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Abstract

Topology effects have being extensively studied and confirmed in strongly correlated condensed matter physics. In

the limit of large number of colors, baryons can be regarded as topological objects—skyrmions—and the baryonic

matter can be regarded as a skyrmion matter. We review in this paper the generalized effective field theory for dense

compact-star matter constructed with the robust inputs obtained from the skyrmion approach to dense nuclear

matter, relying on possible “emergent” scale and local flavor symmetries at high density. All nuclear matter properties

from the saturation density n0 up to several times n0 can be fairly well described. A uniquely novel—and

unorthdox—feature of this theory is the precocious appearance of the pseudo-conformal sound velocity

v2s /c
2 ≈ 1/3, with the non-vanishing trace of the energy momentum tensor of the system. The topology change

encoded in the density scaling of low energy constants is interpreted as the quark-hadron continuity in the sense of

Cheshire Cat Principle (CCP) at density� 2n0 in accessing massive compact stars. We confront the approach with the

data from GW170817 and GW190425.
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1 Introduction
The structure of dense nuclear matter relevant to compact

stars has been investigated for several decades but still

remains largely uncharted. Unlike at high temperature, so

far, the physics at high density can be accessed by neither

terrestrial experiments nor lattice simulation. Recently,

the observation of massive neutron stars with mass �

2.0M⊙ and detection of gravitational waves from neu-

tron star mergers provide indirect information of nuclear

matter at low temperature and high density, say, up to

∼ 10 times the normal nuclear matter density n0 ≃ 0.16

fm−3 [1–6]. These new developments offer the power-

ful means to explore the nuclear matter in the interior of

the compact stars, for example, the patterns of the sym-

metries involved therein, what is in the core of the stars,

say, baryons and/or quarks and a combination thereof. For
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recent discussions on these aspects, we suggest, e.g., Refs.

[7–14] and some relevant references therein.

The study of nuclear matter in the literature has largely

relied on either phenomenological approaches anchored

on density functionals or effective field theoretical models

implemented with assumedQCD symmetries and degrees

of freedom appropriate for the cutoff to which the the-

ory is applicable. For finite nuclei as well as the infinite

nuclear matter up to ∼ n0, the physics can be described

very well by using the nuclear effective theory with or

without pion, in addition to the nucleon [7, 15] (denoted

as sχEFT). However, in the dense system relevant to the

compact stars at ∼ 10n0, the sχEFT is believed to break

down. Then, to construct an effective theory for compact

star matter, one should consider the following facts which

may not be independent: What the interior of the star

could consists of, baryons and/or quarks, and a combi-

nation thereof? Whether and how the relevant degrees of

freedom of QCD—the gluons and quarks—intervene? Are

phase transitions involved in the core of the massive stars?
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In the past several years, we have devoted ourselves with

our collaborators to construct a general but conceptu-

ally novel nuclear effective field theory (dubbed GnEFT)

applicable not only to the finite nuclei but also to the

highly dense system relevant to the massive stars where

sχEFT is considered to break down [11]. The merit of the

approach that we rely on is that we will have a single uni-

fied effective Lagrangian formulated in a way that encom-

passes from low density to high density, involving only

manifestly “macroscopic” degrees of freedom, but captur-

ing the continuity to “microscopic” quarks-gluon degrees

of freedom—in the sense of Cheshire Cat Principle [16–

18].

When going to the density relevant to compact stars,

since the nucleons are very close to each other, the effects

from the hadron resonances must enter. Therefore, in

addition to the nucleons and pions in sχEFT, the GnEFT

includes the lowest-lying vector mesons ρ and ω and

the scalar meson f0(500). Put in terms of the degrees of

freedom, the GnEFT can be written as

GnEFT = sχEFT + ρ and ω + f0(500).

In the model construction, in addition to the chiral sym-

metry, the lowest-lying vector mesons are introduced

through the hidden local flavor symmetry [19–21] and

the scalar meson f0 is regarded as the pseudo-Nambu-

Goldstone boson of the hidden scale symmetry [22]. Both

symmetries are not explicit in the matter free space but it

seems reasonable to think that they get (partially) restored

in the dense system. At least there is nothing glaring at

odds with the presently available observations.

Prior to QCD, Skyrme suggested that baryons can be

described by the topology solution of a mesonic theory,

skyrmion [23]. After the arrival of QCD, it was argued that

when the number of color Nc is infinitely large, baryons

in the constituent quark model share the same Nc scaling

properties as skyrmions [24, 25]. Since then, the Skyrme(-

type) model1 has become one of the models in the study

of nucleon, nuclei as well as nuclear matter [26–28].

In the skyrmion approach to dense nuclear mat-

ter obtained by putting skyrmions on crystal lattice, a

robust observation independent of the model and crys-

tal structure—at least what has been checked so far—is

the topology change where the skyrmions with the inte-

ger winding number transit to half-skyrmions with the

half-integer winding number. The density at which this

takes place is denoted as n1/2. This model-independent

topology change gives rise to several interesting density

dependences of hadron properties that have not been

found in other approaches.

Although the Skyrme model approach can describe the

nucleon, nuclei as well as nuclear matter in a unified

1Hereafter, for convenience, we use Skyrme model with the pion field only to
represent the Skyrme model and its extensions.

way, it is a daunting task to put this approach into prac-

tice since the calculation depends on the efficiency of

the computer and the results are valid in the large Nc

limit. Therefore, in practice, one resorts to chiral effec-

tive models that incorporate baryons as explicit degrees of

freedom. In our GnEFT, we incorporate the robust char-

acteristics of topology in the low energy constants of the

model. The effect of the change of the degrees of freedom

is formulated in terms of the possible topology change

at a density n1/2 encoded in the behavior of the parame-

ters of the GnEFT Lagrangian as one moves from below

to above the changeover density n1/2. After making the

Vlowk RG approach implementing the strategy of Wilso-

nian renormalization group flow [29], we construct the

pseudo-conformal model (PCM) of dense nuclear matter

[30, 31](see Ref. [12] for a review).

The PCM that satisfy all the constraints from astro-

physics turns out to have a peculiar feature that has not

been found in any other approaches: The sound velocity

approaches the conformal limit v2s /c
2 ≈ 1/3 at the den-

sity relevant to compact stars although the trace of the

energy-momentum tensor does not vanish. This is in stark

contrast to the standard scenario favored in the field [32].

This conceptually novel approach predicts that the core

of massive compact stars is populated by confined quasi-

fermions of fractional baryon charge [33], not “deconfined

quarks” expected in perturbative QCD [34]. We suggest

that this phenomenon, together with the “quenched gA
problem” in nuclei, shows that hidden symmetries hid-

den in medium-free vacuum of QCD emerge in nuclear

dynamics [35].

2 Topology change and hadron–quark continuity
It has long been discussed that in the large number of

color Nc limit, baryons can be regarded as topologi-

cal objects—solitons, namely skyrmions. In the skyrmion

approach, the dense nuclear matter can be accessed

by putting the skyrmions onto the crystal lattice [28,

36, 37]. Here we exploit the Skyrme model with the

Lagrangian connected to QCD in the sense of Weinberg

“folk theorem” on effective field theories [38]. For a devel-

opment quite different in spirit from ours, we refer to, e.g.,

review [39] and the references therein.

2.1 Topology change

Topology change is a novel phenomenon that has not been

observed in any approach other than the skyrmion crystal

approach to dense nuclear matter.

To have an intuitive idea, let us look at the distribu-

tion of the baryon number density in a specific lattice,

say, face-centered cubic crystal. The distribution of the

baryon number density looked along an axis is illustrated

in the left panel of Fig. 1. The winding number is 1 if one

integrates out the blue volume. Now, squeeze the system.
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Fig. 1 Distribution of the baryon number density in the skyrmion (left

panel) matter and half-skyrmion matter (right panel). From [37]

One finds that, after a critical density n1/2 (or equally, the

crystal size L1/2), the distribution of the baryon number

density changes to the right panel of Fig. 1. What hap-

pens is that when the increasing matter density surpasses

n1/2 (or the crystal size drops below L1/2), the constituents

of the matter given in the blue square transit from wind-

ing number–1 objects (left panel) to winding number–1/2

objects, half-skyrmions (right panel). (How this happens

in the numerical simulation can be seen in [37] .)

In the half-skyrmion configuration, as a consequence of

symmetry, the space average of

〈φ0〉 = 1

V

∫

V
d3x

1

2
trU0 → 0, (1)

whereU0 is the static configuration of the chiral fieldU =
exp

(

2iπaTa/fπ
)

with Ta = σ a/2. This means that the

quark condensate 〈q̄q〉 vanishes when the space is aver-

aged. Therefore, one can use this quantity as a signal of the

skyrmion–half-skyrmion transition.

It should be noted that the location of n1/2 can-

not be pined down theoretically because it is model-

dependent. Since nuclear dynamics at low density can be

well described by sχEFT, we set n1/2 � 2.0n0. Later,

we will see that astrophysical observations observations

indicate 2.0n0 � n1/2 � 4.0n0.

2.2 Implications of topology change

Chiral symmetry breaking.— In the skyrmion crystal

approach to dense nuclear matter, the pion decay constant

can be calculated through the axial-vector currelator [40]

iGab
μν(p) = i

∫

d4xeip·x〈0|TJa5μ(x)Jb5ν(0)|0〉. (2)

At the leading order of fluctuations, we can express the

medium modified pion decay constant as

f ∗2
π = f 2π

[

1 − 2

3

(

1 − 〈φ2
0〉

)

]

. (3)

In the skyrmion phase, since 〈φ2
0〉 decreases with den-

sity, f ∗2
π decreases with density. After passing n1/2 from

below, since 〈φ0〉 = 0 in the chiral limit, 〈φ2
0〉 ≃ 0. Thus

f ∗2
π

f 2π
≃ 1

3
(4)

a nonzero constant although 〈φ0〉 = 0. This argument is

supported by explicit numerical calculation.

In terms of current algebra, the generalized Gell-Mann–

Oakes–Renner relation tells us [41]

m∗2
π f ∗2

π = mq〈φ0〉 +
∑

n≥2

Fn
(

〈φn
0 〉

)

, (5)

where for convenience, we have kept the current quark

mass. Fn stands for the contribution frommultiquark con-

densation. Since the pion mass scales little with density,

when going to the half-skyrmion matter,

f ∗2
π

f 2π
=

∑

n≥2

Fn
(

〈φn
0 〉

)

≃ F2
(

〈φ2
0〉

)

�= 0, (6)

which is in qualitative agreement with the result from

skyrmion crystal calculation.

Equation 4 means that the chiral symmetry is only par-

tially restored in the half-skyrmion matter and we are

still in the Nambu-Goldstone phase. This means that

the skyrmion–half-skyrmion transition is not a Landau-

Ginzburg-type phase transition. Although it is not a

paradigmatic phase change, in what follows, we will use

the term “half-skyrmion phase” for simplicity.

Chiral doublet structure.— It is found that when the sys-

tem goes to the half-skyrmion medium, the nucleon mass

becomes a density-independent constant [42]. Therefore,

one can decompose the nucleon mass as

mN = 	 (〈q̄q〉) + m0 (7)

where 	(〈q̄q〉) is the sector of the nucleon mass coming

from the quark condensate which becomes zero in the

half-skyrmion medium. m0 is the sector of the nucleon

mass independent of 〈q̄q〉 and has a magnitude about

(50− 70)% of the nucleon mass in vacuum. The existence

ofm0 �= 0 implies that there is a part of the nucleon mass

that is chiral invariant.

It should be noted that, the decomposition (7) can also

be inferred from other approaches. The lattice calcula-

tion found that, when the chiral symmetry is unbroken,

baryons are still massive and one should not expect a

drop of the mass in dense medium [43]. The same behav-

ior was found in Ref. [44] in a renormalization group

(RG) analysis of hidden local symmetric Lagrangian with

baryons. Moreover, in Ref. [45], by using a chiral effective

model with parity doubler, it was found that, to reproduce

the nuclear matter around saturation density, the nucleon

mass should has a sizable chiral invariant component. So

far, it is not clear to us whetherm0 reflects a fundamental

feature of QCD or an emergent symmetry via correlations
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in medium as in condensed matter as indicated in this

crystal calculation.

Symmetry energy.— The symmetry energy of nuclear

matter Esym(n) which plays the most important role in the

equation of state (EoS) for compact stars is not under con-

trol at the density relevant to compact stars [46, 47]. It

is given by the term proportional to α2 in the energy per

nucleon E(n,α)

E(n,α) = E(n,α = 0) + Esym(n)α2 + O
(

α4
)

, (8)

where α = (N − P)/(N + P) with P(N) being the number

of protons (neutrons).

Since the symmetry energy arises from the proton-

neutron asymmetry, to calculate it from the skyrmion

crystal approach, the crystal lattice should be rotated

through a single set of collective coordinates [48]. A

tedious but straightforward calculation yields

Esym = 1/λI , (9)

where λI is the isospin moment of inertia.

The density dependence of the symmetry energy

obtained from the skyrmion crystal approach is schemat-

ically plotted in dotted curve in Fig. 2. What is interesting

is the appearance of the cusp structure locked at n1/2, i.e.,

the symmetry energy first decreases with density and then

increases when the density passes n1/2. To understand the

density dependence of symmetry energy, we consider the

expression of λI [49]

λI = f 2π
6

〈

4 − φ2
0

〉

+ · · · (10)

where · · · stands for the contribution from the Skyrme

term and 〈· · · 〉 indicates the space average of the quantity
inside. As discussed above, with the increasing of the den-

sity, 〈φ2
0〉 decreases to zero. So, 1/λI , or equivalently Esym,

Fig. 2 Schematic illustration of the symmetry energy calculated by

the skyrmion crystal (dashed line) and nucleon correlation corrections

(solid line)

decreases going toward n1/2. After n1/2, the tendency of

Esym is highly involved. Since at n � n1/2, 〈φ2
0〉 ≈ 0, the

density dependence from the quartic term in the Skyrme

model which represents massive excitations – such as the

vector mesons in the HLS models – intervene. It gives the

cusp structure.

It should be stressed that the crystal description of

baryonic matter at low density cannot be reliable, so the

density dependence of symmetry energy obtained at den-

sity n � n0 cannot be taken seriously. The cusp structure

at n1/2 is present in nuclear correlations as is shown below

in terms of nuclear tensor forces. What is important in the

skyrmion crystal calculation is that the symmetry energy

decreases toward the cusp density after which it increases.

We will see later that this cusp sheds light on the medium

modified-hadron properties.

Nuclear tensor force.— We have shown that, the robust

characteristic in the skyrmion crystal approach is the exis-

tence of the cusp structure in the symmetry energy. A

natural question is what is the implication of this cusp

in GnEFT including nucleon as an explicit degree of

freedom or equivalently, how to reproduce this cusp in

GnEFT. To address this question, we consider the tensor

force between nucleons that is mediated by one boson

exchange.

The symmetry energy is dominated by the nuclear ten-

sor force VT and can be written in the closure approxima-

tion as [50]

Esym ≃ c
〈
(

VT
)2〉

	E
. (11)

Therefore, the behavior of the symmetry energy is con-

trolled by the absolute value of the tensor force between

nucleons carried by the exchanged mesons.

For the present purpose, it suffices to consider the

one-pion and one-ρ contributions to two-body tensor

forces. The scalarmeson, here dilaton, does not contribute

directly at the tree level but affects indirectly on the scal-

ing relations of the masses and coupling constants in the

Lagrangian. In the non-relativistic limit, the tensor forces

are given by

VT
M (r) = SM

f ∗ 2
NM

4π
τ1 τ2 S12I

(

m∗
Mr

)

, (12)

I(m∗
Mr) ≡ m∗

M

[

1
(

m∗
Mr

)3
+ 1

(

m∗
Mr

)2
+ 1

3m∗
Mr

]

e−m∗
Mr , (13)

whereM = π , ρ, Sρ(π) = +1(−1) and

S12 = 3
(
σ1 · 
r ) (
σ2 · 
r )

r2
− 
σ1 · 
σ2 (14)

with the Pauli matrices τ i and σ i for the isospin and spin

of the nucleons with i = 1, 2, 3. The density dependence
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enters through the scaling parameters in the in-medium

quantities marked with asterisk [51]. The strength f ∗
NM

scales as

R∗
M ≡ f ∗

NM

fNM
≈ g∗

MNN

gMNN

mN

m∗
N

m∗
M

mM
, (15)

where gMNN are the effective meson-nucleon couplings.

What is significant in Eq. (12) is that given the same

radial dependence, the two forces (through the pion and

ρ meson exchanges) come with an opposite sign and

therefore cancels each other.

As discussed in Ref. [52], if the hadron scales from low

to high densities with no topology change, the tensor force

will decrease monotonically with density. There will then

be no cusp in the symmetry energy. This feature will be in

conflict with what happens in Nature.

Now let us see what happens if there is the topology

change at n1/2. For illustration we take R∗
ρ ≈ 
2 at n >

n1/2 but with all others the same as in the case with-

out topology change. The results are plotted in Fig. 3. It

shows that the topology change effect is dramatic. Due

to the cancellation between these two tensor forces, in

the range of nuclear forces relevant for the nuclear inter-

action, r � 1 fm, the magnitude of the net force first

decreases and then, after passing n1/2, increases and the

force from the rho meson is nearly totally suppressed.

Then, from Eq. (11), one concludes that going toward

to n1/2 from below the symmetry energy is to drop and

more or less abruptly turn over at n1/2 and then increase

beyond n1/2. This reproduces precisely the cusp predicted

in the crystal calculation. As a result, the cusp structure

in Esym—a consequence of topology change with the onset

of the half-skyrmion phase—is signaling the different den-

sity scaling property of the gauge coupling from n ≤ n1/2
to n > n1/2.

Fig. 3 Net tensor force ṼT ≡ (τ1 · τ2S12)
−1

(

VTπ + VTρ
)

with


 ≈ 1 − 0.15n/n0 and R ≈ 1 for n < n1/2 and R∗
ρ ≈ 
2 for n > n1/2

by assuming n1/2 ≈ 2n0 [52]

In summary, the topology change found in the skyrmion

crystal approach to density nuclear matter indicates that

the hadron properties, such as nucleon mass, meson

masses, pion decay constant and hidden gauge coupling

and so on, have different density scaling in the skyrmion

and half-skyrmion phases. We will see later that, this

observation has a drastic effect on the dense nuclear

matter for compact stars.

We should mention here that higher correlation correc-

tions brought in the Vlowk renormalization flow calcula-

tion “smoothen” the cusp in the form represented in solid

line in Fig. 2.

2.3 Quark-hadron continuity

We have argued that the topology change is a robust fea-

ture in the skyrmion crystal approach to dense nuclear

matter. The question is whether or how the topology

change represents the “quark deconfinement” process in

QCD. There is no clear answer at present, so we can only

offer a conjecture on how one can establish the connec-

tion in the sense of Cheshire Cat Principle (CCP) based on

the chiral bag model of nucleon.

For the number of flavors Nf ≥ 2, baryons can be

described by chiral bags [17, 18]. Inside the bag, the

degrees of freedom are quarks and gluons, and the baryon

number is carried by the quarks. Outside of the bag,

mesons are the relevant degrees of freedom, and the

baryon number is carried by topology in the winding

number. When the bag is shrunk, all the quarks drop into

the inifinite hotel and turn into skyrmions with only the

Cheshire Cat smile remaining. That physics should not

depend on the bag size is the CCP.

In the case of single flavor Nf = 1, the situation is quite

different because there is noNf = 1 skyrmion. It turns out

that the baryon should be a soliton resembling a pancake

[53] or pita [54] having a fractional quantum Hall (FQH)

topology structure. There is a Cheshire Cat description for

this in terms of an anomaly flow [55]. But what is puzzling

is that there are two Cheshire Cats, one involving 3D ball

and the other 2D sheets. It seems very plausible that at

low density baryonic matter is in skyrmions in 3Dwith the

metastable 2D FQH pancakes/pitas suppressed. However

it seems indispensable at high density that the FQH topol-

ogy structure be taken into account. This is because at

high density where chiral transition takes place, the vector

mesons in hidden local symmetry become the Chern-

Simons fields (via Seiberg-type duality). This part of the

high density story is not yet understood, so we can only

say that we really do not understand what happens at high

density. In what we have done, we are simply assuming

that the Chern-Simons fields do not figure importantly in

the range of compact-star densities. We will simply ignore

this “dichotomy problem.” This aspect of the problem is

discussed in [56, 57].
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The topology change in the skyrmion crystal approach

appears at the density at which the profiles of solitons

overlap and the valence quarks inside the baryons rear-

range to form different clusters, here configurations with

baryon number–1/2. This picture resembles the quarky-

onic matter proposed in [8, 58] and the hard-core realiza-

tion of the deconfinement from nuclear to quark matter

phrased in Ref. [59].

As mentioned above and will be discussed later, owing

to the topology change implemented in the parameters in

the Lagrangian of GnEFT, the symmetry energy Esym, as

it approaches n1/2 from slightly below, softens and after

passing n1/2, hardens. This generates a spike in the den-

sity dependence of the sound velocity. In Ref. [60], this

spike was attributed to the enhancement and then sup-

pression of the ω0 condensate in the low and high density

region. We suppose that this behavior of ω0 condensate

can be naturally explained using the scale-chiral effective

theory beyond the leading order scale symmetry in which

not only the ω meson mass but also the ω-N-N coupling

scales with density [61].

3 Emergent symmetries
After the discussion on the topology change which serves

as one of the key ingredient of the PCM, let us now turn

to two other essential ingredients, the hidden local gauge

symmetry and hidden scale symmetry which are invisible

in the vacuum of QCD.Our approach is to exploit the pos-

sible emergence of these symmetries as density increases

to the regime relevant to compact stars, say, � 10n0. We

use these symmetries to include the higher-energy degrees

of freedom—the lowest-lying vector mesons V = (ρ,ω)

and the scalar meson f0(500). Here, we focus on the points

directly relevant to the PCM construction, leaving the

details to [12, 62]

3.1 Emergent hidden local symmetry

To bring in the lowest-lying vector mesons ρ and ω into

the chiral effective theory, we adopt the strategy of hid-

den local symmetry (HLS) [19–21] which at low density

is gauge equivalent to nonlinear sigma model, the basis of

sχEFT.

By decomposing the chiral field U(x) as U(x) = ξ
†
LξR,

one can introduce a redundant local symmetry h(x) under

which ξL,R transforms as

ξL,R → ξL,Rh
†(x) (16)

but keeps the chiral properties of U(x) intact. When a

chiral effective theory is expressed in terms of ξL,R, the

gauge fields of local symmetry h(x)—V (x)—enter the the-

ory. After higssing the gauge symmetry, the gauge fields

V (x) obtain masses. In HLS, the field content depends on

the symmetry h(x). If one chooses h(x) ∈ SU(2) × U(1),

one can identify V = (ρ,ω) with ρ ∈ SU(2) and ω ∈

U(1). It is assumed that the kinetic terms of Vμ(x) can be

generated by underlying dynamics of QCD or quantum

corrections, thus Vμ(x) become dynamical gauge bosons

[19]. Compared to other approaches of vector mesons,

with HLS, one can establish a systematic power counting

by treating the vector mesons on the same footing as the

Nambu-Goldstone boson, pions [21].

Now, come back to the nuclear matter. At low density

where the nucleons are far from each other, the vec-

tor mesons are massive objects and can be exchanged

between them. Using the equations of motion of the

vector mesons, their effects are accounted for as a two-

pion exchange effect, i.e., one-loop contribution in sχEFT.

The question is in whst sense the vector mesons can

be regarded as hidden local gauge fields. The Suzuki’s

theorem [63] states that “when a gauge-invariant local

field theory is written in terms of matter fields alone,

a composite gauge boson or bosons must be inevitably

formed dynamically.” If we assume the “vector manifesta-

tion (VM)” [21, 64] that m2
ρ ∝ f 2π g

2
ρ → 0 since gρ → 0

at certain scale valid at some theoretically unknown high

density nvm, the hidden local gauge symmetry emerges in

dense system. We will see below that nvm � 25n0 is indi-

cated for the emergence of the pseudo-conformal sound

velocity in stars.

Moreover, it was argued that the HLS fields could be

(Seiberg-)dual to the gluons [65–67]—the intrinsic quan-

tity in QCD. At this moment, we do not know how could

this happen. But, if this is right, we believe it means that

the HLS gets un-hidden at high density. Since this dual-

ity indicates a Higgs phase-to-topological phase transition

coinciding with the quark deconfinement at asymptotic

density, it is most likely irrelevant to the compact stars we

are concerned with [56] .

3.2 Emergent scale symmetry

It is well known that the scalar meson f0(500) is essential

for providing the attractive force between nucleons. In our

approach, it figures in as the Nambu-Goldstone boson of

scale symmetry, the dilaton χ . Actually, in Ref. [68], the

trace anomaly has been applied as a source of the scalar

meson to construct the effective model of scalar meson

by using anomaly matching. Here, we adopt the “genuine

dilaton” (GD) structure proposed in [22].

The key premise of the GD idea is the existence of

an infrared fixed point (IRFP) with the beta function

β(αIR) = 0 for flavor number Nf = 3 and we are liv-

ing slightly away from this IRFP. Both the distance from

the IRFP and current quark masses account for the dilaton

mass. Explicitly, the dilaton mass is expressed as

m2
σ f

2
χ = 〈θμ

μ 〉 = 	IRβ
′(αIR)

αIR
〈Ga

μνG
aμν〉 + · · · (17)



Ma and Rho AAPPS Bulletin           (2021) 31:16 Page 7 of 16

where · · · stands for the contribution from quark mass

and higher order of 	IR = αIR − αs with αs. This is in

analogy to the Gell-Mann–Oakes-Renner relation in the

pseudoscalar meson sector.

Since, unlike the unflavored hadrons, the effective

masses of strange hadrons do not drop so much in dense

medium, we will not consider the strangeness here.

Whether the proposed IRFP exists in QCD is still under

debate. In Ref. [69], it was argued that in the IR region

there is a nonperturbative scale invariance different from

that in the UV region. This is argued to lead to the pos-

sibility of massless glueballs in the fluid. What may be

significant is the possible zero-mass glueball excitation. If

we simply assume this picture works in dense system, this

can be regarded as an indirect support of our theme. Any-

way, we did not find any contradiction with nature in using

this GD idea.

4 Pseudo-conformal model of compact star
matter

By using the GnEFT discussed above we are now in

the position to calculate the nuclear matter properties.

We shall focus on the EOS of the baryonic matter, leav-

ing out such basic issues as corrections to gravity, dark

matters etc. Unless otherwise stated the role of leptons—

electrons, muons, neutrinos, etc.,—is included in the EOS.

Hereafter, we mainly focus on the effect of topology

change. For other aspects, we refer to [12].

4.1 Density scaling

In the construction of the PCM, we incorporate the

mediummodified hadron properties (dubbed as “intrinsic

density dependence (IDD)” to the GnEFT we constructed

above by using the Brown-Rho scaling [51] for n ≤ n1/2
(R-I) and the topological inputs for n > n1/2 (R-II).

Density scaling in R-I.— In R-I, only one parameter 


in Eq. (18) fixes all the IDDs. To the leading order in the

chiral-scale counting [70], the density scaling in R-I can be

written as [12]

m∗
N

mN
≈

m∗
χ

mχ

≈ m∗
V

mV
≈ f ∗

π

fπ
≈ 〈χ〉∗

〈χ〉 ≡ 
(n), (18)

where V = (ρ,ω). Since there is no first-principle infor-

mation on this quantity, for convenience, we fix it by

taking the form


I = 1

1 + cI
n
n0

(19)

with cI a constant. The range of cI that gives a good fit to

nuclear matter properties as shown in Table 1 is found to

be [30, 52]

cI ≈ 0.13 − 0.20 (20)

Table 1 Nuclear matter properties obtained at n0 < n1/2

Parameter Prediction Empirical

n0 0.161 0.16 ± 0.01 [72]

B.E. 16.7 16.0 ± 1.0 [72]

Esym(n0) 30.2 31.7 ± 3.2 [73]

Esym(2n0) 56.4 46.9 ± 10.1 [47];40.2 ± 12.8 [46]

L(n0) 67.8 58.9 ± 16 [47];58.7 ± 28.1 [73]

K0 250.0 230 ± 20 [74]

The empirical values are merely exemplary. n0 is in unit fm−3 and others are in unit

MeV

with the upper value giving the measured pion decay con-

stant [71]. Of course, it is expected as would be agreed

by all nuclear physicists that certain fine-tuning in the

parameters be required for ground-state properties of

nuclear matter.

Density scaling in R-II.— Due to the topology change at

n1/2 > n0, the density dependence of some parameters are

drastically different from that in R-I.

Since the hidden local gauge coupling gρ and the ρ

meson mass are related to each other through the KSRF

relation, we take the simplest form

m∗
ρ

mρ

≈
g∗
ρ

gρ
≡ 
ρ →

(

1 − n

nVM

)

for n > n1/2, (21)

where nVM is the putative VM fixed-point density. How

to join the 
ρ from 
I for n ≤ n1/2 is discussed in Ref.

[30]. To have a result consistent with that from skyrmion

crystal approach discussed above andmean field approach

based on the leading order scale symmetry (LOSS) [75],

we take nVM � 25n0.

The density scaling of the ω meson is more involved and

different from that of ρ meson which flows to the VM

fixed point [44, 52]. It should be fine-tuned to match to

the well constrained nuclear matter properties around the

saturation density. Here, we take

m∗
ω

mω

≈ κ
g∗
ω

gω
(22)

where gω is the U(1) gauge coupling and


ω ≡ g∗
ω

gω
≈ 1 − d

n − n1/2

n0
(23)

with d ≈ 0.05. This reflects the predicted break-down in

R-II of the flavor U(2) symmetry for the vector mesons

which holds well in R-I.

As for other parameters, we simply adopt the inputs

from the skyrmion crystal approach, that is

m∗
N

mN
≈ m∗

σ

mσ

≈
f ∗
χ

fχ
≈ f ∗

π

fπ
≡ κ ∼ (0.6 − 0.9). (24)

The dilaton mass also goes proportional to the dila-

ton condensate. This follows from the partially conserved
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dilatation current (PCDC) [22]

m∗
σ

mσ

≈ κ . (25)

It follows also from low-energy theorems that

g∗
πNN

gπNN
≈ g∗

A

gA
≈ κ . (26)

The dilaton coupling to nucleon and other fields is

unscaling to the leading order in scale-chiral symmetry, so

it is a constant in R-II as in R-I.

Vlowk renormalization group approach.— Equipped

with the IDD, we are ready to calculate the EoS of nuclear

matter. Here, to take into account the hadron fluctuation

effects, we apply the Vlowk renormalization group tech-

nique [29] which accounts for higher-order corrections to

the Landau Fermi-liquid approximations [12]. In this pro-

cedure, in addition to the IDD implemented in the density

scaling of the parameters, the induced density depen-

dence from the nucleon correlation denoted as DDinduced
2

is also included. Therefore, the density dependence in

the obtained EoS includes both IDD and DDinduced. We

denote the sum of IDD and DDinduced as IDD.

We would like to point out that, owing to the IDD of the
two-nucleon potentials, our calculation amounts to doing

roughly N3LO SχEFT including chiral 3-body potentials

which are essential for the nuclear matter stabilized at the

proper equilibrium density [76]. The samemechanism has

been found to work for the C-14 dating Gamow-Teller

matrix element where the three-body potential effect in
SχEFT is reproduced by the IDD.

4.2 The pseudo-conformal model of dense nuclear matter

Using the density scaling discussed above, we can calcu-

late the nuclear matter properties now. First we see from

Table 1 that the empirical values of the normal nuclear

matter properties can be well reproduced.

Now, go to a higher density. Due to the topology change

at n1/2, there is a drastic change in the scaling of the
parameters of GnEFT leading to a qualitative impact on

the structure of the EoS. So far, there is no theoretical

argument to pin down n1/2. Phenomenologically, we can

estimate its range as 2.0n0 < n1/2 < 4.0n0 by using
various astrophysical observations available, such as the

maximum mass, the gravity-wave data and specially the

star’s sound speed, and so on.

Sound velocity.— One of the most striking predictions

that is in stark contrast to the conventional picture is the

precocious appearance of the conformal sound velocity

of the compact star matter. From Fig. 4, one can see that

while the sound speed increases steadily and overshoots
the conformal velocity at presumed ∼ n1/2 = 2n0, it

comes down and converges to v2s ≈ 1/3.

2A typical example is the three-nucleon interaction in standard χEFT
integrated into the scaling parameters.

Fig. 4 Sound velocity calculated using Vlowk RG with n1/2 = 2n0 . The

solid circle indicates where the topology change takes place is

It should be noted that the appearance of the confor-

mal sound velocity at some high density is not so peculiar.

Some reasonable sχEFT results resemble more or less this

picture. But they show much broader and bigger bumps

not exceeding the causality bound vs = 1 before converg-

ing to the conformal speed v2s = 1/3 but at an asymptotic

density� 50n0 [32]. After all, the convergence to the con-

formal speed at asymptotically high density is expected in

perturbative QCD.What is striking and in a way unortho-

dox is the precocious onset of, and the convergence to,

v2s ≈ 1/3 before reaching to an asymptotically high den-

sity despite that the trace of the energy-momentum tensor

is nonzero. See below. It is somewhat like the “quenched

gA” going to 1 in light nuclei [35], reflecting the pervasive

imprint of hidden scale symmetry.

In our approach, the conformal sound speed follows as

a logical outcome of the propositions [12], different from

the parameter scanning done in [77]. These propositions

yield that, going toward the DLFP [44], the trace of the

energy-momentum tensor 〈θμ
μ 〉 is a function of only the

dilaton condensate 〈χ〉∗. Now if the condensate goes to a

constant ∼ m0 due to the emergence of parity-doubling

as we learned after the topology change, the 〈θμ
μ 〉 will

become (more or less) independent of density. In this case,

we will have

∂

∂n
〈θμ

μ 〉 = 0. (27)

This would imply that

∂ǫ(n)

∂n

(

1 − 3v2s
)

= 0 (28)

where v2s = ∂P(n)
∂n / ∂ǫ

∂n and ǫ and P are, respectively, the

energy density and the pressure. If we assume ∂ǫ(n)
∂n �=
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0, i.e., no Lee-Wick-type states in the range of densities

involved, we can then conclude

v2s = 1

3
. (29)

This means that the dilaton condensate 〈χ〉∗ goes to

the density-independent constantm0 due to the parity for

nvm � 25n0. This suggests the parity doubling at high

density is linked to the ρ decoupling from the nucleon

together with the vector manifestation [44].

The above chain of reasoning is confirmed in the full

Vlowk RG formalism specifically for the case of n1/2 = 2n0.

In Fig. 5 is shown the trace of the energy momentum

tensor (left panel) that gives the conformal velocity for

n � 3n0 (right panel).

This feature of both the TEMT and the sound velocity

are expected to hold for any n1/2 at which the topology

change sets in, i.e., within the range 2 � n1/2/n0 � 4.

Equation of state.— We now focus on the EoS of com-

pact stars. It turns out that at density n ≥ n1/2, the

conformality of the sound velocity can be captured by a

simple two-parameter formula for the energy per-particle

E/A = −mN + Xαx1/3 + Yαx−1 with x ≡ n/n0 (30)

where X, Y are parameters to be fixed.

What we refer to as the pseudo-conformal model (PCM

for short) for the EoS is then E/A given by the union of that

Fig. 5 〈θμ
μ 〉 (upper panel) and vs (lower panel) vs. density for α = 0

(nuclear matter) and α = 1 (neutronmatter) in Vlowk RG for n1/2 = 2n0

given by Vlowk in R-I (n < n1/2) and that given by Eq. (30)

in R-II ( n ≥ n1/2) with the parameters Xα and Yα fixed by

the continuity at n = n1/2 of the chemical potential and

pressure

μI = μII , PI = PII at n = n1/2. (31)

This formulation is found to work very well for both

α = 0 and 1 in the entire range of densities appropriate

for massive compact stars, say up to n ∼ (6 − 7)n0, for

the case n1/2 = 2n0 where the full VlowkRG calculation is

available [30]. We apply this PCM formalism for the cases

where n1/2 > 2n0.

Since a neutron star with mass 1.4M⊙ for which the

tidal deformability � obtained for n1/2 = 2.0n0 is �1.4 ≃
790 [30, 31] that corresponds to the upper bound set by

the gravity-wave data, we take the lower bound for the

topology change density

n1/2 � 2n0. (32)

Next, let’s see how the sound velocity comes out for

n1/2/n0 = 3 and 4 [31, 78]. (The case for n1/2 = 2n0
was given in Fig. 5.) The results for neutron matter are

summarized in Fig. 6.

It is clear from Fig. 6 that, when n1/2 = 4n0, the

sound velocity violates the causality bound v2s < 1. The

spike structure could very well be an artifact of the sharp

connection made at the boundary. It may also be the

different behaviour of the ω0 condensation at the low

and high densities [60]. What is however physical is the

rapid increase of the sound speed at the transition point

signaling the changeover of the degrees of freedom. Sig-

nificantly, together with the lower bound (32), this allows

us to pinpoint the region of the topology change

2n0 � n1/2 � 4n0. (33)

Later, we will explore whether or how the waveforms of

the gravitational waves emitted from the binary neutron

star mergers respond to the location of n1/2 which in

Fig. 6 Sound velocity as a function of density in neutron matter [78]
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our formulation corresponds to the point of hadron-quark

continuity in QCD.

At this moment, we cannot obtain a more precise con-

straint than (33). The important point is that it is an order

of magnitude lower than the asymptotic density � 50n0
that perturbative QCD predicts and signals the preco-

cious emergence of pseudo-conformality in compact stars.

However the robustness of the topological inputs figuring

in the formulation convinces us that the precocious onset

of the pseudo-conformal structure can be trusted at least

qualitatively. In this connection, a recent detailed analy-

sis of currently available data in the quarkyonic model is

consistent with the possible onset density of v2c ≈ 1/3 at

∼ 4n0 [79].

Plotted in Fig. 7 is the predicted pressure P vs. density

for n1/2/n0 = 3, 4 compared with the presently available

heavy-ion data [80]. The case of n1/2 = 4n0, while con-

sistent with the bound at n ∼ 6n0, goes outside of the

presently available experimental bound at n ∼ 4n0. This

may again be an artifact of the sharp matching, but that

it violates the causality bound seems to put it in tension

with Nature. Nonetheless, without a better understand-

ing of the cusp singularity present in the symmetry energy

mentioned above it would be too hasty to rule out the

threshold density n1/2 = 4n0.

5 Star properties and gravitational waves
Star mass.— The solution of the TOV equation with the

pressures of leptons in beta equilibrium duly taken into

Fig. 7 Predicted pressure for neutron matter (α = 1) vs density

compared with the available experimental bound (shaded) given by

Ref. [80] and the bound at 6n0(blue band)

account as in Ref. [30] yields the results for the star mass

M vs. the radius R and the central density ncent as given

in Fig. 8. The maximum mass comes out to be roughly

2.04M⊙ ∼ 2.23M⊙ for 2.0 � n1/2/n0 � 4.0, the higher

the n1/2, the greater the maximum mass. This bound is

consistent with the observation of the massive neutron

stars

M = 1.908 ± 0.016M⊙ for PSR J1614 − 2230 [1],

= 2.01 ± 0.04M⊙ for PSR J0348 + 0432 [2],

= 2.14+0.10
−0.09M⊙ for PSR J0740 + 6620 [3].

Note that this is not at odds with the conclusion of Ref.

[81] since in our model, the sound velocity exceeds the

conformal limit in the intermediate density.

Fig. 8 Star massM vs. radius R and central density ncent with different

choices of n1/2 . Note that belowM ≈ 2M⊙ , the curves for
n1/2/n0 = 3.0 and 4.0 represented in dashed line and solid line,

respectively are coincident
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Figure 8 shows that, when n1/2 ≥ 3.0n0, changing the

position of n1/2 affects only the compact stars with mass

� 2.0M⊙ although the mass-radius relation is affected by

the topology change when 2.0n0 ≤ n1/2 ≤ 3.0n0.

Tidal deformability.— Next, we confront our theory

with what came out of the LIGO/Virgo gravitational

observations—the dimensionless tidal deformability �.

We will consider the dimensionless tidal deformability �i

for the starMi and �̃ defined by

�̃ = 16

13

(M1 + 12M2)M
4
1�1 + (M2 + 12M1)M

4
2�2

(M1 + M2)5
(34)

for M1 and M2 constrained to the well-measured “chirp

mass”

M = (M1M2)
3/5

(M1 + M2)1/5
= 1.188M⊙ GW170817 [5],

= 1.44M⊙ GW190425 [6]. (35)

We plot our predictions for �̃ in Fig. 9 and for �1 vs.

�2 in Fig. 10 and compare our predictions with the results

obtained with the parametrization of the EoS from the

Fig. 9 The dimensionless tidal deformability �̃ as a function of the

mass ratio q for GW170817 with chirp mass 1.188M⊙ (upper panel)

and GW190425 with chirp mass 1.44M⊙ (lower panel). The the PCM

prediction with n1/2 = 2.0n0 is plotted in solid line and those by [77]

are in dashed and dot-dashed lines (see Ref. [77] for notation). The

grey band in the upper panel is the constraint from the low spin

�̃ = 300+500
−190 obtained from GW170817 [5] and that in the lower

panel is �̃ ≤ 600 from GW190425

sound velocity constraints [77]. As it stands, our predic-

tion with n1/2 � 2n0 is compatible with the LIGO/Virgo

constraint. Although there seems to be some tension with

the pressure, the result for n1/2 = 4n0 is of quality com-

parable to that of n1/2 = 2n0. A detailed analysis of the

difference between PCM and [77] will be made later.

Massive star composition.— Recently, combining astro-

physical observations and model-independent theoretical

ab initio calculations, Annala et al. arrive at the conclusion

that the core of the massive stars is populated by “decon-

fined” quarks [34]. This is based on the observation that,

in the core of the maximally massive stars, vs approaches

the conformal limit vs/c → 1/
√
3 and the polytropic

index takes the value γ < 1.75 — the value close to the

minimal one obtained in hadronic models.

Fig. 10 Tidal deformabilities �1 and �2 associated with the

high-massM1 and low massM2 components of the binary neutron

star system GW170817 with chirp mass 1.188M⊙ (upper panel) and

GW190425 with chirp mass 1.44M⊙ (lower panel). The constraint

from GW170817 at the 90% probability contour is also indicated [82]
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We have seen above that, in the PCM, the predicted

pseudo-conformal speed sets in precociously at n ≈ 3n0
and stays constant in the interior of the star. In addi-

tion, it is found that the polytropic index γ drops, again

rapidly, below 1.75 at ∼ 3n0 and approaches 1 at n � 6n0
[33]. This can be see from Fig. 11. Microscopic descrip-

tions such as the quarkyonic model typically exhibit more

complex structures at the putative hadron-quark transi-

tion density than our description, which is not unexpected

given our picture is coarse-grained macroscopic descrip-

tion whereas the quarkyonic is a microscopic rendition of

what’s going on.

To understand the origin of the similarity and difference

between [34] and PCM, we compare in Fig. 12 our pre-

diction for P/ǫ with the conformality band obtained by

the SV interpolation method [34]. We see that our predic-

tion is close to, and parallel with, the conformality band.

There are basic differences between the two. First of all, in

our theory, conformality is broken—though perhaps only

slightly at high density—in the system which can be seen

from the deviation from the conformal band. Most impor-

tantly, the constituents of thematter after topology change

in our theory is not (perturbatively) “deconfined” quarks.

It is a quasiparticle of fractional baryon charge, neither

purely baryonic nor purely quarkonic. In fact it can be

anyonic lying on a (2+1) dimensional sheet [56, 57]. That

the predicted P/ǫ deviates from the conformal band is

indicating that the scale symmetry the EoS of our theory

is probing is some distance away from the IR fixed point

with non-vanishing dilaton mass.

Gravitational wave.—We finally apply our theory to the

description of the waveforms of the gravitational waves

[83]. The purpose is to explore whether one can probe

the possible continuous crossover from hadrons to quarks

represented in terms of the topology change. For this pur-

pose, we consider the typical values n1/2 = 2n0 and 3n0
and the neutron star mass 1.5M⊙.

Fig. 11 Density dependence of the polytropic index γ = d ln P/d ln ǫ

in neutron matter [33]

Fig. 12 Comparison of (P/ǫ) between the PCM velocity and the band

from [34]. The gray band is from the causality and the green band

from the conformality. The red line is the PCM prediction. The

dash-dotted line indicates the location of the topology change

The dominant mode of GW strain h+
22 multiplied by the

distance of the observer to the origin R from BNS merg-

ers is plotted in Fig. 13. The plot shows the location of

the topology change affecting the number of the inspi-

ral orbits, i.e., the number of the peaks in the inspiral

phase which is the number of the peaks before merger,

defined as the maximum of the amplitude of the GWs.

Explicitly, the larger the n1/2, the more the number of

peaks. This could be within the detection ability of the

Fig. 13 Dominant mode of the GW strain from the BNS star system

with equal masses 1.5M⊙ stars. For a detailed explanation, see Ref. [83]
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on-going and up-coming facilities, especially the ground-

based facilities [84]. The effect of the topology change

on the waveforms can be understood from the distribu-

tion of the matter evolution of the BNS merger shown

in Fig. 14. It is found that the matter evolves faster when

n1/2 = 2n0 (the EoS is softer) than when n1/2 = 3n0
(the EoS is stiffer). Therefore the stars merge more eas-

ily with a shorter inspiral period. This indicates that the

waveforms of the gravitational waves emitted from the

merger process as well as the matter evoluation could be

sensitive to the EoS of compact stars (see, e.g., [85]). This

observation explains the waveforms of Fig. 13. However,

there is a caveat: given that no qualitatively striking differ-

ences are predicted for all other astrophysical observables

so far studied for n1/2/n0 = 2 and 3, it appears unnatu-

ral that the waveforms appear so different for only slightly

different locations of the topology change. Furthermore

since the transition involves no obvious phase change,

at least within the framework, the seemingly different

impact of the topology change density—which is a coarse-

grained description of the phenomenon—seems puzzling.

It would be interesting to see whether the “microscopic”

models that simulate the quark degrees of freedom for

hadron-quark continuity show similar sensitivity on the

transition point. If indeed the waveforms were indeed very

sensitive to the precise location of the cross-over, it would

be extremely interesting.

6 Summary and perspective
In this work we reviewed the effect of the topology

change representing the putative hadron-quark continu-

ity on dense nuclear matter. The hadron and nuclear

matter properties obtained from the skyrmion crystal

approach, supplemented with the presumed emergent

scale and flavor symmetries, inspired the construction of

the pseudo-conformal model of dense nuclear matter rel-

evant to compact stars. Locked to the density dependence

of hadron properties effected by the topology change at

n1/2, the trace of the energy momentum tensor of the

model turns out to be a nonzero density-independent

quantity and induce the precocious appearance of the

pseudo-conformal limit with v2s = 1/3, in stark contrast

to what’s widely accepted in the field [32].

So far, the pseudo-conformal model can describe the

nuclear matter properties from low density to high density

in a unified way. The nuclear matter properties calcu-

lated around the saturation density, the star properties

such as the maximum mass, the mass-radius relation, the

tidal deformability and so on all satisfy more or less sat-

isfactorily the constraints from terrestrial experiments,

astrophysical observations and gravitational wave detec-

tion.

Finally we state the possible caveats in and extensions of

the model.

One can explicitly see from the above that although

the tidal deformability predicted in the approach satisfies

the currently cited constraint from the gravitational wave

detection, it lies at the upper bound. But should the bound

turn out to go to a substantially lower value than what’s

given presently, the description of the cusp structure of

the symmetry energy would need a serious revamping. In

the present framework, the tidal deformability probes the

density regime slightly below the topology change density

n1/2 where the EoS is softer, and this is the density regime

which is the hardest to control quantitatively in terms

of the coarse-grained approach. It would require a more

refinedVlowk-renormalization-group treatment than what

has been done so far in [30], including the approximation

made for the anomaly effect in the GD (genuine dilaton)

scheme and the role of strangeness mentioned below.

Fig. 14Matter density evolution of BNS mergers with equal mass 1.5M⊙ with (a) n1/2 = 2n0 (the upper row) and (b) n1/2 = 3n0 (the lower row) [83]
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One possible way to resolve the above caveat is to

include the corrections to the LOSS, applied so far, in

such a way that, in addition to the mass parameters, the

coupling constants also carry IDDs. This procedure may

change the property of the EOS in the vicinity of n1/2.

As a consequence the sound velocity after the topology
change may also expose bumps, i.e., fluctuations from the
conformal limit, because of the explicit breaking of the

conformal symmetry. However if the corrections from the
explicit breaking of the conformal limit are taken as chiral-

scale perturbation, the global picture of the compact star
discussed would remain more or less intact.

Another point is the density at which the hidden scale
and local flavor symmetries emerge. This is encoded in
the IDDs of the hadron parameters such as pion decay

constant, dilaton decay constant, ρ-N-N coupling and

meson masses. By checking the effect of the location of

the emergent symmetries on the star properties, one can

also extract the information on the emergent symmetries
and the phase structure of QCD at low temperature.

Lastly we have left out the strangeness in the present

discussion. It seems to have worked well without it in our
approach up to now. But there is of course no strong rea-

son to ignore it. It could very well be that strangeness

does play a crucial role but indirectly, buried in the

coarse-graining in the approach. Or it could also be that
strangeness does not play a significant role up to the den-

sity involved in compact stars. The chiral-scale effective

theory that the pseudo-conformal description relies on is

based on three flavor QCD with the scalar f0(500) taken

on the same footing as the pseudoscalar mesons pion and
kaon. There is however a good reason to believe that in

nuclear dynamics, the dilaton scalar is strongly affected

by medium whereas the kaon is not. Implementing the

strangeness in our approachwould require doing theVlowk

RG for 3-flavor systems with the hyperons treated on the
Fermi sea together with the nucleons as Fermi-liquid the-

ory. This would then involve the kaon condensation as
well as the hyperons as bound states of skyrmions and

kaons. As argued in [86], it could postpone the role of
strangeness to a much higher density than relevant to the

most massive compact stars stable against gravitational
collapse. What happens beyond, such as color-flavor-

locking, would be irrelevant to the problem.

One excuse for ignoring the strangeness could be that
the whole thing works without it, so why not adopt the
spirit “Damn the torpedoes! Full speed ahead!”3 and pro-

ceed until hit by a torpedo?
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