/minλ|Re(λ)| for the rest of the system (see

section 2.8 below). Secondly, one has to keep in mind that the quantum information stored in the

ground-state subspace of a Hamiltonian, even with topological degeneracy (i.e. with robustness

against arbitrary (weak) local Hamiltonian perturbations), is usually prone to decoherence

when allowing for arbitrary (weak) local couplings to a realistic environment8. Since ground-

state subspaces and decoherence-free subspaces are both isolated subsystems in which there

is no dynamics, we thus expect the information stored in the decoherence-free subspace of a

Liouvillian to be similarly affected by decoherence when allowing for arbitrary (weak) local

couplings to some environment. In other words, we do not expect any kind of decoherence-

free subspace to be robust against arbitrary (weak) local perturbations of the corresponding

Liouvillian. We will argue in section 5 that there is in fact no such robustness in general and

will give a refined picture of what kind of robustness can be achieved in this setting.

In light of the above discussion, we take here the viewpoint that the natural counterpart of

a topological ground-state degeneracy is the existence of a decoherence-free subspace that is

non-local, i.e. spanned by (pure) states that are locally indistinguishable9. In complete analogy

to the Hamiltonian context, we will therefore define topologically ordered states as locally

indistinguishable steady states of a gapped quantum many-body Liouvillian. The notion of

‘gapped Liouvillian’ must of course be clarified. Indeed, the Hamiltonian spectral gap has

7 Note that Re(λ)6 0 is always satisfied owing to the complete positivity of the map described by L (see [42]

and references thereof).
8 Recent proposals for realizing Kitaev’s 1D ‘toy’ model for Majorana modes [17, 18] provide typical examples of

Hamiltonian systems with spectral stability—featuring a spectral gap and a ground-state degeneracy that are robust

against arbitrary (weak) local Hamiltonian perturbations that do not break fermion parity—which are nevertheless

prone to decoherence under conditions where the system is not perfectly closed [35–38]. Even in the ideal case

where the exchange of single-particle fermionic excitations with some environment (breaking fermion parity) is

suppressed by an energy gap1 and thermalization is efficient, thermal fluctuations still lead to decoherence and to

memory lifetimes that scale as e−1/kBT at finite temperature T (kB being the Boltzmann constant), independently

of the system size [36]. In that case, the quantum information encoded in the subspace of unpaired Majorana modes

is protected by the energy gap 1; not by topological properties of the system.
9 Note that the decoherence-free subspace can be spanned by pure states since the dynamics is unitary when

restricted to the latter.
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a) b)

Fermionic

lattice

Auxiliary

lattice

Reservoir

−Ω+Ω

}∆

Figure 1. (a) Unit cell for dissipation engineering. The lower potential wells

correspond to the physical sites, whereas the upper site in between is an auxiliary

site. Atoms in the lower sites are coherently coupled to the auxiliary site

with opposite Rabi frequency ±�. Decay back to the lower sites occurs via

spontaneous emission, where energy is released into a surrounding reservoir (see

text). If the coupling to the upper level is sufficiently far detuned (1≫�), the

latter can be integrated out, so that an effective dynamics for the lower sites is

obtained. (b) In an optical lattice setup, this unit cell is repeated in a translation-

invariant fashion multiple times in a natural way. The quantum wire corresponds

to the lower sites—as anticipated above—which are populated by spinless (or

spin-polarized) fermions in the cases discussed in this work. Rabi frequencies

with alternating signs are realized by a commensurability condition on lattice

and drive lasers (see text). Dissipation results from spontaneous phonon emission

into a BEC reservoir (light gray).

no obvious counterpart since the Liouvillian spectrum generally has real and imaginary parts.

We will show in the remaining of this work that two independent spectral gaps (introduced in

sections 2.7 and 2.8) are required to define topological order in the dissipative setting. It is this

crucial difference with the Hamiltonian setting that will allow us to identify interesting physical

phenomena with no Hamiltonian counterpart.

2.4. Physical realization

Here we briefly sketch the implementation idea common to the dissipative models studied

in this paper. The basic setting consists of an atomic ensemble confined in an optical lattice

(the system), which is driven coherently and immersed into a larger reservoir consisting of

a different atomic species and playing the role of the dissipative bath. In the case of interest

here, the constituents of the system are fermions. In cold atomic gases, the associated spin is

realized in terms of hyperfine states, and thus both the cases of spinless and spinful fermions

can be meaningfully considered. The bath constituents are chosen as bosonic atoms, so that the

conservation of fermion parity in the system is guaranteed.

The working of the driven-dissipative mechanism is best illustrated by the unit cell

3-configuration displayed in figure 1. The complete driven-dissipative process consists of two

steps. The first step is a coherent excitation from the system (lower sites) to the auxiliary site
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in between. In the example of figure 1, we quasi-locally excite fermions on the system sites i

and i + 1 (with annihilation and creation operators ai and a
†
i corresponding to each site) into

an antisymmetric superposition ∼ai − ai+1, which can be controlled by a commensurability

condition of the driving laser to the standing wave laser generating the optical superlattice (see

[41] for details). If the driving laser has twice the wavelength of the lattice laser, there is phase

shift of π in the effective Rabi frequency from one site to the next, leading to a relative minus

sign. The auxiliary level is unstable if coupled to the reservoir. In this case, spontaneous phonon

emission into the surrounding bath can occur, thereby giving rise to the second, dissipative

step. The atoms are ‘brought back’ to the lower sites in a quasi-local way ∼a
†
i + a

†
i+1; since

this process is isotropic, there is now a relative plus sign. If this driven-dissipative process is

generated using a drive laser that is far detuned (�/1≪ 1) from the auxiliary site resonance

frequency, the auxiliary site can be integrated out and we obtain a Lindblad operator of

the form

ℓi = C
†
i Ai for all i, C

†
i = a

†
i + a

†
i+1, Ai = ai − ai+1. (3)

A few remarks are in order. (i) For a driving laser superimposed over the extent of the

whole optical superlattice, we obtain translation-invariant Lindblad operators as depicted in

figure 1(b), up to system boundaries which are not shown. (ii) The quasi-locality of the

operators is controlled by the Wannier function overlap between the onsite wave functions

involved in the combined excitation and de-excitation processes. (iii) The Lindblad operators

that can be realized in this setting have a generic form ℓi = C
†
i Ai , where C

†
i (Ai) is a linear

translation-invariant superposition of creation (annihilation) operators with generic properties:

The excitation part (Ai ) can be controlled to high accuracy—involving, in particular, the control

of the relative phases in the superposition—since it is generated by a coherent laser beam. In

2D, for example, this allows to imprint angular momentum by choosing relative laser phases

in different primitive directions of the lattice. On the other hand, the de-excitation or decay

part (C
†
i ) results from spontaneous emission and is therefore unavoidably isotropic (or s-wave

symmetric). (iv) The system particle number is conserved in our dissipative framework. This

is reflected in the property [ℓi , N̂ ] = 0 for all Lindblad operators, where N̂ =
∑

i n̂i is the total

particle number operator, with n̂i = a
†
i ai . This exact microscopic property of the system, which

implies an exact conservation of parity, is of importance to the discussion of the possible

imperfections that may occur in the dissipative setting after performing approximations.

Physically, this property originates from the fact that typical interactions in cold atomic systems

are local density–density interactions. In particular, the system and bath constituents will

interact via such coupling. On an even more elementary level, the fact that the bath is bosonic

provides a further reason for fermion parity conservation. This aspect is crucially different from

solid-state implementations which are not perfectly closed systems: there the environment is

typically fermionic, which facilitates system–bath exchange processes affecting the parity of the

system. (v) While no particle number exchange is possible between the system and the reservoir,

energy can be exchanged. This enables the outflow of entropy from the system into the (infinite)

reservoir, and the targeted cooling into pure many-body states. A crucial prerequisite for the

entropy removal from the system is the coherent driving of the system. (vi) The fast energy

scale ensuring the validity of the Born–Markov and rotating-wave approximations underlying

our construction is provided by the band separation between the system and the auxiliary

sites, which is the largest energy scale in the problem. (vii) The creation and annihilation

part of the Lindblad operators is respectively symmetric and antisymmetric under the exchange
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i ↔ i + 1. Such property is important for reaching pure stationary states, as will become clear

below.

2.5. From interacting Liouvillians to quadratic master equations

The physical implementation discussed above realizes a number-conserving microscopic

dynamics, with the key advantage of conserving fermion parity as a consequence. The dynamics

generated by the corresponding bilinear Lindblad operators ℓi is described by an interacting

(quartic) Liouvillian. The Lindblad operators are constructed in such a way that the stationary

state is a unique dark state for a given even particle number 2N , characterized by a BCS pair

wave function with fixed particle number |BCS, N 〉 that satisfies ℓi |BCS, N 〉 = 0 for all i .

The Liouville operator ensuring this property thus represents a parent Liouville operator for

a given fixed number BCS pair wave function (see the appendix for more details). Starting

from the exact knowledge of the fixed-number dark-state wave function, we can switch in the

thermodynamic limit from a fixed-number to a fixed-phase ensemble. In particular, the long-

time evolution of the interacting master equation can be linearized based on this knowledge.

The calculation presented in the appendix can be summarized as

ℓi = C
†
i Ai

N ,t→∞−→ L i = C
†
i +αAi . (4)

That is, the product of creation and annihilation parts in the quadratic Lindblad operators

transforms into a sum, giving rise to linear Lindblad operators. This relies on the property that

C
†
i (Ai) is symmetric (antisymmetric). It provides a dynamical connection between the fixed-

number and fixed-phase settings at the level of the equation of motion. The long-time dynamics

is universal, in the sense that it is independent of the initial state.

We note that α = reiθ is a complex number in the above equation. Its phase is not fixed

by the dynamics, but rather reflects spontaneous symmetry breaking in the dissipative setting of

interest. The modulus r , on the other hand, is determined by the average particle number in the

system (see the appendix). In particular, for half filling and in the example of equation (3), we

find r = 1; such that for θ = 0, without loss of generality,

L i = (a
†
i + a

†
i+1)+ (ai − ai+1). (5)

We recognize the quasi-local Bogoliubov quasiparticle operators of Kitaev’s Hamiltonian

quantum wire [14] (at half filling and with equal pairing and hopping amplitudes, up to

normalization), emerging here naturally in the long-time limit of a dissipative dynamics. The

ground-state condition of the Hamiltonian quantum wire, L i |BCS,θ〉 = 0 for all i , is now

interpreted as the dark-state condition of the linearized dissipative evolution. The corresponding

wave function now has a fixed phase θ instead of a fixed number. Since the Lindblad operators

form a complete Dirac algebra, {L i , L
†
j} ∼ δi j , {L i , L j} = {L

†
i , L

†
j} = 0 for an infinite system

with no boundaries, the uniqueness of the dark-state solution is obvious.

The quadratic dynamics obtained in the long-time limit makes the systems considered

in this work amenable to a treatment analogous to the discussion of quadratic Hamiltonians

when examining their topological properties. This dynamics was obtained by giving up exact

particle number conservation, which is justified in the thermodynamic limit. The absence of

exact particle number conservation thus emerges similarly as in the Hamiltonian scenario.

There is, on a formal level, however, a crucial difference between dissipative and Hamiltonian

settings. While a quadratic number non-conserving BCS Hamiltonian still conserves parity,
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formally such a property is not present in a quadratic Liouville evolution (e.g. single fermions

can be ejected into the environment, giving rise to quasiparticle poisoning [37, 38]). However,

remembering that the microscopic dissipative processes do conserve particle number and thus

parity exactly, we can rule out parity non-conserving processes as potential imperfections arising

in our scenario. The number non-conserving nature of the system is introduced ‘within the

system only’, and there is no exchange of particles with the reservoir. Physically, the number

non-conserving processes describe pairwise creation and annihilation out of or into the mean

field provided by the system itself.

We finally remark that the spontaneous breaking of the global U (1) (continuous) symmetry

invoked in the above discussion generally gives rise to gapless bosonic modes as dictated by the

Goldstone theorem (which can also be formulated in the dissipative setting). In the Hamiltonian

context, such modes have been proved to be essentially harmless as far as unpaired Majorana

modes are concerned [54, 55]. This stems from the fact that bosonic modes, even gapless, cannot

affect the fermion parity; more crucial is the existence of a gap suppressing single-particle

fermionic excitations. Although the precise nature of analogue long-wavelength excitations

is—to the best of our knowledge—currently unknown in the dissipative setting, it is clear that

their bosonic nature should make them harmless for the same reasons as in the Hamiltonian

context. Moreover, we emphasize that the dissipative gap provides, in our dissipative setting,

the counterpart of an energy-gap protection from single fermionic excitations (see section 2.8).

2.6. Gaussian master equations

Having discussed how quadratic fermionic master equations naturally emerge in the long-

time limit of interacting Liouvillians, we now summarize some general properties of such

master equations. We do this in both a second- and a first-quantized formulation, working

with operators or matrices, respectively, as familiar from the Hamiltonian setting [56]. For

this discussion, it is useful to work in the real (or Majorana) basis of fermionic quadrature

component operators. For a system with N sites, 2N real fermionic modes are introduced

according to

c2n−1 = i
(

an − a†
n

)

, c2n = an + a†
n, {cn, cm} = 2δn,m, c†

n = cn. (6)

The fact that the master equation is quadratic in the fermion operators implies solutions in terms

of Gaussian density operators. In the second-quantized formulation, this can be written as

ρ(t)∼ exp

(

− i

4
cTG(t)c

)

, (7)

where cT = (c1, . . . , c2N ) is a column vector defined from the 2N Majorana operators and

G is a real antisymmetric matrix (so that iG is Hermitian). Formally, ρ thus has the form of

a canonical density matrix ρc ∼ e−βH for a quadratic Hamiltonian.

Instead of working in second quantization, we can move to a first-quantized formulation.

As in the Hamiltonian scenario, the latter allows us to discuss symmetry and topological

classifications in a more direct way. The key object here is the covariance or (equal-time)

correlation matrix collecting the second moments, which is the only information contained in a

Gaussian density operator. It is defined as

Ŵnm = Tr(ρ Ŵ̂nm), Ŵ̂nm = i

2
[cn, cm]. (8)
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We now look for an equation of motion for this object [47, 57]. A straightforward way to

derive such an equation is via the adjoint equation to a given master equation for the density

operator [58], describing the evolution of an operator in the Heisenberg picture. For the

correlation operator Ŵ̂nm = i

2

∑2N

j,k=1 c jG
nm
jk ck with real antisymmetric Gnm

jk =
(

δ j,nδm,k − δ j,mδn,k

)

, this reads

∂t Ŵ̂nm =
∑

i

L
†
i Ŵ̂nm L i − 1

2
{L

†
i L i , Ŵ̂nm} = −i

2N
∑

j,k=1

c j ({M,Gnm}) jk ck. (9)

Here we have written the linear quantum jump operators as L i ≡
∑2N

k=1 l i
kck, L

†
i ≡

∑2N

k=1 l i∗
k ck

and introduced the matrix

M jk ≡
N
∑

i=1

l i∗
j l i

k = 1

2

(

X jk − i

2
Y jk

)

, (10)

where X = XT and Y = −Y T are real symmetric and antisymmetric matrices, respectively.

Furthermore, X by construction is positive semidefinite. Taking the expectation value of

equation (9), we readily find the fluctuation–dissipation equation describing the evolution of

the real antisymmetric correlation matrix Ŵ,

∂tŴ = −{X, Ŵ} + Y, (11)

where we have suppressed the matrix indices. Denoting the steady-state correlation matrix as Ŵ̃,

which satisfies the equation {X, Ŵ̃} = Y , we can give a clear physical meaning to the matrices X

and Y . Writing Ŵ = Ŵ̃ + δŴ, the approach to the steady state is governed by ∂tδŴ = −{X, δŴ};
i.e. X alone governs the damping dynamics toward that steady state. The matrix Y describes

fluctuations, which come along with dissipation in a probability preserving (∂tTr(ρ(t))= 0)

quantum mechanical evolution. The steady state Ŵ̃ depends on both X and Y .

Finally, weremark that the correlation matrix is related to the density operator

equation (7) by

Ŵnm(t)= i

2
Tr (ρ(t)[cn, cm])= i tanh

[

i
G(t)

2

]

nm

. (12)

We may compare this to a Gaussian Hamiltonian equilibrium setting. Introducing the

first-quantized, real and antisymmetric Hamiltonian matrix h in the Majorana basis via

H = i

4

∑

i, j hi j ci c j , we have at an arbitrary temperature T = 1/β

Ŵ(eq)
nm = i tanh

[

i
βh

2

]

nm

, (13)

which reduces to Ŵ(eq) = i sgn(ih) at T = 0.

2.7. Purity and purity gap

The purity of a Gaussian state defined by a particular correlation matrix Ŵ can be revealed

by examining the spectrum of the Hermitian positive semidefinite matrix (iŴ)2, which we

refer to as the purity spectrum. Pure Gaussian states are characterized by a ‘flat’ purity

spectrum with eigenvalues all equal to 1, whereas mixed Gaussian states exhibit eigenvalues

smaller than 1, each zero eigenvalue indicating the existence of a completely mixed subspace.
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Intuition regarding the purity spectrum can be gained by constructing a fictitious quadratic

Hamiltonian HŴ from the Hermitian matrix iŴ, namely,

HŴ = i
∑

i, j

Ŵi j ci c j , (14)

where the ci are the 2N Majorana basis operators introduced in the previous section. Since Ŵ

is a real antisymmetric matrix, the spectrum of this Hamiltonian consists of real eigenvalues

±ǫn (n = 1, 2, . . . , N ). Most importantly, the positive part of the spectrum of HŴ is the purity

spectrum of the Gaussian state represented by the correlation matrix Ŵ (up to a square root).

Exploiting this analogy further, we will identify the eigenvectors of (iŴ)2 as ‘eigenmodes’ or

‘modes’ (of the fictitious Hamiltonian HŴ). In particular, we will refer to modes of HŴ associated

with zero eigenvalues as zero-purity modes and to the spectral gap of the latter as the purity gap.

Such modes are defined in the mode spaceM consisting of operators of the form γ = vTc with

v ∈ R2N . Modes corresponding to a unit vector v will be referred to as ‘Majorana’ modes since

they satisfy γ † = γ and γ 2 = 1. We will distinguish two types of Majorana zero-purity modes:

intrinsic ones, which are determined by the dissipative dynamics, and extrinsic ones, which

result from mixed initial conditions (and thus disappear when starting from pure initial states).

The purity of the steady state is determined by the dissipative dynamics and, if the steady

state is not unique, by the purity of the initial state (i.e. by the initial conditions). In the case

of interest in this work where the dissipative dynamics is quadratic, one can show (we refer to

our previous work [30] for an explicit proof) that there exist initial conditions leading to a pure

steady state whenever the corresponding Lindblad operators L i form a set of anticommuting

operators, i.e. whenever {L i , L j} = 0 for all i, j .10 In the matrix representation defined in the

previous section, one can then establish a one-to-one correspondence between the matrices X

and Y encoding the dynamics. Intuitively, this can be understood by examining the steady-state

equation {X, Ŵ} = Y (where Ŵ now denotes the steady-state correlation matrix): if the steady

state is pure, the spectrum of the associated correlation matrix Ŵ (i.e. the purity spectrum)

essentially contains no information, since all of its eigenvalues are equal to ±1 [30]. The

information contained in X must therefore be exactly the same as that contained in Y , otherwise

the steady-state equation would not be satisfied. In other words, X and Y both contain full

information about the dissipative dynamics when the steady state is pure. In that case, one can

construct yet another useful object encoding all information about the dynamics: the so-called

parent Hamiltonian Hparent naturally associated with the Hermitian matrix iY , defined as

Hparent ≡ HY = i
∑

i, j

Yi j ci c j . (15)

Clearly, the spectrum of Hparent is directly related to that of Y and therefore to that of X as well

for dissipative dynamics whose steady state is pure. Remembering the definition of the matrix

Y in terms of the Lindblad operators, one can rewrite the parent Hamiltonian in the equivalent

form

Hparent =
∑

i

L
†
i L i , (16)

10 Note that Lindblad operators satisfying this condition generate the same (exterior) algebra as fermionic

annihilation operators. They need not be fermionic annihilation operators, however. The anticommutation relation

{L i , L j } = 0 (for all i, j) is a necessary and sufficient condition to ensure the existence of a pure state |ψ〉 such that

L i |ψ〉 = 0 for all i , which is all that we need.
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up to a constant that we will neglect in what follows. This shows that pure steady states

|ψ〉, which are ‘dark states’ satisfying L i |ψ〉 = 0 for all i (see equation (2)), can equivalently

be seen as ground states of Hparent. As opposed to the purely fictitious Hamiltonian HŴ that

we have constructed above to quantitatively assess the purity of an arbitrary Gaussian state,

independently of any dynamics, the parent Hamiltonian therefore describes features associated

with the actual (dissipative) dynamics of the system—as expected from its definition from the

matrix Y . In fact, we will argue in the next section that the spectrum of Hparent encodes all

information regarding pure steady states. We emphasize, however, that the parent Hamiltonian

does not play such a prominent role in the more general case where the steady state of the

dissipative dynamics is mixed (even when starting from pure initial states).

As demonstrated in our previous work [30], the above discussion can be formalized and

summarized as the following equivalent statements:

(i) the steady state is pure (at least for pure initial states);

(ii) {L i , L j} = 0 for all i, j (i.e. the Lindblad operators form a set of anticommuting operators);

(iii) [X, Y ] = 0 and X 2 = − 1

4
Y 2 (in particular, the spectra of X and Y are directly related);

(iv) the dissipative dynamics can be fully described using the parent Hamiltonian Hparent =
∑

i L
†
i L i .

This last point will be clarified in the next section.

2.8. Dissipative gap and Majorana zero-damping modes

In the case where the dissipative dynamics is quadratic, the dynamical approach to the steady

state is governed by the associated matrix X , as mentioned above. This matrix, which is by

construction real, symmetric and positive semidefinite, can be spectrally decomposed in the

form X =
∑2N

j=1 κ j(v j ⊗ vT
j ) with eigenvalues κ j > 0 and associated eigenvectors v j ∈ R2N .

The eigenvectors of X define ‘modes’ in the mode space defined in the previous section.

Assuming that they are normalized to unity, each eigenvector v j can be identified with a

corresponding Majorana mode γ j = vT
j c. Physically, the eigenvalues of X then correspond to

particular damping rates associated with particular Majorana modes. Accordingly, we will refer

to the spectrum of X as the damping spectrum and to Majorana modes γ j associated with a

vanishing damping rate as Majorana zero-damping modes. One can show (for an explicit proof,

see our previous work [30]) that a Majorana mode γ = vTc is a zero-damping mode whenever

the following equivalent conditions are satisfied:

(i) Xv = 0;

(ii) {L i , γ } = 0 for all i ;

(iii) lT
i v = 0 for all i (li being the vector corresponding to the Lindblad operator L i in mode

space, i.e. L i = lT
i c).

The dampingspectrum describes the dynamical separation (i.e. in time) between particular

modes in a similar way as the spectrum of a Hamiltonian determines the energy separation

between specific modes. Pushing the analogy further, one can see that the existence of a

dissipative gap (or ‘damping gap’) in the damping spectrum leads to the dynamical isolation

of bulk and edge modes (through the quantum Zeno effect [59]), thereby providing a dissipative
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counterpart to the gap protection arising in the Hamiltonian context. Majorana zero-damping

modes form a so-called decoherence-free subspace [53] unaffected by the dissipative dynamics

and, in the presence of a finite dissipative gap, completely isolated from the rest of the system.

In light of the discussion of section 2.3, the dissipative counterpart of a topological Hamiltonian

ground-state degeneracy is then provided by the existence of a non-local decoherence-free

subspace associated with zero-damping Majorana modes.

We now clarify the role of the parent Hamiltonian defined in the previous section in view

of the above considerations. When the steady state of the dissipative dynamics is pure, the

spectrum of X (i.e. the damping spectrum) directly maps to the spectrum of Y , which in turn

trivially maps to that of Hparent. The parent Hamiltonian thus contains all information about the

dissipative dynamics in that case. When the steady state is mixed (independently of the initial

state), however, the tight relationship between X and Y (or Hparent) breaks down and the parent

Hamiltonian becomes insufficient to describe the dynamics. In this more general case, one can

show (we refer to the supplemental material of our previous work [30] for an explicit proof)

that a zero mode of Hparent (or, equivalently, of the matrix Y ) does not necessarily correspond to

a zero mode of X (i.e. to a zero-damping mode), although the converse is always true. In other

words, zero modes of the parent Hamiltonian need not be Majorana zero-damping modes of the

dissipative dynamics. In fact, any zero mode of Hparent which does not coincide with a zero mode

of X gives rise, in steady state, to an intrinsic zero-purity mode. This crucial phenomenology

will be key to understanding the non-equilibrium topological effects that will be exemplified

below.

We remark that Majorana zero-damping modes do not benefit from the protection

mechanism embedded in Hparent as a result of the antisymmetry of the matrix Y . While the

antisymmetry of Y forces Hparent to have an even number of Majorana zero modes, such that

spatially isolated modes cannot be affected by local perturbations, the fact that X is symmetric

does not lead to such restriction. Although this is potentially harmful for Majorana zero-

damping modes—as we have emphasized in section 2.3 above when defining what is meant by

‘topological order’ in the dissipative context—we will demonstrate throughout the remaining of

this work that this can lead to intriguing physics with no Hamiltonian counterpart.

3. Topological properties of the bulk

In this section, we focus on the topological properties of the bulk of driven-dissipative fermionic

systems with Gaussian steady states. Using the fact that such states are fully characterized

by a real antisymmetric matrix—the correlation matrix defined in section 2.6—and that this

matrix can be seen as Hermitian (when multiplied by a factor i), we construct a topological

classification of Gaussian steady states in complete analogy to the conventional Hamiltonian

scenario.

The topological classification of gapped states of non-interacting fermions can be achieved

on the basis of symmetry properties of the corresponding Hamiltonian under time-reversal,

charge-conjugation (or particle–hole) and chiral (or sublattice) transformations, as was proposed

by Schnyder et al [60] following the classification of random matrices developed by Altland

and Zirnbauer [56]. Ten symmetry classes were proved to be sufficient for an exhaustive

classification of topological phases in any spatial dimension, and an alternative approach was

later introduced by Kitaev in the powerful framework of topological K-theory [61–64] (see e.g.
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[65] for a self-contained review). We argue below that all classification schemes developed in

the Hamiltonian setting can be automatically applied to classify the Gaussian steady states of

a dissipative dynamics. We do not provide an exhaustive classification, however, since this can

be done straightforwardly based on the references cited above. Instead, we construct an explicit

topological classification for two symmetry classes of particular interest for this work, namely,

for dissipative systems belonging to the symmetry classes D and BDI.

3.1. Steady-state symmetries

We first study how symmetries of the Lindblad operators translate into symmetries of the

correlation matrix. To this end, we consider a Gaussian dissipative dynamics with unique steady

state, i.e. the corresponding correlation matrix Ŵ is a unique solution of

{X, Ŵ} = Y (17)

with matrices X and Y defined as in section 2.6 (see equation (10), in particular). We assume

that the Lindblad operators L i are invariant, up to a phase factor, under some symmetry

group G:

g−1L i g = eiφi L i , (18)

where g ∈ G. In order to preserve the linearity of the Lindblad operators in the fermionic

operators, G must act linearly on the 2N Majorana operators c j introduced in section 2.6

above. These operators form an orthonormal basis of the mode space M∼= R2N of operators

A = aTc with a ∈ R2N with respect to the inner product 〈A, B〉 = (1/2){A, B} [66]. Clearly, any

symmetry g ∈ G (unitary or antiunitary) must act linearly on M and transform the Majorana

basis defined by the operators c j into another Majorana basis. In mode space, a symmetry g ∈ G

must therefore be represented by a real orthogonal matrix Sg ∈ O(2N ),

g−1c g = Sgc. (19)

Note that this formula allows to analyze the symmetry properties of the state also in the more

general case where the dynamics is governed by both a Liouvillian and a Hamiltonian, see

equation (24) below.

The Lindblad operators are defined in the Nambu space N ∼= C2N of operators L = lTc

with l ∈ C2N , which can be viewed as a complexification ofM. In Nambu space, the relevant

representation of g ∈ G is given by Sg if g is unitary and Sg K (= K Sg) if g is antiunitary. Here

K is the complex conjugation operator defined such that K i = −iK . The Lindblad operators

L i = lT
i c are therefore invariant (up to a phase factor) under the symmetry g ∈ G if and only if

li = eiφi Sgli if g is unitary, (20)

li = eiφi Sg K li if g is antiunitary, (21)

where φi ∈ [0, 2π) (note that the phase factors eiφi do not affect the form of the Liouvillian).

Using equation (10), we then find that the matrices X and Y encoding the dissipative dynamics

have the properties

X = Sg X ST
g , Y = ±SgY ST

g , (22)
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where the positive and negative signs corresponds to the cases where g is unitary or antiunitary,

respectively. The steady-state equation can then be written as

{X,±ST
gŴSg} = Y (23)

and, since we have assumed that the steady state is unique, we obtain

Ŵ = ±ST
gŴSg. (24)

This shows that the symmetries of the Lindblad operators are naturally reflected in symmetries

of the steady-state correlation matrix Ŵ.11 In turn, this implies that the matrix Ŵ can be used to

construct a symmetry-based topological classification of Gaussian steady states. Of particular

importance for this purpose are the two discrete symmetries corresponding to particle–hole

(PHS) and time-reversal (TRS) symmetry, respectively. The former corresponds to the ‘+’ sign

in equation (24) and is trivially satisfied as Sg = 1 in our case, as we argue below, while the

latter corresponds to the ‘−’ sign and depends on the specific form of the Lindblad operators.

We remark that chiral symmetry (defined as the combination of PHS and TRS [32])

is automatically satisfied whenever TRS is present, since the system always has PHS, by

construction. In that case, there exists matrices SC and ST corresponding to PHS and TRS,

respectively, such that equation (24) is satisfied (with a ‘+’ sign for SC and a ‘−’ sign for ST ),

and one can easily verify that the combination of PHS and TRS (i.e. chiral symmetry) leads to

{SC ST
T , Ŵ} = {ST ST

C , Ŵ} = 0.

3.2. Topological classification and topological invariants

Let us consider an arbitrary Gaussian steady state ρ, fully characterized by its correlation matrix

Ŵi j = (i/2)Tr(ρ[ci , c j ]). Using that the matrix Ŵ is real and antisymmetric, we construct a

corresponding fictitious free-fermion Hamiltonian as in section 2.7 where the purity spectrum

was defined (not to be confused with the parent Hamiltonian introduced in the same section),

HŴ = i
∑

i, j

Ŵi j ci c j , (25)

thereby establishing a one-to-one correspondence between the set of Gaussian steady states

and the set of free-fermion Hamiltonians. It is clear that the symmetries of the dissipative

system—embedded in Ŵ—are the same as that of the Hamiltonian system defined by HŴ, since

Ŵ can be viewed as the ‘first-quantized’ Hamiltonian corresponding to the ‘second-quantized’

Hamiltonian HŴ. The problem of classifying steady states according to topological properties

is therefore equivalent to that of classifying Hamiltonian systems of non-interacting fermions,

which is the main message of this section. Consequently, both the symmetry-based classification

of [56, 60] and the K-theory approach of [61–63] can be directly applied in the dissipative

framework. Note that the Hamiltonian HŴ always takes a Bogoliubov–de Gennes form when

expressed in terms of the original fermionic operators ai , a
†
i , and is therefore automatically

particle–hole symmetric.

The topological classification crucially relies on the existence of a bulk spectral gap and

is essentially based on the mathematical concept of homotopy equivalence, or equivalence

11 Clearly, using equations (8) and (19), the transformation of the correlation matrix is Ŵ → ±ST
gŴSg for unitary

or antiunitary symmetries, respectively, irrespective of the dynamics—which in particular may involve both

Hamiltonian and Liouvillian parts. In contrast, here we focus on how the invariance of the Lindblad operators

(under some symmetry) translates as that of the correlation matrix.
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under continuous deformations12. More specifically, two gapped Hamiltonians HŴ and HŴ′

are considered as ‘topologically equivalent’ if they can be continuously deformed into each

other without closing the gap. The dissipative counterpart of this equivalence is provided by the

mapping of equation (25): two Gaussian steady states corresponding to correlation matrices Ŵ

and Ŵ′ will be considered as topologically equivalent and referred to as belonging to the same

topological phase if and only if they can be continuously deformed into each other without

closing the bulk purity gap13. The existence of a bulk purity gap is therefore the key ingredient

required to define topological order in the dissipative setting.

The mapping defined by equation (25) and the results of [60–63] provide us, in principle,

with a general topological classification of all possible (purity) gapped Gaussian steady states

according to symmetries and to the spatial dimension of the system. We now sketch this

construction focusing on the symmetry classes that are most relevant for the dissipative systems

considered in this work.

An arbitrary 2N × 2N steady-state correlation matrix Ŵ (N being the number of fermionic

modes, or the number of sites for systems of spinless fermions defined on a lattice) can be

brought to a block diagonal form

Ŵ = Q

N
⊕

n=1

(

0 ǫn

−ǫn 0

)

QT, (26)

where Q is an orthogonal matrix and ±ǫn are the real eigenvalues forming the spectrum

of the Hermitian matrix iŴ. The purity spectrum is defined by the spectrum of the real

symmetric matrix (iŴ)2, which is doubly degenerate with positive eigenvalues ǫ2
n . Assuming

that it is gapped, such that |ǫn|> 0 for all n, the matrix Ŵ can be continuously deformed into a

topologically equivalent matrix Ŵ̄ with a ‘flat’ purity spectrum

Ŵ̄ = Q

N
⊕

n=1

(

0 1

−1 0

)

QT. (27)

Since (iŴ̄)2 = 1, this ‘spectrally flattened’ correlation matrix defines a pure Gaussian state which

is topologically equivalent to the not necessarily pure original steady state of interest. The matrix

Ŵ̄ allows us to construct an orthogonal spectral projection operator P (see e.g. [12]) defined as

P = 1

2
(1 − iŴ̄), (28)

which projects onto the N -dimensional subspace associated with eigenvectors of iŴ with

negative eigenvalues14. This operator plays a crucial role in the topological classification of

Gaussian steady states as well as in the construction of associated topological invariants, as we

will demonstrate below.

We first consider the case of spinless fermions on a d-dimensional lattice with periodic

boundary conditions evolving under a translation-invariant dissipative dynamics. It will be

convenient to label the local Majorana operators ci as ci,λ, where i refers to a particular lattice

12 In the framework of K-theory, stable equivalence also plays a crucial role in the definition of ‘topological

equivalence’ (see [61]).
13 Note that the spectrum of HŴ is defined by that of the Hermitian matrix iŴ, and is therefore in one-to-one

correspondence with the spectrum of (iŴ)2, i.e. with the purity spectrum.
14 From the point of view of the Hamiltonian HŴ (see equation (25)), P projects onto the subspace of eigenstates

of HŴ with negative energy.
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site at position ri and λ= 1, 2 distinguishes the two local Majorana operators associated with

the corresponding fermionic creation and annihilation operators ai and a
†
i , i.e. ci,1 = a

†
i + ai and

ci,2 = i(a
†
i − ai). In momentum space, the steady-state correlation matrix Ŵ then takes the form

of a 2 × 2 complex anti-Hermitian matrix Ŵ(k) with components (λ,µ= 1, 2)

(Ŵ(k))λµ = 1

N

∑

i, j

eik·(r j −ri )Ŵiλ, jµ = i

2
Tr(ρ[ck,λ, c−k,µ]), (29)

where N is the total number of lattice sites and ck,λ = 1√
N

∑

i e−ik·ri ci,λ. Since the matrix

Ŵ(k) satisfies the condition Ŵ(k)∗ = Ŵ(−k), the spectrum of the Hermitian matrix iŴ(k) is

given by eigenvalues ±ǫ(k) with ǫ(k)= ǫ(−k) > 0. This allows us to introduce the ‘spectrally

flattened’ momentum-space correlation matrix Ŵ̄(k) (the eigenvalues of iŴ̄(k) being ±1) and

the associated spectral projection operator

P(k)= 1

2
(1 − iŴ̄(k)) (30)

projecting onto the subspace C2
−(k) of the 2D complex vector space C2 spanned by the

(complex) eigenvectors of iŴ̄(k) associated with the negative eigenvalue −1. The operators

P(k) form a family of operators labeled by the wavevectors k belonging to the Brillouin zone,

i.e. to the d-dimensional torus T d = [−π, π]d . They define a fiber bundle ⊕k∈T dC
2
−(k) on the

Brillouin zone manifold, with fibers C2
−(k) assigned to each point k ∈ T d . The problem of

classifying Gaussian steady states according to topology therefore reduces to that of classifying

fiber bundles over a torus T d (the Brillouin zone). In the present case, the fibers are vector spaces

and the fiber bundle is thus a vector bundle, for which a complete topological classification

can be constructed using the approach of [60] or K-theory [61–63]. We present below the

results pertaining to the two types of systems that are most relevant to this work (see section 4),

namely: 2D dissipative systems without TRS (symmetry class D of Altland and Zirnbauer) and

1D dissipative systems with TRS (symmetry class BDI).

The topological classification generally reduces to the identification of all possible

homotopy classes of continuous maps k 7→ P(k) from the Brillouin zone manifold to the space

of spectral projection operators. Since the 2 × 2 complex matrix iŴ̄(k) is Hermitian and unitary,

with (iŴ̄(k))2 = 1, the spectral projection operator can be expressed as

P(k)= 1

2
(1 + n(k) · σ ), (31)

where n(k) is a unit vector on the 2-sphere (S2) and σ is a vector of Pauli matrices. In the

absence of additional symmetries, the spectral projection operator thus describes a mapping

from the Brillouin zone torus to the sphere15.

In 2D dissipative systems where the steady state belongs to the symmetry class D, the

only symmetry that Ŵ̄(k) (or P(k)) has is the PHS automatically embedded in Gaussian steady

states. The homotopy classes of maps k → n(k) then form a group which can be identified

with the homotopy group π2(S
2)= Z 16 (which is non-trivial) and one can have non-trivial

topological steady states and distinguish them via an integer topological invariant known as the

15 P(k) can alternatively be seen as an element of U (2)/U (1)× U (1)≃ G(1, 2), G(m, n) being the set of all

n-dimensional subspaces in Cm (also known as a complex Grassmann manifold) [60].
16 π2(S

2) formally classifies maps from S2 to S2, but since π1(S
2) is trivial, it equivalently classifies maps from T 2

to S2.
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Chern number, defined as

ν2D = 1

2π i

∫ π

−π

∫ π

−π
dkx dkyTr

(

P

(

∂P

∂kx

∂P

∂ky

− ∂P

∂ky

∂P

∂kx

))

= 1

16π

∫ π

−π

∫ π

−π
dkx dkyTr

(

Ŵ̄

(

∂Ŵ̄

∂kx

∂Ŵ̄

∂ky

− ∂Ŵ̄

∂ky

∂Ŵ̄

∂kx

))

= 1

4π

∫ π

−π

∫ π

−π
dkx dky

(

n ·
(

∂n

∂kx

× ∂n

∂ky

))

, (32)

where in the last line we have used the fact that Ŵ̄(k)= i(n(k) · σ ) (see equation (31)).

In 1D dissipative systems where PHS is the only symmetry, the Brillouin zone corresponds

to a circle S1 and the homotopy classes of maps k 7→ n(k) form a homotopy group π1(S
2)

which is trivial. This means that the vector n(k) cannot ‘twist’ in a way that cannot be

continuously untwisted as we move along the Brillouin zone circle, such that all steady states

are necessarily topologically trivial. The situation can change in the presence of additional

symmetries, however, since additional constraints on P(k) (or, equivalently, on Ŵ̄(k) or n(k))

can potentially restrict the set of allowed continuous deformations. If the 1D dissipative system

has TRS, then it also has chiral symmetry and, hence, belongs to the symmetry class BDI. In

that case, as argued below equation (24), one can find a unitary matrix 6 such that 62 = 1 and

{6, Ŵ̄(k)} = 0 (33)

for all k. (In our case, TRS takes the form ci,1 → ci,1, ci,2 → −ci,2, such that6 = σz.) The matrix

6 has eigenvalues ±1 and can be expressed as 6 = a · σ , where a is a real unit vector that does

not depend on k. The above condition then takes the form a · n(k)= 0 for all k. In other words,

chiral symmetry restricts the vector n(k) from the sphere to a circle in the plane perpendicular

to a. As a result, the relevant homotopy group becomes non-trivial, given by π1(S
1)= Z. The

corresponding topological invariant can be constructed by choosing a basis where

6 = σz =
(

1 0

0 −1

)

, Ŵ̄(k)=
(

0 eiθ(k)

−e−iθ(k) 0

)

(34)

with θ(k) ∈ [0, 2π) and eiθ(k) = ny(k)+ inx(k). The U (1) phase θ(k) therefore fully

characterizes Ŵ̄(k) and contains all required information to construct a topological invariant

distinguishing between different topological classes of steady states. The relevant topological

invariant, the winding number, takes the form

ν1D = 2

π

∫ π

−π
dkTr

(

(P− P P+)
d(P+ P P−)

dk

)

= 1

π

∫ π

−π
dk

(

a ·
(

n × ∂n

dk

))

= 1

2π

∫ π

−π
dθ = 1

2π
(θ(π)− θ(−π)), (35)
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where we have introduced projection operators P± = (1 ±6)/2 defined so that

P+Ŵ̄(k)P− =
(

0 eiθ(k)

0 0

)

, P−Ŵ̄(k)P+ =
(

0 0

−e−iθ(k) 0

)

. (36)

We remark that the above construction of topological classes and topological invariants crucially

relies on translational symmetry. However, one expects bulk topological properties to be robust

against weak dissipative perturbations that preserve the purity gap as well as the symmetries of

the system. This can be rigorously demonstrated in the K-theoretic framework of [61] and in

the more general framework of non-commutative geometry developed in [12, 67], allowing to

extend the above construction to disordered (and possibly finite) systems. Although the details

are beyond the scope of this work, we emphasize that the existence of quantized (integer)

topological invariants in such systems crucially relies on the quasi-local nature of the spectral

projection operator. Here the quasi-local nature of the corresponding steady-state correlation

matrix is ensured in the presence of a dissipative gap, which is a spectral property of the model

in contrast to the purity gap, which relates to mode occupations. More specifically, the existence

of a finite dissipative gap 1 implies an exponentially fast relaxation to the steady state (on a

characteristic time scale τ ∼ 1/1) and leads to the exponential decay of all spatial correlations,

such that the spectral projection operator (see equation (28)) satisfies

|Piλ, jµ|6 c exp(−α|ri − r j |) (37)

for some constants c, α > 0.17 Note that the converse is also true [48]. The operator Pi j defined

by (Pi j)λµ = Piλ, jµ (see [12]) is thus quasi-diagonal, i.e. there exists some constants c′, c′′ > 0

and α′ > d (d being the spatial dimension of the system) such that

‖Pi j‖HS
6 c′|ri − r j |−α

′
, ‖Pi i‖6 c′′, (38)

where ‖ . ‖HS is the Hilbert–Schmidt norm and ‖ . ‖ the usual operator norm. This ‘localization’

condition satisfied by the spectral projection operator in the presence of a finite dissipative

gap crucially allows for the definition of the Chern number and winding number topological

invariants in disordered finite systems. Such a construction can be found in the appendix C of

[12], for example.

3.3. Phenomenology of non-equilibrium topological phase transitions

The above discussion shows that the existence of two gaps is necessary to identify the

topological properties of the bulk (Gaussian) steady state: (i) the purity gap, which allows

to identify a particular topological class (e.g. Z) to which the steady state belongs and (ii)

the dissipative gap, which ensures that the steady-state correlations are quasi-local (as defined

above), so that in particular the Chern and winding number topological invariants defined above

(see equations (32) and (35)) remain quantized in the presence of disorder. Since the dissipative

and purity spectra are in general independent quantities—which can be seen from the fact that

two independent matrices X and Y are required to describe the dissipative dynamics—these two

gaps can close independently of each other. However, the closure of the dissipative gap alone

17 Note that the purity gap of Ŵ ensures that the exponential decay of all spatial correlations remains under the

continuous ‘spectral flattening’ transformation Ŵ → Ŵ̄.
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gives rise to a critical behavior in steady state. As a consequence, non-equilibrium topological

phase transitions can occur in three distinct ways:

(i) via the closure of the bulk dissipative gap only (criticality);

(ii) via the closure of the bulk purity gap only (no criticality);

(iii) via the closure of the both the bulk dissipative and purity gaps (criticality).

These three possibilities will be exemplified in explicit models in section 7 below.

Clearly, the same phenomenology must appear at interfaces between distinct non-equilibrium

topological phases. We will investigate such physics in detail in section 5 below.

4. Physical constraints

Our discussion so far was very general, with the only assumption that the steady state of the

dissipative dynamics is a Gaussian fermionic state. We now discuss restrictions that arise in

‘typical’ experimental realizations, as sketched in section 2.4 above. More specifically, we

consider quasi-local dissipative processes in 1D and 2D lattice systems; assuming that the

corresponding Lindblad operators act on a quasi-local subset of sites and have a spatially

isotropic (or s-wave symmetric) creation part resulting from spontaneous emission processes.

We additionally assume that the system is translation-invariant and that the steady state of the

dissipative dynamics is unique and pure. Under this purity assumption, the steady state of

the system can be viewed as the ground state of the parent Hamiltonian associated with the

dissipative dynamics (see equation (15) and the discussion of section 2.7), and the existence

of topological order can be assessed in the exact same way as in the Hamiltonian setting. In

particular, as for the topological classification of section 3.2 above, one can rely on the general

Hamiltonian classification of gapped topological phases of non-interacting fermions (according

to symmetry and spatial dimension) developed in [32, 56, 60, 68].

Although we assume a pure steady state, we remark that the conclusions drawn below will

also hold in the more general case where the steady state is not necessarily pure but has a gapped

purity spectrum. We have argued in section 3.2 that an arbitrary state exhibiting a finite purity

gap is topologically equivalent to a pure state exhibiting a completely ‘flat’ purity spectrum. To

identify the possible classes of topological steady states that can be reached when taking account

the ‘typical’ physical constraints described above, one can therefore focus exclusively on pure

states, without loss of generality. We emphasize that in that case the (automatically ‘flat’)

correlation matrix iŴ̄ describing the pure steady state coincides with the first-quantized form

of the spectrally ‘flattened’ parent Hamiltonian H̄parent, namely, H̄parent = i
∑

m,n Ŵ̄mncmcn = HŴ̄,

where HŴ̄ is the fictitious Hamiltonian that can always be constructed from the (Gaussian)

steady state (see equations (25) and (28) and discussion thereof).

Translational symmetry makes it most convenient to express the Lindblad operators in the

momentum-space form Lk = ukak + vka
†
−k. In order for our assumption of a pure and unique

steady state to be satisfied, the Lindblad operators must form a complete set of anticommuting

operators (i.e. {Lk, Lk′} = 0 for all k,k′), which implies that

ukvk = −u−kv−k. (39)

Translational symmetry additionally restricts the possible lattices for the system to Bravais

lattices. In that case, the set of Lindblad operators is complete whenever there are as many

Lindblad operators as lattice sites.
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As argued above, the pure steady state can equivalently be described as the ground state of

the parent Hamiltonian Hparent =
∑

k L
†
kLk (see section 2.7), which takes here the explicit form

Hparent =
∑

k

(u∗
ka

†
k + v∗

ka−k)(ukak + vka
†
−k)

=
∑

k

(|uk|2−|v−k|2)a†
kak+

∑

k

|vk|2+
1

2

∑

k

[

(u∗
kvk−u∗

−kv−k)a
†
ka

†
−k + h.c.

]

.

(40)

Dropping the constant term
∑

k |vk|2, it becomes

Hparent =
∑

k

[

ξka
†
kak +

1

2

(

1ka
†
ka

†
−k +1∗

ka−kak

)

]

, (41)

where we have defined

ξk = |uk|2 − |v−k|2, 1k = u∗
kvk − u∗

−kv−k =1−k. (42)

Since the Lindblad operators are generally defined up to a phase, we can assume vk to be real,

without loss of generality. Using equation (39), we thus find

1k = 2u∗
kvk. (43)

Our assumption that the creation part of the Lindblad operators is isotropic implies that

vk = v−k.18 Since equation (39) must be satisfied, we conclude that the condition uk = −u−k

must be imposed. In practice, this can easily be achieved by tuning the phases of the driving

lasers, as argued in our previous work [30], and will therefore be assumed in the following. We

then have

ξk = ξ−k, ξk = |uk|2 − |vk|2. (44)

4.1. Symmetry classes

Equations (41), (43) and (44) show that the parent Hamiltonian takes the generic form of a

Bogoliubov–de Gennes Hamiltonian and therefore exhibits, by construction, PHS (or charge-

conjugation). In the scheme of [32], further classification can be achieved by considering TRS.

In the Nambu representation, the parent Hamiltonian can be written as

Hparent =
1

2

∑

k

9
†
kHk9k withHk =

(

ξk 1k

1∗
k −ξ−k

)

, (45)

where Hk is the ‘first-quantized’ parent Hamiltonian and 9
†
k = (a

†
k, a−k) the Nambu field

operator. PHS and TRS are then present whenever there exists 2 × 2 unitary matrices UC and

18 In general, it can occur that vk = v−k is only satisfied up to a phase eiφ(k) where φk is a linear function of k,

since the creation part of the Lindblad operators need not be isotropic with respect to a center of symmetry that

corresponds to a lattice site. In that case, however, uk carries the opposite phase—since the annihilation part of the

Lindblad operators is engineered with respect to the same origin (see section 5.2)—and our analysis remains the

same, without loss of generality.
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UT , respectively, such that the following conditions on the Hamiltonian are satisfied:

U
†
CH

∗
−kUC = −Hk (PHS), (46)

U
†
TH

∗
−kUT = +Hk (TRS). (47)

The symmetry class of the system is determined by whether or not such matrices can be

identified and, if so, by the sign of U ∗
CUC and U ∗

T UT (which can only take values ±1, as argued

in [32]). In the present case, the parent Hamiltonian describes a spin-polarized superfluid and

exhibits—again, by construction—PHS with UC = σx , such that U ∗
CUC = +1. It is clear from

the form of Hparent (see equations (41), (43) and (44)) that the system additionally exhibits TRS

if and only if 1∗
−k =1k which, remembering equation (42), is satisfied provided that 1k is real

up to a global phase19. In that case, equation (47) holds for UT = 1 (such that U ∗
T UT = +1) and

the system exhibits chiral symmetry.

In summary, two symmetry classes of steady states can be realized through ‘typical’

quantum-reservoir engineering (see section 2.4) in driven-dissipative systems of spin-polarized

fermions: if the Lindblad operators break TRS, the steady state belongs to the symmetry class

D of Altland and Zirnbauer; otherwise it belongs to the symmetry class BDI. According to

the topological classification of [32], one must therefore consider either (i) 2D systems in the

symmetry class D (with broken TRS) or (ii) 1D systems in the symmetry class BDI (with TRS)

in order to have the (a priori) possibility of reaching topologically non-trivial steady states.

In these systems, distinct topological states are characterized by distinct values of an integer-

valued (Z) topological invariant: the Chern or winding number, respectively. Most importantly,

the zero-energy edge modes appearing in such systems in the Hamiltonian setting are Majorana

fermions. This opens up the possibility to generate spatially isolated Majorana zero- damping

modes in the dissipative setting of interest in this work.

4.2. Chern number

Let us now examine more closely the case of a 2D translation-invariant dissipative system with

broken TRS, with a pure and unique steady state that accordingly belongs to the symmetry class

D of Altland and Zirnbauer and is characterized by the Chern number topological invariant of

equation (32). We show below that quasi-local Lindblad operators generating such dissipative

dynamics do not allow to obtain phases with a non-zero Chern number, in contrast to the

Hamiltonian setting. Although this result seems to be a no-go statement for Majorana zero

modes in such systems, we will demonstrate in section 8 that unpaired Majorana zero-damping

modes can exist in dissipative systems with vanishing Chern number provided that the steady

state is not pure but mixed.

As we have discussed above, a pure steady state can equivalently be viewed as the ground

state of the parent Hamiltonian Hparent associated with the dissipative dynamics, given by

equation (45) (see also equations (41), (43) and (44)), and its bulk topological properties can

be characterized by means of the spectral projector Pk = 1

2
(1 + nk · σ ), where nk · σ =Hk/Nk

19 One must keep in mind that the gap function 1k is defined up to a global phase, since Hparent is invariant under

the global U (1) gauge transformation a
†
k → eiθa

†
k.
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(Nk being a normalization factor defined such that ‖nk‖= 1). The corresponding Chern number

is determined by the vector nk (see equation (32)), which takes the explicit form

nk = 1

Nk





Re(1k)

−Im(1k)

ξk



= 1

Nk





2vkRe(uk)

2vkIm(uk)

|uk|2 − |vk|2



 , (48)

where Nk =
√

ξ 2
k + |1k|2 = |uk|2 + |vk|2.20 Note that Nk corresponds to the spectrum of Hparent

and thus defines the dissipative gap (see section 2.8). In order for the vector nk to be well

defined, the functions uk and vk must not vanish simultaneously anywhere in the Brillouin

zone. Introducing ϕk = |ϕk|eiθk = vk/uk and a ‘Fermi surface’ Fǫ = {k : |ϕk| = 1/ǫ} (defined

for some arbitrary ǫ > 0) which generally21 takes the form of a finite union of piecewise smooth,

simple closed curves Fǫ,λ (i.e. Fǫ =
⋃

λ Fǫ,λ), the Chern number can be expressed (see [30]) as

a sum

ν2D =
∑

λ

Wǫ,λ (49)

of winding numbers defined by

Wǫ,λ = 1

2π

∮

Fǫ,λ

∇kθk · dk = 1

2π

∮

Fǫ,λ

(∂kx
θk dkx + ∂ky

θk dky). (50)

Choosing ǫ ≪ 1, the above expressions tell us that the value of the Chern number can be inferred

from the behavior of ϕk = vk/uk around the zeros of uk—which do not coincide with zeros of vk

since Nk must be non-zero. Since the norm of ϕk diverges upon approaching such points, it is the

phase winding of ϕk around these points that encodes all information about the Chern number.

More specifically, each of the zeros of uk contributes to the Chern number by an integer value

corresponding to the winding number of the phase θk around the latter (in a conventional, e.g.

counter-clockwise direction). Since the function vk can always be chosen as real (see discussion

below equation (43)), θk corresponds to the phase of uk (up to a sign that can be absorbed

into the definition of the Chern number by a change of convention ν2D → −ν2D) and the Chern

number simply reduces to the sum of the phase windings of the function uk around its zeros.

In the Hamiltonian setting, the phase of uk is defined by the phase of the gap function 1k,

whereas the norm of uk is defined by the norm of 1k and the value of the independent quantity

ξk (the single-particle dispersion) [11], such that the phase and the modulus of uk are essentially

independent. In our dissipative setting, however, uk is a single complex function defined on the

Brillouin zone and, therefore, the phase and the norm of uk are closely related. This crucially

restricts the possible values of the Chern number: the function uk defines a smooth vector field

(Re(uk), Im(uk)) on a torus and, according to the Poincaré–Hopf theorem, the sum of its phase

windings around its zeros must vanish. We thus conclude that the only value of the Chern

number that can be achieved in the above dissipative setting is zero.

Note that the vanishing of the Chern number is a direct consequence of the smoothness

of the vector field corresponding to uk, which in turn is due to the quasi-local nature of the

Lindblad operators. The function uk defines a smooth (C∞) vector field if and only if the norm

20 We assume that the system is infinite such that the components of nk are continuous functions of k in the

Brillouin zone, in which case the Chern number given by equation (32) is a well-defined quantity.
21 More pathological Fermi surfaces can in principle be encountered, but the Chern number is a mere definition in

that case.
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of the coefficients u j−i = u(r j − Ri) encoding the annihilation part of the Lindblad operators

(see equation (52)) decays faster than any power of 1/|r j − Ri |. A power-law decay of the

Lindblad operators would therefore be necessary to be able to engineer phases characterized by

a non-zero Chern number in our dissipative setting.

5. Dissipative edge physics

Thus far we have concentrated on bulk properties of purely dissipative systems described

by a quadratic Lindblad master equation. It is clear, however, that the existence of non-

trivial topological bulk properties must somehow be reflected in the physics occurring at

physical edges or in topological defects—which we both refer to as ‘edges’ in the following.

In the Hamiltonian setting, this intimate connection has been rigorously demonstrated and

formalized—at least, for non-interacting systems—as a bulk-edge correspondence (or bulk-

boundary correspondence) relating the topological nature of the bulk to the number of

gapless modes occurring at an edge [12, 31–34]. Of particular interest here is the bulk-edge

correspondence pertaining to (i) 1D systems characterized by a winding number topological

invariant ν1D (see equation (35)) and (ii) 2D systems characterized by a Chern number

topological invariant ν2D (see equation (32)), which tells us that a number m = |ν(1) − ν(2)|
of gapless edge modes must be present at the interface between two topological phases

characterized by integer topological invariants (winding or Chern numbers, as appropriate) ν(1)

and ν(2), respectively. In general, such modes are robust (e.g. against disorder) as long as the

Hamiltonian system remains in the same topological class. Since the purity gap can close in the

dissipative setting of interest in this work, it is unclear whether similar universal signatures of

bulk topological properties can be observed. We thus proceed, in the next sections, to investigate

the edge physics that may arise in systems described by a quadratic dissipative dynamics.

5.1. Dissipative bulk-edge correspondence

Let us consider a generic dissipative dynamics characterized by a finite dissipative gap and

described by Lindblad operators L i or, equivalently, by matrices X and Y as defined in

section 2.6. It is clear that the bulk-edge correspondence pertaining to Hamiltonian systems

must also be satisfied when the steady state of the dissipative dynamics is pure, since such a state

can equivalently be regarded as a ground state of the parent Hamiltonian Hparent =
∑

i L
†
i L i =

i
∑

i, j Yi j ci c j (see section 2.7). In that case, the spectrum of Hparent defines the damping

spectrum, and at least m = |ν(1) − ν(2)| Majorana zero-damping modes must be present at the

interface between two non-equilibrium topological phases characterized by Chern or winding

number topological invariants ν(1) and ν(2). In the more general situation where the steady

state exhibits a finite purity gap but is not pure, the Hamiltonian bulk-edge correspondence

obviously still applies to the parent Hamiltonian, such that Hparent still exhibits a minimum

of m = |ν(1) − ν(2)| Majorana zero modes at the interface. However, none of these modes is

guaranteed to be Majorana zero-damping modes of the dissipative dynamics: as argued in

section 2.8, Majorana zero modes of Hparent must either correspond to Majorana zero-damping

modes or give rise to intrinsic Majorana zero-purity modes in steady state. The dissipative

counterpart of the Hamiltonian bulk-edge correspondence can therefore be stated as follows:

As long as the topological nature of the steady state remains the same in the bulk—which

is true if the purity and dissipative gaps remain finite and if the symmetries of the Lindblad
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operators are preserved—a minimum total number of m = |ν(1) − ν(2)| ≡1ν Majorana zero-

damping and intrinsic zero-purity modes must be present at the interface between two

non-equilibrium topological phases characterized by topological invariants ν(1) and ν(2),

respectively.

With obvious notations, this result can be summarized in the form

(mdamping)edge + (mpurity)edge > (1ν)bulk. (51)

A few remarks are in order:

(i) The topological invariants appearing on the right-hand side of the inequality (51) are

strictly defined away from the interface where the purity and dissipative spectra are gapped

(with no zero modes).

(ii) The explicit value of the topological invariant (defined deep into the bulk on either side of

the interface) can equivalently be extracted from the covariance matrix Ŵ describing the

steady state (which is unique due to the dissipative gap) or from the matrix Y encoding

the dynamics. Indeed, the matrices Ŵ and Y are both real antisymmetric matrices and

have the same symmetries, as can be seen from equations (22) and (24). Moreover, they are

closely related through the steady-state equation {X, Ŵ} = Y (see section 2.6). Using a basis

of unit eigenvectors v j of X , defined such that X =
∑2N

j=1 κ j(v j ⊗ vT
j ) with κ j > 0 forming

the damping spectrum, one can easily show that vT
jŴvk = (κ j + κk)

−1vT
j Y vk . Therefore, Ŵ

and Y can be continuously mapped into each other via the ‘spectral flattening’ κ j 7→ 1/2 of

the damping spectrum. Clearly, the two matrices must have the same topological properties.

(iii) The inequality appearing in equation (51) originates from the fact that Majorana zero

modes may arise ‘accidentally’ (similarly as in the Hamiltonian context). A strict equality

must be satisfied in order for all Majorana zero-damping and/or zero-purity modes

appearing at the interface to have a topological origin, in which case we refer to them

as ‘genuine’ Majorana zero modes. ‘Accidental’ Majorana zero modes can be identified by

introducing arbitrary (weak) local Liouvillian perturbations that preserve the symmetries

required for the topological invariants to be defined: Majorana zero-purity modes that

persist and Majorana zero-damping modes that either persist or emerge as Majorana zero-

purity modes must be genuine; otherwise they must be accidental. A simple example

of ‘accidental’ Majorana zero-damping modes is provided by a lattice site on which no

dissipative dynamics takes place. In that case, two Majorana zero-damping modes are

decoupled from the dynamics, but none of them obviously has any topological origin, i.e.

none of them persist under generic circumstances.

(iv) Whereas the Majorana zero-damping modes and the values of the topological invariants

(defined away from the interface) are defined from time-independent generators of the

dynamics X and Y , the Majorana zero-purity modes, on the other hand, are quantities

associated with the state of the system and only emerge in the long-time limit; long

as compared to the timescale set by the dissipative gap, but short as compared to the

timescale over which genuine Majorana zero-damping modes are affected by decoherence

(remember that the latter generically have exponentially small damping rates O(e−L),

where L is the typical distance between them). Timescales are therefore implicitly involved

in equation (51).

We note that, even when accidental Majorana zero modes are discarded—so that the

equality holds in equation (51)—the above result does not provide any specific information
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regarding the exact number of genuine Majorana zero-damping modes that appear at an edge

(as we will argue below, such knowledge must come from additional considerations unrelated

to the topological nature of the system). In particular, a non-zero value of (1ν)bulk provides a

necessary, but not a sufficient condition for the existence of Majorana zero-damping modes. One

may therefore wonder whether the number of such modes can be a robust quantity and, if so,

under what conditions. In fact, this will be the focus of the next sections: we will first investigate

systems whose edge dissipative dynamics emerges in a very natural way by extending the bulk

dissipative dynamics as close as possible to a physical edge. Since the topological nature of

generic Gaussian states is only well-defined in the presence of a finite purity gap and since

all Gaussian states featuring such a gap can be continuously deformed to pure states (see

section 3.2), we will focus on dissipative dynamics driving the system into a pure steady state.

In that case, the purity of the system obviously forces the number (mpurity)edge of Majorana zero-

purity modes to vanish in equation (51), and one can try to construct Majorana zero-damping

modes explicitly. Having examined this simple situation where the number (mdamping)edge of

genuine Majorana zero-damping modes is solely determined by the topological nature of the

bulk, we will then extend our discussion to the more general case where the dissipative dynamics

can affect the purity of the system while maintaining a finite purity gap in the bulk, and conclude

by clarifying the role of topology in the dissipative setting investigated in this work.

5.2. General form of Majorana zero-damping modes for translation-invariant

dissipative processes

We have introduced above a dissipative bulk-edge correspondence which crucially relies on the

existence of two gaps: the dissipative and purity gaps. Both these gaps must be finite in the bulk

in order for equation (51) to hold and—as argued in section 3.2—for the bulk to have a well-

defined topological nature with associated topological invariants that are quantized. Any of these

two gaps can in principle close at an edge, which gives rise to the variety of possibilities allowed

by equation (51). In the following section, however, we focus on the case where the purity

gap remains open at the edge, thus forbidding the appearance of intrinsic Majorana zero-purity

modes. In that case, the topological properties of the steady state are equivalent to that of a pure

state—as argued in section 3.2—and the bulk-edge correspondence describes the behavior of a

single gap at the edge (namely, the dissipative gap) exactly as in the Hamiltonian setting. From

a topological point of view, all steady-state properties are the same as if the steady state were

completely pure. We therefore restrict ourselves, without loss of generality, to pure (Gaussian)

steady states. In addition we assume translation invariance in the following in order to make the

explicit construction of Majorana zero-damping modes analytically tractable.

We consider a d-dimensional lattice system with a (d − 1)-dimensional physical edge and

assume that the system evolves under a translation-invariant dissipative dynamics consisting

of a periodic repetition, on the lattice, of a single quasi-local dissipative process (or Lindblad

operator) everywhere in the bulk and as close as possible to the edge (see figure 2), so that

every lattice site i of the bulk becomes associated with a Lindblad operator L i whose form

is independent of i . In order to ensure that the steady state is pure we further assume that

the Lindblad operators form a set of anticommuting operators. For simplicity (and in order

to incorporate the typical physical constraints discussed in section 4), we moreover restrict

ourselves to Lindblad operators L i that possess a center of symmetry, which we denote as Si

(the index i used to distinguish Lindblad operators then corresponds, by convention, to the index
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e⊥

Si ≡ i

Li

Figure 2. Left: translation-invariant dissipative dynamics terminated at the edge

in the case of ‘cross-shaped’ Lindblad operators acting on a subset of five sites

(as in the explicit example of section 8). Lindblad operators acting within the

system (in blue) are taken into account into the dissipative dynamics, whereas

Lindblad operators requiring truncation at the edge (in red) are not considered.

Right: Lindblad operator L i associated with a lattice site i that coincides with its

center of symmetry Si , and example of an edge whose orientation is according

to a vector e⊥ (see main text).

of the lattice site located closest to Si
22). We define a position vector Ri corresponding to Si

and similarly define the position of the lattice sites j as r j . In the translation-invariant setting

defined above, the Lindblad operators then take the generic form

L i =
∑

j∈I(i)
u j−i a j + v j−i a

†
j , (52)

where I(i) denotes the subset of sites j onto which L i acts in a non-trivial way (see figure 2), and

u j−i , v j−i and a j are shorthand notations for u(r j − Ri), v(r j − Ri) and a(r j), respectively23.

As argued in section 2.8 above, a necessary and sufficient condition for a Majorana mode γ to

correspond to a Majorana zero-damping mode of the dissipative dynamics is {L i , γ } = 0 (for all

i). Using this condition as well as the translation-invariant form of the Lindblad operators, one

can show (see appendix A.3) that any Majorana zero-damping mode γ must take the generic

form

γ =N eiφi/2
∑

{m1,m2,

...,md }

(βe1
)n1(βe2

)n2 . . . (βed
)nd a

(

ri +

d
∑

n=1

mnen

)

+ h.c., (53)

where N > 0 is a normalization factor, φi ∈ [0, 2π) a phase, {en}n=1,2,...,d a set of primitive

vectors associated with the d-dimensional Bravais lattice on which the system is defined,

and {m1,m2, . . . ,md} a set of integers defined such that the vectors ri +
∑d

n=1 mnen span the

22 If there exists many such points, an arbitrary convention can be chosen.
23 Note that the form of the coefficients u j−i and v j−i ensures that L i has the same structure independently of i , as

required by translational symmetry.

New Journal of Physics 15 (2013) 085001 (http://www.njp.org/)

http://www.njp.org/


31

positions of all sites in the system. Most importantly, {βen
}n=1,2,...,d is a set of real factors

determining the increase of the ‘spatial wave function’ corresponding to γ in each of the

directions defined by the primitive vectors en. Note that β j−i = (βi− j)
−1 is satisfied owing to

the translation invariance discussed above (β j−i being a shorthand notation for β(r j − ri)).
24

Equation (53) states that γ—or, more precisely, its spatial ‘wave function’—is completely

delocalized when |βen
| = 1 for all n. In the less pathological case where |βen

| 6= 1 for some

n, γ grows exponentially in the direction σnen with σn = ±1 defined such that |βσnen
|> 1

(or, equivalently, such that |β−σnen
| = |βσnen

|−1 < 1). In that case, γ can be normalized if and

only if the system is finite in the direction of ‘steepest’ exponential increase, i.e. as long

as the edge of the system is perpendicular to the direction defined by the unit vector e⊥ ∝
∑d

n=1 log (|βσnen
|)σnen, as shown in figure 2. The corresponding Majorana zero-damping mode

γ is then exponentially localized along that edge, decaying in every direction −σnen away from

the edge (into the bulk) on a characteristic length scale ξn = 1/log(|βσnen
|).

In general, the existence of Majorana zero-damping modes γ of the form (53) can be

assessed from the knowledge of the Lindblad operators by looking for solutions of the equation

0 =
∑

j∈I(i)

[

e−iφi u j−i(β j−i −β j−i)+ v j−i(β j−i +β j−i)
]

, (54)

which can be expressed solely in terms of {βen
}n=1,2,...,d using the relations

(i) βk−i = βk− jβ j−i (for any triple of indices (i, j, k));
(ii) βi−i ≡ β0 = 1,

where u j−i and v j−i are fixed coefficients defining the Lindblad operators (see equation (52))

and ( j, j) denotes pairs of sites located symmetrically around the center of symmetry Si of the

Lindblad operators. If there exists a set {βen
}n=1,2,...,d of real factors satisfying equation (54) for

some value of the phase φi , the system supports at least a single Majorana zero-damping modes

of the form (53). We remark that the phase φi has a direct physical meaning in 2D systems

where TRS is broken (symmetry class D), where it is simply defined by the orientation of the

edge. We refer to appendix A.3 for further details as well as for an explicit derivation of the

above results.

5.3. Robustness of Majorana zero-damping modes and role of topology

We now investigate the robustness of Majorana zero-damping modes against weak quasi-

local dissipative perturbations in the general case where the steady state is not necessarily

pure but is characterized by a finite bulk purity gap, so that its topological nature is well-

defined. We will assume that the dissipative dynamics giving rise to such modes consists of

n independent dissipative processes (described by Lindblad operators L i (i = 1, 2, . . . , n)) and

will distinguish two types of perturbations: (i) weak quasi-local perturbations affecting each

of these n dissipative processes and (ii) perturbations that introduce additional weak quasi-local

dissipative processes (or Lindblad operators). Distinguishing genuine from accidental Majorana

zero-damping modes as in section 5.1, we will demonstrate that topology does not guarantee

the robustness of genuine Majorana zero-damping modes against perturbations, although it is

24 Note that β j−i is defined with respect to the site i associated with L i , whereas u j−i and v j−i are defined with

respect to the center of symmetry of L i .
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crucial to be able to isolate such modes spatially. Robustness may additionally be ensured by

geometrical properties of the system imposed through quantum reservoir engineering.

Majorana modes are mathematically defined in the mode space M∼= R2N consisting of

real linear combinations of local Majorana basis operators c j ( j = 1, 2, . . . , 2N ), where N is

the number of lattice sites in the system. In order for a particular Majorana mode γ = γ † to be

an exact zero-damping mode of the dissipative dynamics, one must have {L i , γ } = {L
†
i , γ } = 0

for all i (see section 2.8), which translates, in mode space, as two independent conditions

{L i + L
†
i , γ } = 0 and {L i − L

†
i , γ } = 0 for each i . Every Lindblad operator therefore imposes

two independent constraints for Majorana zero-damping modes in R2N as long as it is neither

Hermitian nor anti-Hermitian, which can safely be assumed, e.g. in the presence of disorder.

Consequently, the dynamics generated by n < N dissipative processes necessarily gives rise

to 2(N − n) exact Majorana zero-damping modes, independently of the form—quasi-local

or not, with or without specific symmetries—of the corresponding Lindblad operators, as

illustrated in figure 2. We emphasize, however, that such modes which trivially do not take

part in the dynamics need not be spatially localized and isolated from each other (as is

required for them to exhibit non-Abelian exchange statistics; see section 6). As embedded in

the dissipative bulk-edge correspondence, it is the topological nature of the bulk that plays

a crucial role in isolating Majorana zero-damping modes away from each other, allowing to

‘fractionalize’ the fermionic degrees of freedom of the system. Robust isolated Majorana zero-

damping modes may therefore arise from the interplay between topology and the ‘incomplete’

nature of the dissipative dynamics (i.e. n < N ), as we will demonstrate through explicit

examples in section 8 below. Robustness in that case stems from the fact that the number

n of dissipative processes (or Lindblad operators) taking part in the dynamics is a well-

controlled quantity in typical physical implementations. Intuitively, this can be understood

from the fact that driven-dissipative processes considered here require a finite (typically

large) amount of energy to occur and therefore do not arise unless they are deliberately

introduced via quantum reservoir engineering (see section 2.4). In light of this physical

constraint, dissipative perturbations of the type (i) discussed above are the most relevant ones

to consider in assessing the robustness of Majorana zero-damping modes. We will focus on the

latter.

We remark that there is a priori no guarantee to find Majorana zero-damping modes in the

case where the system is driven by n > N Lindblad operators—independently of the topological

nature of the bulk—since, as discussed above, every generic dissipative process introduced in

the dynamics leads to two additional constraints in mode space and further reduces the subspace

available for Majorana zero-damping modes. Whereas accidental Majorana zero-damping

modes can generally be removed by introducing additional dissipative processes—leaving no

trace in the purity or damping spectra—genuine Majorana zero-damping modes, in contrast,

must either survive or give rise to intrinsic Majorana zero-purity modes as dictated by the

dissipative bulk-edge correspondence. Which of these two outcomes actually occurs cannot

be determined from topological properties but rather depends on the dissipative boundary

conditions, i.e. on the specific form of the edge dissipative dynamics resulting for the combined

properties of bulk engineered dissipative dynamics and the physical edge delimiting it spatially.

As we will demonstrate using explicit examples in sections 7 and 8 below, the dissipative

dynamics can be constrained by e.g. geometric properties of the edge in such a way that the

purity gap closes in a robust, controlled manner at that edge, thereby giving rise to an odd

number of Majorana zero-damping modes in a phase whose bulk topology would naively imply
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the existence of an even number of such modes. Interesting phenomena with no Hamiltonian

counterparts may therefore arise from Liouvillian dynamics as far as the edge physics is

concerned, with intriguing effects such as the transformation of Abelian vortices into non-

Abelian ones (see section 8).

6. Non-Abelian statistics of dissipative Majorana modes

A key property of Majorana modes in the Hamiltonian context is their non-Abelian statistics

under spatial exchange. An important question is therefore whether or not this property is also

present in the case of dissipative Majorana modes (more precisely, of Majorana zero-damping

modes). Here we provide a simple affirmative argument following [29]. Physically, this may

be understood from the fact that Majorana modes in the context of topological insulators

or superfluids are not dynamical, but are purely static degrees of freedom. The actual bulk

dynamics is irrelevant; it can be either unitary or dissipative.

In order to verify non-Abelian exchange statistics, we first explain in more detail how,

in a dissipative setting, the edge subspace of the density matrix—containing the Majorana

modes—is isolated from the bulk subspace of the latter. We then consider the effect of adiabatic

parameter changes of the Liouville operator or, more generally, of the operator generating the

dynamics of the system.

6.1. Dissipative isolation of the edge mode subspace

As argued in sections 2.7, 2.8 and 5, an important prerequisite for the presence of stable

dissipative Majorana modes is the existence of a zero-mode subspace as well as its isolation

from the bulk. Here we formulate the conditions for such a situation in a general framework

that is valid beyond the quadratic setting introduced in section 2.5. To this end, we introduce

projectors p and q = 1 − p on the edge and bulk subspaces, respectively. A decoupled edge

subspace then appears if the Lindblad operators ℓi are block diagonal in this projection, i.e.

ℓi,pq = ℓi,qp = 0, with an edge block identical to zero, i.e. ℓi,pp = 0. The dissipative evolution

then reads

∂t

(

ρpp ρpq

ρqp ρqq

)

=
(

0 − 1

2
ρpq

∑

i ℓ
†
i,qqℓi,qq

−1

2

∑

i ℓ
†
i,qqℓi,qqρqp Lqq[ρqq]

)

.

(55)

Here, the bulk dissipative evolution Lqq[ρqq] has a Lindblad form and ρpp is a constant of

motion, by construction. Crucially, the density matrix elements ρqp and ρpq coupling these

sectors damp out according to ρqp = e−
∑

i ℓ
†
i,qqℓi,qq tρqp(t = 0). In the presence of a dissipative

gap, this process is exponentially fast. In steady state, the density matrix then takes a factorized

form ρ = ρedge ⊗ ρbulk, with ρedge = ρpp and ρbulk = ρqq . Clearly, the absence of dynamics in

the decoherence-free subspace does not allow for a controlled initialization of its occupation.

This property is in complete analogy with a Hamiltonian ground-state scenario, where the zero-

energy edge subspace is decoupled from Hamiltonian dynamics. The preparation and detection

ideas developed in [69] for the ground states of fermionic atoms can be directly applied to the

dissipative setting.
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Moving from a second- to a first-quantized representation (for a quadratic setting and using

a Majorana basis as in section 2.6), we obtain the evolution

∂t

(

Ŵpp Ŵpq

Ŵqp Ŵqq

)

=
(

0 −Ŵpq Xqq

−XqqŴqp −{Xqq, Ŵqq} + Yqq

)

, (56)

showing explicitly that the fadeout of bulk-edge coherences is indeed controlled by the

dissipative gap, i.e. by the slowest rate in Xqq .

6.2. Adiabatic parameter changes and braiding

We consider a steady state with Majorana zero-damping modes whose corresponding

eigenvectors |α〉 span a non-local decoherence-free subspace described by the density matrix

elements (ρedge)αβ = 〈α|ρ|β〉 = ραβ . The decoherence-free subspace has the property ρ̇αβ = 0.

We now study the time evolution of the density matrix in a co-moving basis |a(t)〉 = U (t)|a(0)〉
that follows the decoherence-free subspace of the edge modes, i.e. that preserves the property

ρ̇αβ = 0. Without specifying the actual dynamics generating the physical evolution, the time

evolution in that basis is given by

∂tρ =
∑

a,b

(

|ȧ〉ρab〈b| + |a〉ρ̇ab〈b| + |a〉ρab〈ḃ|
)

=
∑

a,b,c

|c〉〈c|ȧ〉ρab〈b| +
∑

a,b

|a〉ρ̇ab〈b| +
∑

a,b,c

|a〉ρab〈ḃ|c〉〈c|. (57)

We define the vector potential Aab = 〈a(0)|U †U̇ |b(0)〉 = i

2
(〈a|ḃ〉 − 〈ȧ|b〉), which is antisym-

metric and Hermitian, by construction. Taking into account the normalization ∂t〈b(t)|a(t)〉 = 0,

we then obtain

∂tρ = −i[A, ρ] +
∑

a,b

|a〉ρ̇ab〈b| = −i[H + A, ρ] +
∑

i

(

ℓiρℓ
†
i − 1

2
{ℓ†

i ℓi , ρ}
)

, (58)

where ρ̇ab ≡ 〈a(t)|∂tρ|b(t)〉 is the time evolution in the instantaneous basis. The Heisenberg

commutator clearly reflects the appearance of a gauge structure [70–74] in the density matrix

formalism. Crucially, this structure emerges independently of whether the physical dynamics

encoded in ρ̇ab—inserted in the last inequality—is unitary or dissipative.

The transformation applied in the zero-mode subspace of either a Hamiltonian or a

Liouvillian starting from the initial condition ραβ(0) is given by ραβ(t)= (V (t)ρ(0)V (t)†)αβ ,

with time-ordered V (t)= T exp (−i
∫ t

0
dτ A(τ )) where A(t)αβ is the projection of the vector

potential onto the decoherence-free subspace. The adiabatic change of the parameters is the

key feature for such a state transformations to be realized while preserving the zero-mode

subspace. Here one crucially requires the ratio between the rate of parameter changes encoded

in A and the dissipative gap to be very small. Due to this separation of time scales—enabled by

the non-evolving subspace—the decoherence-free subspace is never left. This phenomenon is

sometimes referred to as the quantum Zeno effect [59].

In the first-quantized formulation, the eigenvalues and eigenvectors of X now depend

on time. The transformation into the instantaneous basis |a(t)〉 = U (t)|a0〉, where |a0〉 is the

initial reference basis, is now orthogonal. The vector potential is given by the Hermitian
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antisymmetric matrix Aab = i

2
(〈a(t)|ḃ(t)〉 − 〈ȧ(t)|b(t)〉), and the correlation matrix evolves in

this basis according to (h is defined above equation (13))

∂tŴ = [h + A, Ŵ] − {X, Ŵ} + Y. (59)

Starting from this basic understanding, one can construct adiabatic local parameter changes

of the Lindblad operators to perform elementary dissipative Majorana moves [29]. Such

procedure can then be applied sequentially in order to exchange two particular modes, keeping

them sufficiently far apart from each other during the process (in networks of 1D wires, such

exchange can be made using a T-junction geometry [15]). The unitary braiding matrix describing

the complete process is Bi j = exp
(

π

4
γiγ j

)

for two Majorana modes i, j . Since
[

Bi j , B jk

]

6= 0 for

i 6= j , non-Abelian statistics is obtained.

7. Illustrative examples in one dimension

In this section, we apply our results to several dissipative models in 1D. In particular,

we investigate the interplay between criticality and purity at the onset of non-equilibrium

topological phase transitions, exemplifying the results of section 3.3. We focus on 1D lattice

systems of spinless fermions with translational symmetry evolving under a dissipative dynamics

described by Lindblad operators Ln =
∑

m vn−ma†
m + un−mam , where a†

m and am are creation and

annihilation operators associated with a lattice site m and vn−m and un−m are translation-invariant

functions. The system is then most conveniently described in momentum space with Fourier-

transformed Lindblad operators Lk =
∑

m eikm Lm of the form

Lk = vka
†
k − uka−k. (60)

Here we assume that

v∗
k = v−k and u∗

k = u−k, (61)

as will be satisfied in the examples examined below. The dissipative dynamics obviously occurs

in decoupled momentum sectors corresponding to the fermionic modes a
†
k and a−k . Defining a

corresponding basis of Majorana operators (c2k−1, c2k, c2(−k)−1, c2(−k)), the matrices Xk and Yk

describing the dynamics in each of these sectors take the following form (see section 2.6):

Xk = 2

(

(|uk|2 + |vk|2)I2 2 Re(u∗
kvk)σz

2 Re(u∗
kvk)σz (|uk|2 + |vk|2)I2

)

, (62)

Yk = 4

(

(|uk|2 + |vk|2)(−iσy) 2 Im(u∗
kvk)σz

−2 Im(u∗
kvk)σz (|uk|2 + |vk|2)(−iσy)

)

, (63)

where σµ=x,y,z denotes the usual Pauli matrices. The system exhibits critical behavior if at least

one of the eigenvalues λ
(1,2)
k = ±|u∗

k ± vk|2 of Xk vanishes for some k, i.e. if the dissipative gap

closes. Note that in that case the matrix Yk identically vanishes, since its eigenvalues are given

by ±(|u∗
k + vk|)(|u∗

k − vk|).
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All matrices Xk of the form (62) can be diagonalized through the same unitary

transformation. This allows us to obtain the steady-state correlation matrix in a generic form

(solving the steady-state equation {Xk, Ŵk} = Yk; see section 2.6); namely

Ŵk = 1

|vk|2 + |uk|2
(

(|vk|2 − |uk|2)iσy 2 Im(u∗
kvk)σz

−2 Im(u∗
kvk)σz (|vk|2 − |uk|2)iσy

)

. (64)

The symmetry class to which the steady state belongs can be readily determined from this

expression. We recall that one can associate a fictitious free-fermion Hamiltonian HŴ =
i
∑

i, j Ŵi j ci c j with the steady-state correlation matrix Ŵ (see section 3.2). Here we write

HŴ = 2
∑

k 9
†
kHk9k in a momentum-space Nambu representation with 9

†
k = (a

†
k , a−k) and

obtain

Hk ≡
(

ξk 1k

1∗
k −ξ−k

)

= 1

N 2
k

(

|vk|2 − |uk|2 2i Im(u∗
kvk)

−2i Im(u∗
kvk) |uk|2 − |vk|2

)

, (65)

where N 2
k = |vk|2 + |uk|2. Equation (61) implies that ξ−k = ξk and1∗

−k =1k , and one can easily

verify that TRS and PHS are satisfied as H∗
−k = +Hk and σxH

∗
−kσx = −Hk , respectively (see

equations (46) and (47)). Consequently, all (Gaussian) steady states resulting from a translation-

invariant dissipative dynamics described by matrices Xk and Yk of the form (62) and (63) have

chiral symmetry and accordingly belong to the symmetry class BDI of Altland and Zirnbauer.

In what follows, we present three examples of dissipative systems belonging to the

symmetry class BDI exhibiting a topological phase transition due to the change of some external

parameter κ . We first consider an example where the dissipative dynamics gives rise to a pure

steady state in the whole parameter range of κ and the system exhibits critical behavior at the

point where the topological phase transition occurs. We then discuss an example in which

the topological phase transition is also driven by criticality but accompanied by the closure

of the purity gap. Finally, we provide a third example in which the topological phase transition

does not lead to any critical behavior. The three examples presented below therefore illustrate

the three possibilities for non-equilibrium topological phase transitions identified in section 3.3.

We illustrate our results by plotting, as a function of κ , the dissipative gap1d (given by the

minimum eigenvalue of X ) and the purity gap which we define here as 1p = mink{Tr(Ŵ2
k )/4}.

We also consider finite systems with open boundary conditions but translation-invariant

Lindblad operators and investigate the behavior of the edge zero-damping modes in the vicinity

of the topological phase transition.

7.1. Example 1: topological phase transition of a pure state with criticality

We consider translation-invariant Lindblad operators Ln that act on three consecutive sites:

Ln = 1√
4 + κ2

[

κa†
n + (a

†
n+1 + a

†
n−1)+ (an+1 − an−1)

]

, (66)

where κ is a real parameter controlling the coupling to the central site n.25 In momentum

space, these Lindblad operators take the form Lk = vka
†
k − uka−k with vk = κ + 2 cos k and uk =

−2i sin k (note that equation (61) is satisfied). The corresponding matrix Xk is diagonal, namely,

25 Note that the overall multiplicative factor is introduced for convenience and does not affect the physical

properties of the system.
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Figure 3. Topological phase transition driven by criticality. (a) The system

driven by the translation-invariant Lindblad operators of equation (66) exhibits

critical behavior at κ = ±2, as indicated by the closure of the dissipative gap

1d. At these points, the system undergoes a transition from a topologically

trivial (ν1D = 0) to a topologically ordered (ν1D = 2) phase. Since the purity

gap 1p = 1, the steady state of the dissipative dynamics is always pure.

(b) Divergence of the localization length associated with one of the two Majorana

zero-damping modes found at the edges upon approaching the topological phase

transition at κ = 2.

Xk = (8 + 2κ2 + 8κ cos k)/(4 + κ2)I, and one can readily see that the dissipative gap closes at

κ = ±2, giving rise to critical behavior around these points. The steady-state correlation matrix

can be written explicitly as

Ŵk = gk

(

(κ2 + 4κ cos k + 4 cos 2k)iσy 4(κ sin k + sin 2k)σz

−4(κ sin k + sin 2k)σz (κ2 + 4κ cos k + 4 cos 2k)iσy

)

(67)

with gk = 1/(4 + κ2 + 4κ cos k) and one can easily verify that Ŵ2
k = −I for all k, meaning that

the steady state is always pure.

Expressing the momentum-space correlation matrix in the form Ŵk = i(nk · σ )with nk ∈ R3

similarly as in section 3, we obtain nk = gk(0, 4(κ sin k + sin 2k), κ2 + 4κ cos k + 4 cos 2k). As

expected, this vector nk is non-zero for all k in the whole parameter range of κ where the

dissipative gap is finite, i.e. for |κ| 6= 2. Moreover, since the steady state is pure, one does

not need to ‘spectrally flatten’ the corresponding correlation matrix Ŵk (i.e. to normalize the

vector nk to unity) in order to calculate the corresponding winding number topological invariant

ν1D (see equation (35) and discussion above). Here we find ν1D = 2 for |κ|< 2 and ν1D = 0

for |κ|> 2 (for an explicit calculation, see our previous work [30]). We therefore identify a

topological phase transition at |κ| = 2 where the dissipative gap closes and the system becomes

critical. These results are illustrated in figure 3(a).

We now examine the case of a finite system (or ‘chain’) of N sites with open boundary

conditions. We first notice that only N − 2 three-site Lindblad operators of the form (66) can be

‘placed’ on such an open chain. Hence, according to our discussion of section 5.3, four exact

Majorana zero-damping modes (two at each edge, by symmetry) must be present independently

of the topological properties of the system (in particular, for any value of the parameter κ).

Obviously, this number which remains constant across the topological phase transition cannot
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be used to identify the latter. However, the topological phase transition can be revealed in two

other ways. (i) One can remove accidental Majorana zero-damping modes with no topological

origin by introducing additional arbitrary Lindblad operators acting at the edges; assuming

that these extra Lindblad operators preserve chiral symmetry26, the system must then exhibit

a total of ν1D = 2 Majorana zero-damping and/or zero-purity modes in the parameter range

|κ|< 2, as dictated by the dissipative bulk-edge correspondence (see section 5.1). (ii) One can

examine the behavior of the localization length associated with the Majorana zero-damping

modes as the parameter κ is tuned across the topological phase transition; owing to criticality,

the characteristic length scale associated with at least one of the two modes found at an edge

must diverge at the phase transition point |κ| = 2.

Here we follow strategy (ii). Since the Lindblad operators Ln are translation-invariant and

have a symmetric form around their central site n,27 we use the results of section 5.2 and

assess the existence of Majorana zero-damping modes that decay into the bulk by solving

equation (54). Choosing φi = 0, the latter equation takes the explicit form 0 = κ + 2βex
(ex

being a unit vector joining neighboring sites of the chain) and we readily obtain βex
= −κ/2,

showing that at least one of the two Majorana zero-damping modes at the edge must decay

(exponentially) into the bulk when |κ|< 2 (as required by |βex
|< 1) on a characteristic length

scale ξ = −1/log(|βex
|)= −1/log(|κ|/2). As expected, ξ diverges at |κ| = 2 and thus reveals

the topological phase transition. Figure 3(b) illustrates numerical results corroborating this

behavior.

7.2. Examples 2 and 3: topological phase transition of a mixed state with and without

criticality

We now consider a dissipative dynamics that involves two types of translation-invariant

Lindblad operators

L (1)n = 1

2

[

(a†
n + a

†
n+1)+ (an − an+1)

]

, (68)

L (2)n = 1

2

[

(a†
n + a

†
n+2)+ (an − an+2)

]

, (69)

acting on neighboring and next-to-nearest neighboring sites, respectively. The Lindblad

operators L (1)n generate a dissipative dynamics that drives the system into a pure steady

state corresponding to the ground state of a topologically non-trivial Kitaev chain [14], as

demonstrated in our previous work [29]; two Majorana zero-damping modes are found in that

case (one at each edge). The Lindblad operators L (2)n describe two decoupled Kitaev chains, with

four Majorana zero-damping modes (two at each edge). Below we discuss two scenarios. (i) We

first assume that both dissipative processes L (1)n and L (2)n occur coherently, so that the relevant

Lindblad operators are Ln = (L (1)n + κL (2)n )/(2(κ
2 + κ + 1)) with κ ∈ R. (ii) We then consider

the case where both dissipative processes ‘compete’ against each other, so that the relevant

Liouvillian to describe the dissipative dynamics is L= (L1 + κL2)/(1 + κ), where Lα denotes

the Liouvillian corresponding to a single Lindblad operator L (α)n and κ > 0. In practice, L (1)n and

L (2)n as well as their combinations (i) and (ii) can be realized in a ‘zigzag’ geometry, e.g. as

depicted in figure 4.

26 Note that TRS only must be ensured since PHS is automatically satisfied in our dissipative framework.
27 Namely, the creation and annihilations parts of Ln (see equation (66)) have s-wave and p-wave symmetry,

respectively.
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Figure 4. Generalizations of the dissipative Kitaev chain. By positioning the

sites of the 1D chain (gray discs) in a zigzag geometry, three different types

of dissipative processes can be engineered (see section 2.4) from auxiliary

sites (blue circles): (a) Lindblad operators L (1)n driving the system into the

ground state of the Kitaev chain. (b) Lindblad operators L (2)n driving the system

into two decoupled Kitaev chains. (c) By moving the auxiliary sites relative

to the physical ones in the zigzag geometry, one can engineer a coherent

superposition Ln ∝ L (1)n + κL (2)n of the Lindblad operators L (1)n and L (2)n . (d)

Furthermore, by doubling the number of auxiliary sites (introducing the yellow

ones), one can engineer a dissipative dynamics L∝ L1 + κL2 corresponding to

two ‘competing’ Liouvillians L1 and L2 associated with Lindblad operators L (1)n

and L (2)n , respectively.

In momentum space, the Lindblad operators take the generic form L
(α)

k = v
(α)

k a
†
k − u

(α)

k a−k

(α = 1, 2) with vk = eikα/2cos(kα/2) and uk = i eikα/2 sin(kα/2) (note that equation (61) is again

satisfied). We first examine case (i), in which the eigenvalues of the matrix Xk take the explicit

form

λ1 = 2
(1 + κ)2

1 + κ + κ2
, λ2 = 2

1 + 2κ cos k + κ2

1 + κ + κ2
, (70)

showing that the dissipative gap closes at κ = ±1, and the steady-state correlation matrix reads

Ŵk = gk

(

(cos k + κ cos 2k)iσy −(sin k + κ sin 2k)σz

(sin k + κ sin 2k)σz (cos k + κ cos 2k)iσy

)

(71)

with gk = (1 + κ)/(1 + κ + κ2 + κcosk) and eigenvalues ±(1 + κ)
√

1 + κ2 + 2κ cos k/(1 + κ +

κ2 + κ cos k), indicating that the steady state is pure for κ = 0 and κ → ±∞ and mixed

otherwise (as expected from the fact that κ = 0 (κ → ±∞) corresponds to the case where L (1)n
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Figure 5. Topological phase transition of a mixed state with criticality. (a) The

system driven by translation-invariant Lindblad operators of the form Ln ∝
L (1)n + κL (2)n exhibits critical behavior at κ = ±1, as indicated by the closure

of the dissipative gap 1d. At these points, the system undergoes a topological

phase transition from a state characterized by ν1D = 1 to a state with ν1D = 2.

The steady state is mixed (unless κ = 0 or κ → ±∞) and the phase transition

is crucially accompanied by the closure of the purity gap 1p. (b) Divergence of

the localization length associated with the Majorana zero-damping mode found

at each of the edges upon approaching the topological phase transition at κ = 1.

(respectively L (2)n ) alone generates the dynamics). The vector nk defined so that Ŵk = i(nk · σ )
is non-zero for all k provided that κ 6= ±1 and takes the explicit form nk = gk(0,−(sin k +

κ sin 2k),−(cos k + κ cos 2k)). The corresponding winding number topological invariant is

ν1D = 1 for |κ|< 1 and ν1D = 2 for |κ|> 1, in accordance with the fact that ν1D = 1 for a single

topologically non-trivial Kitaev chain. These results, which are depicted in figure 5(a), illustrate

the possibility of a topological phase transition driven by criticality and by the closure of the

purity gap.

To conclude our investigation of case (i), we consider a finite chain of N sites with open

boundary conditions. Since only N − 2 Lindblad operators of the form Ln ∝ L (1)n + κL (2)n can

be applied on such a chain, we again obtain four exact Majorana zero-damping modes that are

either genuine or accidental. A numerical analysis below the topological phase transition point

κ = 1 reveals that two of these modes (one at each edge) decay exponentially into the bulk on a

characteristic length scale ξ = −1/log(κ)which diverges at κ = 1, as expected (see figure 5(b)).

We now turn to the investigation of case (ii) in which the two dissipative processes L (1)n and

L (2)n compete against each other. In that scenario, one can readily verify that Xk = 2I, such that

the damping spectrum is gapped (and ‘flat’) for all k. The steady-state correlation matrix is then

given by

Ŵk = g

(

(cos k + κ cos 2k)iσy −(sin k + κ sin 2k)σz

(sin k + κ sin 2k)σz (cos k + κ cos 2k)iσy

)

, (72)

with g = 1/(1 + κ) and eigenvalues ±
√

1 + κ2 + 2κ cos k/(1 + κ), implying that the steady state

is pure if and only if κ = 0 or κ → ∞. The corresponding vector nk is non-zero (for all k) except

at κ = 1 in which case Ŵk=±π = 0. For κ 6= 1, one finds nk = g(0,−(sin k + κ sin 2k),−(cos k +

κ cos 2k)) and the corresponding winding number topological invariant is ν1D = 1 for κ < 1
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Figure 6. Topological phase transition of a mixed state without criticality. The

system evolving under a dissipative dynamics L∝ L1 + κL2 generated by two

‘competing’ Liouvillians L1 and L2 corresponding to the Lindblad operators L (1)n

and L (2)n , respectively, exhibits a topological phase transition at κ = 1 from a state

with winding number ν1D = 1 to a state with winding number ν1D = 2 that results

from the closure of the purity gap 1p only. The system never becomes critical,

since the dissipative gap1d remains constant in the whole parameter range of κ .

and ν1D = 2 for κ > 1. These results, which are presented in figure 6, demonstrate that case (ii)

provides an example of a topological phase transition that is not driven by criticality but rather

by the closure of the purity gap only.

Examining case (ii) on a finite chain with open boundary conditions, we find four Majorana

zero-damping modes (two at each edge) in the whole parameter range of κ . In accordance with

the dissipative bulk-edge correspondence (see section 5.1), all of these modes must be genuine

for κ > 1 where ν1D = 2, while two of them (one at each edge) must be accidental for κ < 1

where ν1D = 1. Crucially, the spatial wave function of these four modes does not exhibit any

critical behavior28 upon approaching the topological phase transition point κ = 1.

8. Illustrative example in two dimensions (2D)

In the previous section, we have exemplified the phenomenology of Majorana zero-damping

modes at physical edges in the context of 1D systems. Here we focus instead on the physics that

arises when topological defects are introduced in the bulk of the system, away from physical

edges. We consider topological defects in the form of dissipative vortices in infinite 2D systems

in order to illustrate such physics in the simplest possible scenario.

8.1. Dissipative vortices

Dissipative vortices are most conveniently defined starting from an infinite 2D lattice system

evolving under a dissipative dynamics generated by translation-invariant Lindblad operators

L i =
∑

j u j−i a j + v j−i a
†
j (using notations as in section 5.2 above; see equation (52), in

particular). We assume that the corresponding Liouvillian exhibits a finite dissipative gap and

that its steady state is characterized by a finite purity gap, so that the topological nature of

28 In fact, it does not change at all in this particular example.
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the system is well-defined (i.e. the steady state belongs to a specific topological class and

is characterized by quantized topological invariants); in particular, the dissipative bulk-edge

correspondence introduced in section 5 is satisfied29. We then introduce a dissipative vortex at a

position defined by the vector R0
30 by modifying the translation-invariant coefficients u j−i ≡ ui j

defining the annihilation part of the Lindblad operators in the following way:

ui j → ui j f (r j)e
−iℓϕ j , (73)

where (r j , ϕ j) are polar coordinates defining the position of each site j with respect to R0, f (r)

is a real and positive function that vanishes as r → 0 and reaches a constant value as r ≫ δ

(δ being a characteristic length scale associated with the dissipative vortex, defining the vortex

core), and e−iℓϕ j describes the vortex phase winding ℓ times around the origin R0 (ℓ defining

the so-called vorticity). While vortices exhibit similar properties in Hamiltonian systems, the

specific form of a dissipative vortex defined above is motivated by its natural realization in

typical implementation schemes with cold atoms based on optical vortex imprinting (we refer

to our previous work [30] for further details).

We remark that the qualitative features of a dissipative vortex do not depend on the explicit

form of the function f (r) describing its core. Of crucial importance is the fact that f (r) vanishes

as r → 0, so that the vortex core can be identified with a region of space in which the system is

topologically equivalent to the vacuum, with all sites essentially occupied31. If the topological

nature of the bulk is non-trivial, a small circular edge (or domain wall) of radius ∼ δ must

then appear around the vortex core, separating this vacuum-like region from the surrounding

bulk which is potentially topologically non-trivial. Remembering the dissipative bulk-edge

correspondence discussed in section 5, one then naively expects Majorana zero-damping modes

and/or intrinsic Majorana zero-purity modes to appear at this domain wall. We argue below that

the possibility of having such modes, however, additionally and crucially depends on the phase

winding ℓ of the dissipative vortex, as expected by analogy to the Hamiltonian setting.

The crucial role of the vortex phase winding ℓ in prohibiting or allowing the existence

of Majorana zero modes in the vortex core can be understood in analogy to the Hamiltonian

setting. In the Hamiltonian context, circular domain walls typically trap low-energy modes with

quantized angular momentum m and a corresponding energy E ∼ m [11]. When a flux of the

U (1) gauge field associated with the fermions corresponding to n quanta of angular momentum

is inserted in the region enclosed by the domain wall, the angular momentum of these low-

energy modes shifts to values m + n and the energy of the latter shifts accordingly, thereby

prohibiting or allowing for zero-energy modes. We argue that the same argument applies here

in the case of a dissipative vortex, namely: the phase winding ℓ defines a flux πℓ threading the

vortex core and shifts the eigenvalues corresponding to low-damping or low-purity modes bound

to the vortex core (in the damping or purity spectrum, respectively). This can be understood

from the fact that the Hamiltonian phenomenology discussed above automatically applies to

the parent Hamiltonian associated with the dissipative dynamics, whose zero modes either

correspond to Majorana zero-damping modes or to intrinsic Majorana zero-purity modes (see

29 One can assume, without loss of generality, that the Lindblad operators form a complete set of anticommuting

operators, so that the system is driven into a pure steady state independently of the initial conditions (see discussion

of section 3.1).
30 Note that this position need not coincide with a lattice site.
31 This can be understood from the fact that the Lindblad operators acting in the vortex core have an annihilation

part that essentially vanishes, namely, L i = C
†
i + Ai with Ai ≈ 0.
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discussion of section 2.8). In analogy with the Hamiltonian setting (see e.g. [11]), we then

expect Majorana zero-damping modes and/or intrinsic Majorana zero-purity modes to appear

in dissipative vortices with odd vorticity ℓ only, as we corroborate below in an explicit model.

We remark that the physics associated with a dissipative vortex remains qualitatively the

same upon insertion or removal of 2π fluxes in the vortex core since such modifications can be

seen as gauge transformations [11]. The physical properties of a dissipative vortex are therefore

determined by the vorticity ℓ modulo 2, and one can restrict oneself to ℓ= 0 or 1, without

loss of generality. Since the case of a dissipative vortex with ℓ= 0 is physically equivalent to

that of a small circular physical edge, we will focus exclusively on dissipative vortices with

ℓ= 1. Remarkably, the physics arising in a single dissipative vortex with a π flux (ℓ= 1) in an

infinite system on the plane can be shown to be equivalent to that occurring at the edge of a semi-

infinite system with a cylinder geometry and no flux (see figure 7 and our previous work [30] for

further details). This equivalence—which will be useful in the sections below—can intuitively

be understood from the fact that the π flux of the U (1) gauge field introduced by a vortex with

ℓ= 1 naturally arises in cylinder geometry due to the (extrinsic) curvature of the latter.

8.2. Explicit 2D model and bulk properties

We now consider, in the framework defined above, an explicit model defined on a square

lattice with primitive vectors ex and ey , with translation-invariant Lindblad operators L i =
∑

j u j−i a j + v j−i a
†
j whose only non-zero coefficients are

v0 = β, v±ex
= 1, v±ey

= 1, u±ex
= ±1, u±ey

= ±i, (74)

where β is a real parameter which can be used to tune the system across phase transitions. Every

site i therefore has an associated Lindblad operator L i of the form

L i = C
†
i + Ai = β a

†
i + (a

†
i+ex

+ a
†
i+ey

+ a
†
i−ex

+ a
†
i−ey

)+ (ai+ex
+ iai+ey

− ai−ex
− iai−ey

), (75)

where the creation part C
†
i is isotropic or s-wave symmetric with respect to the central site i (as

naturally arises in typical implementation schemes; see section 2.4) and the annihilation part Ai

has a p-wave symmetry, i.e. Ai = (∇x + i∇y)ai with ∇λai ≡ ai+eλ − ai−eλ . In momentum space,

these translation-invariant Lindblad operators take the form Lk = ukak + vka
†
−k, where

uk = 2i(sin (kx)+ i sin (ky)),

vk = β + 2(cos (kx)+ cos (ky)).
(76)

Since the above functions satisfy ukvk = −u−kv−k, the Lindblad operators form a complete

set of anticommuting operators and the system is driven into a pure Gaussian steady

state corresponding to the ground state of the parent Hamiltonian Hparent =
∑

k L
†
kLk (see

equation (39) and discussion thereof). The damping spectrum, which coincides with the

spectrum of Hparent in that case, is then given by the norm

Nk = {L
†
k, Lk} = |uk|2 + |vk|2. (77)

Remembering the explicit form of the functions uk and vk defined in equation (76) above, one

can easily verify that the corresponding dissipative gap closes at the parameter values β = 0,

±4. We thus expect the existence of four distinct—possibly topological—phases depending on

the value of β.
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We remark that the Lindblad operators are not invariant under TRS due to the p-wave

symmetry embedded in their annihilation part. The system thus belongs to the symmetry

class D of Altland and Zirnbauer (see section 3.2) and is characterized by the Chern number

topological invariant defined in equation (32). One can easily verify that, in accordance with

the discussion of section 4.2, the Chern number vanishes in the whole β parameter range where

the system exhibits a finite dissipative gap (we refer to our previous work [30] for an explicit

proof). As dictated by the dissipative bulk-edge correspondence introduced in section 5, we

therefore naively do not expect to find Majorana zero-damping modes in the system if edges

are introduced. Despite this conclusion, let us now try to construct such modes explicitly in the

translation-invariant setting of section 5.2 anyway.

8.3. Construction of Majorana zero-damping modes

The possibility of having Majorana zero-damping modes at a physical edge when the dissipative

dynamics is generated by translation-invariant Lindblad operators as in section 5.2 above can

be assessed from the explicit form of the Lindblad operators (see equation (74)) by looking

for a solution of equation (54). Choosing φi = 0 (which corresponds to choosing a particular

orientation of the edge; see section 5.2), the real and imaginary parts of equation (54) here take

the explicit form

0 = β + 2βex
+βey

+ (βey
)−1,

0 = βey
− (βey

)−1.

One thus finds βey
= ±1 and βex

= −(β/2 ± 1), which implies the existence of a solution with

|βex
|< 1 if and only if 0< |β|< 4. Consequently, there exists at least one Majorana zero-

damping mode γ of the form defined by equation (53) when 0< |β|< 4 if the system possesses

an edge in the −ex direction32, in which case γ is uniformly spread along the edge (since

|βey
| = 1) and exponentially localized in the +ex direction away from the edge on a characteristic

length scale ξ = −1/log(|βex
|)= −1/log(|β/2 ± 1|). The semi-infinite planar geometry of the

system in that case is depicted in figure 7(a). Remarkably, the special points β = 0, ±4 where the

dissipative gap closes coincide with those at which |βex
| = 1, i.e. at which the localization length

associated with γ diverges. This suggests the possible existence of topological phase transitions

occurring at the gap-closing points |β| = 0, ±4 which are not identified by the (vanishing) Chern

number topological invariant.

8.4. Topological origin

We have demonstrated above that the system can support Majorana zero-damping modes at

an edge (in the parameter range 0< |β|< 4) despite its vanishing Chern number. We argue

below that this apparent contradiction stems from the fact that we have assumed translational

symmetry, and establish the topological origin of Majorana zero-damping modes in the above

translation-invariant setting. It is clear that translational symmetry is not robust against disorder.

However, assuming such a symmetry will allow us to demonstrate, in the simple model above,

a key mechanism with no Hamiltonian counterpart through which spatially isolated Majorana

zero-damping modes can be obtained in a topological phase characterized by an even integer

topological invariant, in contradiction with the Hamiltonian bulk-edge correspondence.

32 Note that a different orientation of the edge would be obtained for φi 6= 0.
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Figure 7. Left: semi-infinite plane ‘wrapped up’ into a semi-infinite cylinder

in the ey direction (shown in red). Right: topological equivalence between the

semi-infinite cylinder geometry and an infinite planar geometry with a single

dissipative vortex ‘puncturing’ the plane.

We first remark that the construction of section 8.3 above remains unchanged if we assume

that the system is finite in the ey direction, ‘wrapped up’ into a cylinder (as depicted in

figure 7(b)). Since such a semi-infinite cylinder geometry is topologically equivalent to that

of an infinite plane ‘punctured’ by a single dissipative vortex (figure 7(c)), Majorana zero-

damping modes of the form found in section 8.3 must therefore similarly appear in the core

of a dissipative vortex on the plane33. In these two equivalent geometries, the topological

origin of Majorana zero-damping modes can be identified by moving to momentum space

in the ey direction associated with translational (or rotational, in the vortex case) symmetry

(see figures 7(b) and (c)). The system then reduces to a ‘stack’ of semi-infinite 1D wires (in

the ex direction) associated with different momenta ky . In particular, the Fourier-transformed

counterpart of the Lindblad operators defined in equation (75) take the form

L i = κ a
†
i + (a

†
i+ex

+ a
†
i−ex

)+ (ai+ex
− ai−ex

) (78)

in the momentum sectors corresponding to ky = 0 or π , where i indexes the lattice sites in the

remaining spatial direction ex and κ = β + 2 for ky = 0 and β − 2 for ky = π , respectively. In

these two sectors, the system thus reduces to the 1D wire with chiral symmetry investigated

in section 7 above (up to an overall dissipation rate
√

4 + κ2 which does not affect any of the

topological properties of the system). Owing to chiral symmetry, such a system belongs to the

symmetry class BDI of Altland and Zirnbauer and is characterized by the winding number

topological invariant ν1D defined by equation (35). As discussed in section 7 and depicted in

figure 3 thereof, one finds ν1D = 2 for |κ|< 2 and ν1D = 0 for |κ|> 2. Discontinuities in the

winding number at κ = ±2 (or, equivalently, at β = 0, ±4) clearly establish the occurrence of

non-equilibrium topological phase transitions at the dissipative gap-closing points identified in

section 8.3.

33 Note that the translation symmetry along the circumference of the cylinder translates as a rotational symmetry

around the vortex core.
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In summary, we have identified a non-trivial topological invariant ν1D = 2 in the parameter

range 0< |β|< 4 34 by taking advantage of translation invariance to reduce the original 2D

problem in semi-infinite cylinder geometry or, equivalently, in planar geometry with a single

ℓ= 1 dissipative vortex, to a 1D wire defined along the axis of the cylinder or in the radial

direction away from the vortex core (ex direction shown in figures 7(b) and (c)). This provides

a topological explanation as to why we were able to demonstrate the existence of at least one

Majorana zero-damping mode for 0< |β|< 4 in section 8.3. In fact, invoking the dissipative

bulk-edge correspondence of section 5.1, we can now argue that a total of ν1D = 2 Majorana

zero-damping modes and/or Majorana zero-purity modes must be present at the edge of the

semi-infinite system in cylinder geometry or, equivalently, in the core of the ℓ= 1 dissipative

vortex on the (infinite) plane, as long as the symmetries of the system are preserved35.

The precise number (mdamping)edge 6 2 (see equation (51) and discussion thereof) of genuine

Majorana zero-damping modes that is found at the edge of the cylinder or in the vortex

core depends on the specific dissipative boundary conditions that appear there. Crucially,

physically distinct boundary conditions naturally emerge in these two systems, although their

geometries are topologically equivalent. In the case of the dissipative vortex, in particular,

one can demonstrate explicitly that a single Majorana zero-damping mode is found in the

vortex core (alongside with a single Majorana zero-purity mode such that the dissipative

bulk-edge correspondence is satisfied; see equation (51)). The key mechanism through which

the dissipative vortex isolates exactly one Majorana zero-damping mode despite the fact that

the bulk is characterized by an even (integer) topological invariant (ν1D) originates from the

geometry of the vortex core alone and is therefore generic. We refer to our previous work [30]

for an explicit proof of this statement.

8.5. Physical properties of dissipative vortices carrying single Majorana zero-damping modes

In the Hamiltonian context, π flux vortices carrying single Majorana zero-energy modes

have been demonstrated to exhibit non-Abelian exchange statistics [7]. The underlying proof

exclusively relies on the algebraic properties of Majorana modes and, crucially, does not depend

on the dynamics giving rise to them (see section 6.2). As a result, the same conclusions apply in

the dissipative setting of interest in this work. In particular, π flux (i.e. ℓ= 1) dissipative vortices

carrying single Majorana zero-damping modes must exhibit non-Abelian exchange statistics

(when moved around through adiabatic parameter changes as discussed in section 6.2). In light

of the mechanism illustrated in the above explicit model, we thus conclude that vortices can

have, in our dissipative setting, non-Abelian exchange statistics in a phase characterized by an

even integer topological invariant, in stark contrast to what can occur in the Hamiltonian context.

In addition to their non-Abelian statistics, vortices carrying single Majorana zero modes

behave, in our dissipative setting, in a fully analogous way as in the Hamiltonian context. In

particular, two such vortices ‘interact’ as the distance d between the latter becomes small,

acquiring an exponentially small residual damping rate ∼e−d/ξ , where ξ is the localization

length associated with the Majorana zero-damping mode that they carry. We have verified such

34 Note that β > 0 (β < 0) corresponds to the 1D wire in the momentum sector ky = 0 (ky = π).
35 More precisely, translational symmetry along the circumference of the cylinder or, equivalently, rotational

symmetry around the vortex core must be preserved, as well as the chiral symmetry of the dimensionally reduced

problem (1D wire). In the presence of disorder, one expects Majorana zero-damping modes to become ‘softer’,

acquiring a small but finite damping rate.
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Figure 8. Numerical results for a configuration of two ℓ= 1 dissipative vortices

on a square lattice of 35 × 35 sites with unit spacing. (a) Generic form of the

Majorana zero-damping modes localized in each of the vortex cores (here for

β = 2 and a vortex–vortex separation d = 16), and (b) exponential behavior of

their residual damping rate as a function of the vortex–vortex separation d for

β = 2.8–3.2 by steps of 0.1 (from bottom to top). Note that, due to the finite

size of the system, vortices ‘interact’ more strongly (via the edge) as they come

closer to the edge, giving rise to the symmetric behavior that can be seen around

d ≈ 16. (c) and (d) Low-lying part of the damping (respectively purity) spectrum

for β = 2 featuring a gap with two quasi-zero (∼10−15) eigenvalues (indicated

by a red arrow) corresponding to Majorana zero-damping (zero-purity) modes

trapped in each of the vortex cores. All results were obtained for vanishingly

small vortex cores, i.e. with f (r)= 1 everywhere except at r = 0 where it

vanishes (see equation (73)).

phenomenology through numerical simulations. Figure 8 summarizes the results obtained in the

case of a finite system on the plane with two ‘interacting’ ℓ= 1 dissipative vortices.

9. Conclusions

In this paper we have provided a discussion of non-equilibrium superfluid topological states

generated by means of engineered dissipation, highlighting analogies and differences to the

more conventional Hamiltonian setting. Similarities mainly stem from the fact that topological

properties are properties of the state of the system—encoded in the static correlations—with

some care to be taken regarding the purity of the state. In particular, identifying the correlation
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matrix as a tool for the symmetry-based topological classification of arbitrary Gaussian

states analogous to a first-quantized quadratic Hamiltonian, it is clear that the classification

of topological states according to the symmetry classes of Altland and Zirnbauer extends

to a general non-equilibrium steady-state situation, highlighting the universality of this

classification. Differences, on the other hand, mostly stem from the fact that the spectral or

dynamical properties of the system and the properties of the steady state are not as tightly

related as in the Hamiltonian ground-state scenario. The interplay between the well-known

characteristics of topological states and the new elements brought in by the dissipative nature of

the dynamics can give rise to effects with no Hamiltonian counterpart. Examples are topological

phase transitions which do not require the dissipative spectral gap to close, or the trapping of

unpaired Majorana modes in a bulk with vanishing Chern number.

We have presented in this work a detailed discussion of dissipatively induced topological

superfluid states in 1D and 2D systems which is a first step toward a complete picture of non-

equilibrium topological order. In this respect, various directions remain to be explored in future

work.

From the viewpoint of dissipation engineering, we may ask ourselves whether other

symmetry classes than the ones identified in this work can be achieved in realistic setups. So

far we have concentrated on topological superfluids of spinless fermions. Adding spin degrees

of freedom opens up the perspective of reaching topological insulating phases with potentially

more robust edge modes. It will also be interesting to investigate whether going beyond quasi-

local Lindblad operators is possible in realistic cold atom experiments, allowing to reach phases

characterized by a non-vanishing Chern number.

From a many-body perspective, an interesting direction will be to explore the nature

of topological phases and phase transitions in more detail. This concerns, in particular, the

interplay of dissipative and Hamiltonian dynamics, which we did not examine in this work.

While this intentional omission is not a severe limitation in the context of cold atomic

gases where the Hamiltonian dynamics can be suppressed, including the effects of such

dynamics would give a more complete picture of the robustness of topological phases under

general combined unitary and dissipative dynamics. From the viewpoint of critical phenomena,

topological phase transitions accompanied by a closure of the dissipative gap offer intriguing

examples of criticality in fermionic systems. Going beyond a mean-field approach by including

the effects of Hamiltonian and dissipative interactions will be necessary to reach a detailed

understanding of this issue.

From a quantum information point of view, it will be important to investigate in more

detail the analogies and differences between dissipatively induced non-local decoherence-

free subspaces and more conventional Hamiltonian edge mode subspaces. To answer these

questions, a more systematic classification of harmful dissipative perturbations as well as a more

detailed understanding of the dynamics of excitations on top of the dissipatively stabilized state

will be necessary. The propagation of excitations or defects on top of a state which is entirely

induced by dissipation can be expected to be vastly different from a Hamiltonian ground state.

Also, manipulation and readout tools tailored to the dissipative setting will have to be developed.
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Appendix. Dissipative mean-field theory

We show in more detail how the microscopically number conserving implementation of the

Lindblad operators, leading to an interacting (quartic in the fermion operators) Liouvillian, are

related to the quadratic setting analyzed in view of its topological properties. To this end, we first

present a general relation of the number conserving operators to their fixed phase counterpart

on the level of the dark state wave functions. We then show within a properly devised mean-

field theory how these two settings are connected dynamically, with main result stating that

the quadratic dynamics emerges naturally in the long time limit of the microscopically number

conserving quartic dissipative evolution.

A.1. General relation of fixed number and fixed phase Lindblad operators

We show that for a given real space quadratic master equation with pure dark state, we can

directly construct a number conserving quartic version and vice versa, and specify the respective

fixed phase or fixed number exact dark state wave functions. In particular, in the thermodynamic

limit, both descriptions become equivalent as made explicit below.

We study a general Liouville operator defined by Lindblad operators Ji which exhibits a

pure dark state:

L(ρ) = κ
∑

i

(

Jiρ J
†
i − 1

2
{J

†
i Ji , ρ}

)

,

Ji |D〉 = 0 for all i, ρD = |D〉〈D|. (A.1)

We will show the following. For each fixed phase setting, specified by Lindblad operators and

dark state

Ji ≡ L i = Ai +αC
†
i , |D〉 = |BCS, θ〉 ∝ exp(αG†)|vac〉, (A.2)

there is a fixed number setting with36

Ji ≡ ℓi = C
†
i Ai , |D〉 = |BCS, N 〉 ∝ G†N |vac〉. (A.3)

The reverse statement holds as well. Here, as in the main text the creation (annihilation) parts

C
†
i (Ai) are linear in the spinless fermion operators and obey the following requirements:

(i) Translation invariance. C
†
i =

∑

j vi− ja
†
j and Ai =

∑

j ui− ja j with translation-invariant

complex quasi-local position-space functions vi− j and ui− j . The Fourier transforms for

the creation and annihilation parts are local in momentum space,

C
†
k =

∑

i

e−ikxi C
†
i = vka

†
k, Ak =

∑

i

eikxi Ai = ukak. (A.4)

36 Working with the functions |BCS, N 〉 for finite N may require an infrared momentum cutoff qL ∼1/L , so that

N = nLd (n the particle filling, L the number of sites in each direction, d the spatial dimension), which is consistent

with the thermodynamic limit N → ∞, L → ∞, n = N/Ld → const.
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The Fourier transformed fixed phase and fixed number Lindblad operators then read,

respectively

Lk = Ak +αC
†
k, ℓk =

∑

q

C
†
q−k Aq. (A.5)

(ii) Antisymmetry. The functions have the property u−k = ±uk, v−k = ∓vk, such that the

related ‘wave function’ ϕ is antisymmetric,

ϕk = vk/uk = −ϕ−k. (A.6)

This implies that the set Lk form a full Dirac algebra up to a normalization,

{Lk, Lk′} = {L
†
k, L

†
k′} = 0,

{Lk, L
†
k′} = (|uk|2 + |αvk|2)δ(k − k′) (A.7)

for all k,k′. We may introduce normalized operators via

L̄k = ūkak +αv̄ka
†
−k,

ūk = uk/
√

Nk,

v̄k = vk/
√

Nk,

(A.8)

where Nk = |uk|2 + |αvk|2 such that |ūk|2 + |αv̄k|2 = 1, {L̄k, L̄
†
k′} = δ(k − k′).

The generator of the state is bilinear and reads in terms of the momentum space wave

function

G† =
∑

k

ϕka
†
−ka

†
k. (A.9)

The fixed number operators satisfy [ℓi , N̂ ] = 0 and thus conserve total particle number N̂ =
∑

i a
†
i ai . The corresponding dark states |BCS, N 〉 contain 2N fermions. Instead, in the fixed

phase setting, [L i , N̂ ] 6= 0. α = r eiθ is an arbitrary complex number. Within the mean-field

described below, the modulus r can be related to the average particle number. θ has an

interpretation in terms of a fixed superfluid phase. This is made explicit from the expansion

of the coherent state wave function

|BCS, θ〉 =N exp(αG†)|vac〉 =N
∏′

k
(1 +αϕka

†
−ka

†
k)|vac〉, (A.10)

where N =
∏′

k(1 + |αϕk|2)−1/2 is a global normalization.
∏′

k is restricted to k such that kλ > 0

in all primitive lattice directions λ.

With these preparations, we can prove the above statement. We work in momentum space

and start with the number conserving setting. The Lindblad operators ℓk =
∑

q C
†
q−k Aq are

normal ordered, such that ℓk|vac〉 = 0. The dark state property ℓi |BCS, N 〉 = ℓk|BCS, N 〉 = 0

for all i or k is therefore equivalent to the following relation for all k:

[ℓk,G†] =
∑

q

vq−kuqϕqa
†
q−ka†

−q = −
∑

q

vquq−kϕq−ka
†
q−ka†

−q

!= 0. (A.11)

This is true if and only if
vquq−k

uqvq−k
= ϕq

ϕq−k
holds for all k, i.e. for the wave function ϕq = vq/uq up

to a momentum independent complex number. The latter can be absorbed into the constant α.
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It is easy to show the uniqueness of the dark state in the fixed phase ensemble. The coherent

state wave function (A.10) can be written as |BCS, θ〉 ∝
∏′

k LkL−k|vac〉, so that it is indeed the

unique wave function annihilated by the full set of Dirac operators Lk up to normalization.

We are not aware of an analogous argument for the fixed number case (for each given particle

number 2N ), since the bilinear operators ℓk do not obey a simple algebra. Numerical simulations

in the context of spinful Lindblad operators [50, 51] however suggest a unique steady dark state.

The two wave functions |BCS, N 〉, |BCS, θ〉 are equivalent in the thermodynamic limit

N → ∞. We consider the relative number fluctuations of the fixed phase state

1N 2 = 〈N̂ 2〉 − 〈N̂ 〉2

〈N̂ 〉2
=
∑

k nk(1 − nk)

(
∑

k nk)2
=
∑

k |ūkv̄k|2

(
∑

k |v̄k|2)2
∼ 1

N
, (A.12)

where N̂ =
∑

k n̂k, n̂k = a
†
kak is the total particle density, the average is taken in |BCS, θ〉,

and nk = 〈n̂k〉 = |v̄k|2. Here we have used n̂2
k = n̂k, implying 〈n̂2

k〉 = 〈n̂k〉, as well as 〈n̂qn̂k〉 =
〈n̂q〉〈n̂k〉 for k 6= q due to the product nature of the BCS state. Since 06 nk 6 1 and nk = 0

only for a non-extensive set of modes, the scaling of the numerator is ∼N , and that of the

denominator ∼ N 2 in the thermodynamic limit. It is the mean-field (product) nature of the state

which is responsible for this scaling.

The fixed phase wave function is an exact solution of the number conserving equation

(if the particle number is not fixed to a specific N ), since |BCS, θ〉 ∝ exp(αG†)|vac〉 =
(1/N !)

∑

N (αG†)N |vac〉. The above discussion shows that for fixed N → ∞, the fixed phase

wave function approximates the fixed number one in a controlled way. We will rely on this fact,

which is solely related to large N , in the mean-field theory to be discussed next.

A.2. Mean-field theory

Here we describe a mean-field theory for quartic, number conserving fermionic master

equations. The mean-field description, represented by an effective quadratic master equation, is

valid in the thermodynamic plus long-time limit, where the system is already close to the steady

state. It is instructive to compare this mean-field theory to BCS theory for Hamiltonian ground

states. The role of the ground state is played by the dark state. The long time limit is analogous to

a low energy limit in condensed matter systems, where the description of interacting fermions in

terms of quadratic effective BCS Hamiltonians becomes appropriate. We emphasize that unlike

the BCS problem of locally interacting fermions, our mean-field theory is controlled by the

fact that the exact dark state for the interacting quartic dissipative problem with fixed particle

number is known. The effective linear Lindblad operators take the form of annihilation operators

for the dark state, in complete analogy to the Bogoliubov operators for the BCS problem.

The momentum dependent rate premultiplying the Lindblad form describes the damping in

the vicinity of the dark state, replacing the excitation eigenenergies in the BCS Hamiltonian.

The mean-field theory allows us to calculate the damping rates and number equation from the

microscopic quartic description.

In our mean-field approach, as in standard BCS theory we give up exact particle number

conservation and work in the fixed phase ensemble, exploiting the discussion above. Our mean-

field ansatz is then defined by a factorization of the density matrix in momentum space, ρ =
∏′

k ρk, where ρk describes the mode pair {k,−k}. This is motivated by the form of the coherent

state steady density matrix ρD = |BCS, θ〉〈BCS, θ | sharing this property. We implement this
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ansatz, focusing e.g. on the recycling term

L(ρ) ∋
∑

k

ℓkρℓ
†
k =

∑

q1,...,q4

vq1
uq2

u∗
q3
v∗

q4
a†

q1
aq2
ρa†

q3
aq4
δ(q1 + q3 − q2 − q4)

=
∑

q2,q3 6=p

vpuq2
u∗

q3
v∗

pa†
paq2

ρa†
q3

apδ(q3 − q2)

+
∑

q1,q4 6=p

vq1
upu∗

pv
∗
q4

a†
q1

apρa†
paq4

δ(q1 − q4)

+
∑

q2,q4 6=p

vpuq2
u∗

−pv
∗
q4

a†
paq2

ρa†
−paq4

δ(q2 + q4)

+
∑

q1,q3 6=p

vq1
upu∗

q3
v∗

−pa†
q1

apρa†
q3

a−pδ(q1 + q3)

+ {p → −p} + h.o.t.

For the last equality, we have selected the contributions which are of second order in the

operators for some selected momentum mode p and neglect the higher order terms in the

following, as appropriate in the thermodynamic limit. Now we perform the partial traces using

[ρk, ρq] = [ρk, aq] = [ρk, a†
q] = 0 for q 6= k, since ρk contains an even number of fermions. We

furthermore reorder the fermion operators using the fact that the sums do not contain the modes

±p; i.e. we only have to use the anticommutation property {aq, a†
p} = 0 for q 6= p. That is, the

procedure will only yield signs depending on how many reorderings are necessary:

Tr6=pL(ρ) ∋ Tr 6=p



vpv
∗
pa†

pρpap

∑

q6=p

uqu∗
qaq

∏

k6=p

ρka†
q + upu∗

papρpa†
p

∑

q 6=p

vqv
∗
qa†

q

∏

k6=p

ρkaq

−vpu∗
−pa†

pρpa†
−p

∑

q6=p

uqv
∗
−qaq

∏

k6=p

ρka−q

−upv
∗
−papρpa−p

∑

q6=p

u∗
qv−qa†

−q

∏

k6=p

ρka†
q + {p → −p}





= vpv
∗
pa†

pρpap

∑

q6=p

uqu∗
q〈a†

qaq〉 + upu∗
papρpa†

p

∑

q6=p

vqv
∗
q〈aqa†

q〉

−vpu∗
−pa†

pρpa†
−p

∑

q6=p

uqv
∗
−q〈a−qaq〉 − upv

∗
−papρpa−p

∑

q 6=p

u∗
qv−q〈a†

qa†
−q〉

+{p → −p}, (A.13)

where in the last equality we have chosen the normalization Trkρk = 1 and used the cyclic

property of the trace. In the thermodynamic limit,
∑

q6=p(.)=
∑

q(.). Close to the steady state

we can evaluate the correlation functions using the stationary form equation (A.10) for the state,

which take a factorized form, i.e. 〈a†
qaq〉=|v̄q|2, 〈aqa†

q〉=|ūq|2, 〈a−qaq〉=−ū∗
qv̄q, 〈a†

qa
†
−q〉 =

−v̄∗
qūq. We can thus factorize a real positive number κ0 from the last equation, such that
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mean-field Liouvillian operator for the mode pair {k,−k} takes the form

Lk(ρk)= Tr 6=pL(ρ)= κ0

∑

σ=±

(

LσkρkL
†
σk − 1

2
{L

†
σkLσk, ρk}

)

=
∑

σ=±
κk

(

L̄σkρk L̄
†
σk − 1

2
{L̄

†
σk L̄σk, ρk}

)

, (A.14)

κk = κ0 Nk, κ0 =
∑

q

|v̄qūq|2 =
∑

q

|vquq|2
N 2

q

(A.15)

with Lk, L̄k specified in equations (A.5) and (A.8).

In addition to the effective dissipative rate, we can also calculate the amplitude of the

relative coefficient α in dependence of the particle filling n =
∑

q 〈a†
qaq〉 from mean-field theory.

While for the number conserving equation the particle number operator is a constant of motion

due to [ℓi , N̂ ] = 0 (i.e. the expectation values of any power of the total particle number are

conserved, ∂t〈N̂ m〉 = 0), no such property is found for the mean-field dynamics. However, for

any initial average particle filling n = 〈N̂ 〉/Ld there is an α = r eiθ such that the first moment,

i.e. the average particle density, is conserved, and ∂t〈N̂ 〉 = 0 holds. In other words, the value of

α fixes the average particle number, which is intuitive since α measures the relative strength

of creating fermions versus annihilating fermions. The number equation of state for which

n(t)= const. is given by

n =
∑

q

|v̄q|2 =
∑

q

|vq|2

|vq|2 + |αvq|2
. (A.16)

While, therefore, the modulus |α| = r is fixed by an additional physical condition from the

initial state, no such condition exists which fixes the phase θ . This is physically meaningful,

since the original number conserving operators are invariant under global U (1) phase rotations.

The interpretation of α = r eiθ therefore is the following. (i) The macroscopic phase is fixed

spontaneously by the dynamics, i.e. it indicates spontaneous symmetry breaking of U (1) phase

rotations in the dissipative setting. (ii) The amplitude relates to the average particle number in

the sample, which can be chosen such as to match the average particle number of the number

conserving setting n = N/Ld in the initial state.

A.3. Explicit derivation of the general form of Majorana zero-damping modes for

translation-invariant dissipative processes

In this section, we provide an explicit derivation of equation (54) in the framework introduced

in section 5.2 (using the same notations).

An arbitrary Majorana operator γ = γ † can be expressed, in terms of the fermionic creation

and annihilation operators a
†
i and ai corresponding to distinct lattice sites i of the system, in the

form

γ =
∑

j

(α ja j + h.c.), (A.17)

where the sum runs over all sites j belonging to the system and α j ∈ C with
∑

j |α j |2 = 1

(so that {γ, γ †} = 2 as required for a Majorana operator). The operator γ then corresponds to a
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Majorana zero-damping mode of the dissipative dynamics described by the translation-invariant

Lindblad operators L i =
∑

j∈I(i) u j−i a j + v j−i a
†
j (equation (52)) if and only if the following

conditions are satisfied (see section 2.8):

0 = {L i , γ } = {L i , γi} (for all i), (A.18)

where γi denotes the restriction of the Majorana operator γ to the sites j ∈ I(i) where L i acts

non-trivially. These anticommutation conditions obviously constrain the possible form of γi in

a way that solely depends on the form of L i . Since the form of the Lindblad operator L i does

not depend on i due to translation invariance, γi must be of the form

γi =
∑

j∈I(i)
(β j−iαia j + h.c.), (A.19)

where β j−i are complex factors (β j−i being a shorthand notation for β(r j − ri), as defined

in section 5.2) which, for consistency with equation (A.17), must satisfy the following set of

equations:

β j−iαi = α j , β∗
j−iα

∗
i = α∗

j , (A.20)

βi− jα j = αi , β∗
i− jα

∗
j = α∗

i , (A.21)

leading to a single ‘consistency relation’

βk−i = βk− jβ j−i , (A.22)

which is valid for any triple of indices (i, j, k) associated with lattice sites belonging to the

system, with βi−i ≡ β0 = 1. Since β j−i = (βi− j)
−1 and β∗

j−i = (β∗
i− j)

−1, the factors β j−i must

be real.

Equation (A.22) implies that any Majorana zero-damping mode γ can be fully constructed

from the only knowledge of d real factors βen
, where en (n = 1, 2, . . . , d) are primitive vectors

associated with the d-dimensional Bravais lattice on which the system is defined. Such a

construction can be made starting from any lattice site i , choosing a phase φi ∈ [0, 2π) for

the coefficient αi of γ (see equation (A.17)) corresponding to that particular site. This allows us

to express γ in the generic form presented in the main text (see section 5.2):

γ =N eiφi/2
∑

{m1,m2,

...,md }

(βe1
)n1(βe2

)n2 . . . (βed
)nd a

(

ri +

d
∑

n=1

mnen

)

+ h.c., (A.23)

where N > 0 is a normalization factor and {m1,m2, . . . ,md} a set of integers defined such that

the vectors ri +
∑d

n=1 mnen span the positions of all sites in the system37.

The explicit form of the elementary ‘building blocks’ βen
defining the form of γ can be

found by expressing equation (A.18) explicitly using equation (A.19), namely,

0 =
∑

j∈I(i)

∑

k∈I(i)

{

u j−ia j + v j−ia
†
j , βk−iαiai +βk−iα

∗
i a

†
i

}

=
∑

j∈I(i)

(

α∗
i u j−iβ j−i +αiv j−iβ j−i

)

= 1

2

∑

j∈I(i)

[

α∗
i (u j−iβ j−i + u j−iβ j−i)+αi(v j−iβ j−i + v j−iβ j−i)

]

, (A.24)

37 Note that γ = γ † is defined up to a sign, which allows us to introduce the phase φi as eiφi/2.
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where in the last step we have symmetrized the expression using the fact that I(i) contains

pairs of sites ( j, j) located symmetrically around the center of symmetry Si of L i (see

section 5.2). The fact that the Lindblad operators are symmetric around Si and that the

dissipative dynamics leads to a pure steady state as assumed in the main text implies that u j−i =
−u j−i and v j−i = v j−i (see also equation (39) and discussion thereof). Equation (A.24) therefore

reduces to

0 =
∑

j∈I(i)

[

e−iφi u j−i(β j−i −β j−i)+ v j−i(β j−i +β j−i)
]

, (A.25)

which is the result presented in the main text (see equation (54)). We note that this equation can

be further simplified when the center of symmetry Si of L i coincides with a lattice site. In that

case, β j−i = βi− j = (β j−i)
−1 and we find

0 = v0 +
1

2

∑

j∈I(i)
j 6=i

[e−iφi u j−i(β j−i − (β j−i)
−1)+ v j−i(β j−i + (β j−i)

−1)]. (A.26)

We remark that equation (A.25) (as well as equation (A.26)) can be expressed in terms of the

factors βen
only using equation (A.22). If there exists a set {βen

}n=1,2,...,d of real factors βen

satisfying equation (A.25) for some particular phase φi ∈ [0, 2π), the system can support at

least one Majorana zero-damping mode of the form (53). Otherwise there can be no such mode.

In order to assess the possibility of having Majorana zero-damping modes, one therefore has to

solve a polynomial equation in d real variables ({βen
}n=1,2,...,d) with coefficients that may be real

or complex depending on the coefficients e−iφi u j−i , since v j−i can always be chosen as real (see

section 4). The existence of solutions thus depends on the phase φi that is chosen as an ‘initial

condition’ for the construction of γ starting from site i according to equation (A.23).

We finally discuss the physical meaning of the phase φi in the two types of dissipative

systems that are most relevant to this work (see section 4): (i) 1D dissipative systems

with TRS (symmetry class BDI) and (ii) 2D dissipative systems without TRS (symmetry

class D)38. In the 1D case, TRS constrains the coefficients u j−i to be real up to a global

phase and the phase φi crucially allows to compensate for such a phase so that all coefficients

e−iφi u j−i are real. Equation (A.25) then reduces to a univariate polynomial equation with real

coefficients which, as opposed to a univariate polynomial equation with complex coefficients

(as would generically be obtained in the absence of TRS), can have robust solutions (i.e.

solutions that survive if the coefficients u j−i and v j−i are slightly modified). In the 2D case,

v j−i typically exhibits an isotropic (or s-wave symmetric) form due to physical constraints

(see section 4) and TRS can only be broken if u j−i ≡ u(r j − ri) transforms under rotations

as an eigenfunction of angular momentum with odd integer eigenvalue ℓ 6= 0, namely, u(r)=
u(r, ϕ)∼ f (r)e−iℓϕ with polar coordinates (r, ϕ), f (r) being an arbitrary positive function

of r . We then find e−iφi u j−i = e−iφi u(r, ϕ)= u(r, ϕ +φi/ℓ), showing that modifying the phase φi

simply corresponds to rotating the reference frame or, equivalently, to modifying the orientation

of the edge of the system. If there exists a solution of equation (54) for some φi , there must exist

a solution for any φi ∈ [0, 2π) or, equivalently, for any orientation of the edge. TRS breaking

thus crucially allows for the existence of Majorana zero-damping modes at edges that are curved

arbitrarily, as expected physically.

38 Note that PHS is automatically satisfied in our dissipative framework (see section 3).
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