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Abstract

We show how an event topology classification based on deep learning could be
used to improve the purity of data samples selected in real time at the Large Hadron
Collider. We consider different data representations, on which different kinds of
multi-class classifiers are trained. Both raw data and high-level features are utilized.
In the considered examples, a filter based on the classifier’s score can be trained to
retain ∼ 99% of the interesting events and reduce the false-positive rate by more
than one order of magnitude. By operating such a filter as part of the online event
selection infrastructure of the LHC experiments, one could benefit from a more
flexible and inclusive selection strategy while reducing the amount of downstream
resources wasted in processing false positives. The saved resources could translate
into a reduction of the detector operation cost or into an effective increase of storage
and processing capabilities, which could be reinvested to extend the physics reach
of the LHC experiments.

1 Introduction

The CERN Large Hadron Collider (LHC) collides protons every 25 ns. Each collision can result in any
of hundreds of physics processes. The total data volume exceeds by far what the experiments could
record. This is why the incoming data flow is typically filtered through a set of rule-based algorithms,
designed to retain only events with particular signatures (e.g., the presence of a high-energy particle
of some kind). Such a system, commonly referred to as trigger, consists of hundreds of algorithms,
each designed to accept events with a specific topology. The ATLAS [1] and CMS [2] trigger systems
are based on this idea. In their current implementation, given the throughput capability and the typical
event size, these two experiments can write on disk ∼ 1000 events/sec. A few processes, e.g., QCD
multijet production, constitute the vast majority of the produced events. One is typically interested to
select a fraction of these events for further studies. On the other hand, the main interest of the LHC
experiments is related to selecting and studying the many rare processes which occur at the LHC. In
a typical data flow, these events are overwhelmed by the large amount of QCD multijet events. The
trigger system is put in place to make sure that the majority of these rare events are part of the stored
∼ 1000 events/sec.

Trigger algorithms are typically designed to maximize the efficiency (i.e., the true-positive rate),
resulting in a non-negligible false-positive rate and, consequently, in a substantial waste of resources
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Figure 1: Relative composition of the isolated-lepton sample after the acceptance requirement (left)
and the trigger selection (right), as described in the text.

at trigger level (i.e., data throughput that could have been used for other purposes) and downstream
(i.e., storage disk, processing power, etc.).

The most commonly used selection rules are inclusive, i.e., more than one topology is selected by
the same requirement. The so-called isolated lepton triggers are a typical example of this kind of
algorithms. These triggers select events with a high-momentum electron or muon and no surrounding
energetic particle, a typical signature of an interesting rare process, e.g., the production of a W boson
decaying to a neutrino and an electron or muon. With such a requirement, one can simultaneously
collect W bosons produced in the primary interaction (W events) or from the cascade decay of other
particles, e.g., top quarks (mainly in tt̄ events where a top quark-antiquark pair is produced). A
sample selected this way is dominated by W events but it retains a substantial (> 10%) contamination
from QCD multijet. The tt̄ contribution is smaller than 1%. Events from tt̄ production are sometimes
triggered by a set of dedicated lepton+jets algorithms, capable of using looser requirements on the
lepton at the cost of introducing requirements on jets.2 Due to this additional complexity, the use of
these triggers in a data analysis comes with additional complications. For instance, the applied jet
requirements produce distortions on offline distributions of jet-related quantities. To avoid having
this effect, any typical data analysis applies a tighter offline selection. This means that many of the
selected events close to the online-selection threshold are discarded. This is not necessarily the most
cost-effective way to retain an unbiased dataset for offline analysis.

In this paper, we investigate the possibility of using machine learning to classify events based on
their topologies, serving as an additional clean-up algorithm at the trigger level. Doing so, one could
customize the trigger-selection strategy on individual processes (depending on the physics goals)
while keeping the selection loose and simple. As a benchmark case, we consider a stream of data
selected by requiring the presence of one electron or muon with transverse momentum pT > 23 GeV 3

and a loose requirement on the isolation. Details on the applied selection can be found in Sec. 2.

The considered benchmark sample is dominated by direct W production, with a sizable contamination
from QCD multijet events and a small contribution of tt̄ events. Other interesting processes (e.g.,
WW , WZ, and ZZ production) are usually selected with more exclusive and dedicated trigger
algorithms (e.g., di-muon or di-electron triggers), or share the same kinematic properties of the
two main interesting processes (W and tt̄). For the sake of simplicity, we ignore these sub-leading

2A jet is a spray of hadrons, typically originating from the hadronization of gluons and quarks produced in
the proton collisions.

3In this paper, we set units in such a way that c = ~ = 1.
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processes in our study, without compromising the validity of our conclusions. Fig. 1 shows the
composition of a sample with one electron or muon within the defined acceptance (pT > 22 GeV and
pseudorapidity |η| = | − log[tan(θ/2)]| < 2.6, where θ is the polar angle), before and after applying
the trigger requirements (pT > 23 GeV and loose isolation).

Such a loose set of requirements would translate into an event acceptance rate of ∼ 690 Hz for
a luminosity of 2 × 1034 cm−2 s−1, well beyond the currently allocated budget for these triggers
(typically ∼ 200 Hz). We suggest that, using the score of our topology classifier, one could tune
the amount of each process to be stored for further analysis, within the boundaries of the allocated
resources. For instance, one might be interested to retain all the tt̄ events and some fraction of W
events, while rejecting the QCD multijet events. We envision two main applications: for a given total
rate, one could loosen the baseline trigger requirements, increasing the acceptance efficiency at no
cost. Or, for a given acceptance efficiency (true positive rate), one could save resources by reducing
the overall rate, rejecting the contribution of unwanted topologies (see Appendix A).

We consider several topology classifiers based on deep learning model architectures: fully-connected
deep neural networks (DNNs), convolutional neural networks (CNNs) [3], and recurrent neural net-
works such as Long-Short-Term-Memory networks (LSTMs) [4] and gated recurrent units (GRUs) [5].
We consider four different representations of the collision events: (i) a set of physics-motivated high-
level features, (ii) the raw image of the detector hits, (iii) a sequence of particles, characterized by a
limited set of basic features (energy, direction, etc.), and (iv) an abstract representation of this list of
particles as an image.

The paper is structured as follows. In Sec. 2 we describe the four data representations. In Sec. 3
we describe the corresponding classification models. Results are discussed in Sec. 4. In Sec. 5 we
investigate the generalization properties of the four classifiers to scenarios of other topologies. We
study the robustness of our classifiers against Monte-Carlo simulation inaccuracy with pseudo-data in
Sec. 6. In Sec. 7 we briefly discuss applications of machine learning algorithms to similar problems.
Conclusions are given in Sec. 8. Appendix A describes a different scenario, in which the classifier
is used to save resources by reducing the trigger acceptance rate, as opposed to using it to sustain a
loose trigger selection that could otherwise require too many resources.

2 Dataset

Synthetic data corresponding to W , tt̄ and QCD multijet production topologies are generated with 105

events per process (3 · 105 events in total) using the PYTHIA8 event generation library [6]. The setup
of the proton-beam simulation is loosely inspired by the LHC running configuration in 2015-2016:
two proton beams, each with 6.5 TeV, generate on average 20 proton-proton collisions per crossing
following a Poisson distribution.

Generated samples are processed with the DELPHES library [7], which applies a parametric model
of a detector response. Detector performances is tuned to the CMS upgrade design foreseen for the
High-Luminosity LHC [8], as implemented in the corresponding default card provided with DELPHES.
We run the DELPHES particle-flow (PF) algorithm, which combines the information from all the CMS
detector components to derive a list of reconstructed particles, the so-called PF candidates. For each
particle, the algorithm returns the measured energy and flight direction. Each particle is associated
to one of three classes: charged particles, photons, and neutral hadrons. Jets are clustered from the
reconstructed PF candidates, using the FASTJET [9] implementation of the anti-kT jet algorithm [10],
with jet-size parameter R = 0.4. The jet’s b-tagging efficiency is parametrized as a function of jet’s
pT and η in the default DELPHES CMS upgrade design card. The parametrized b-tagging efficiency is
shown to provide a reasonable agreement with CMS [7].

The basic event representation consists of a list of reconstructed PF candidates. For each candidate
q, the following information is given: (i) The particle four-momentum in Cartesian coordinates
(E, px, py, pz); (ii) The particle three-momentum, computed from (i), in cylindrical coordinates:
the transverse momentum pT , the pseudorapidity η, and the azimuthal angle φ; (iii) The Cartesian
coordinates (xvtx, yvtx, zvtx) of the particle point of origin. For all neutral particles, (0, 0, 0) is used
in the absence of pointing information; (iv) The electric charge; (v) The particle isolation with respect
to charged particles (ChPFIso), photons (GammaPFIso), or neutral hadrons (NeuPFIso). For each
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particle class, the isolation is quantified as

ISO =

∑

p 6=q p
p
T

pqT
, (1)

where the sum extends over all the particles of the appropriate class with angular distance ∆R =
√

(∆η)2 + (∆φ)2 < 0.3 from the particle q.

The particle identity is categorized via a one-hot-encoded representation (isChPar, isNeuHad,
isGamma), corresponding to a charged particle, a neutral hadron, or a photon. In addition, two
boolean flags are stored (isEle and isMu) to identify if a given particle is an electron or a muon. In
total, each particle is then described by 19 features.

The trigger selection is emulated by requiring all the events to include one isolated electron or
muon with transverse momentum pT > 23 GeV and particle-based isolation ChISO+ GammaISO+
NeuISO < 0.45. This baseline selection, which follows the typical requirements of an inclusive
single-lepton trigger algorithm, accepts ≈ 100 QCD multijet events and ≈ 176W events for every tt̄
event. Despite its large W and tt̄ efficiency, this trigger selection comes with a large cost in terms of
QCD multijet events written on disk and processed offline. The cost is even larger if the main physics
target is tt̄ events and the W contribution is seen as an additional source of background (e.g., in a
high-statistics scenario, with all measurements of W properties limited in precision by systematic
uncertainties).

All particles are ranked in decreasing order of pT . For each event, the isolated lepton is the first
entry of the list of particles. To avoid double counting of this isolated lepton ℓ as a charged particle,
each charged particle q is required to have ∆R(q, ℓ) > 10−4. In addition to the isolated lepton, we
consider the first 450 charged particles, the first 150 photons, and the first 200 neutral hadrons. This
corresponds to a total of 801 particles per event, each characterized by the 19 features described above.
The choice of the numbers of particles is made such that, on average, only 5% charged particles, 5%
neutral hadrons and 1% photons are ignored. Thanks to pT ordering by particle category, what we
remove carries small information. In early stages of this work we experimented with tighter cuts
on particle multiplicity without observing substantial difference. We verified that the particles we
ignore have typical pT below 1 GeV. If fewer particles are found in the event, zero padding is used
to guarantee a fixed length of the particle list across different events. The events are then stored as
NumPy arrays in a set of compressed HDF5 files. The dataset is planned to be released on the CERN
OpenData portal, accessible at opendata.cern.ch.

In addition to this raw-event representation, we provide a list of physics-motivated high-level features,
computed from the full event (the HLF dataset):

• The scalar sum, ST , of the pT of all the jets, leptons, and photons in the event with
pT > 30 GeV and |η| < 2.6.

• The missing transverse energy Emiss
T , defined as the absolute value of the missing transverse

momentum, computed summing over the full list of reconstructed PF candidates:

Emiss
T =

∣

∣~p miss
T

∣

∣ =

∣

∣

∣

∣

∣

−
∑

q

~p q
T

∣

∣

∣

∣

∣

. (2)

• The squared transverse mass, M2
T , of the isolated lepton ℓ and the Emiss

T system, defined as:

M2
T = 2pℓTE

miss
T (1− cos∆φ) (3)

with pℓT the transverse momentum of the lepton and ∆φ the azimuthal separation between

the lepton and ~p miss
T vector.

• The azimuthal angle of the ~p miss
T vector, φmiss.

• The number of jets entering the ST sum.

• The number of these jets identified as originating from a b quark.

• The isolated-lepton momentum, expressed in polar coordinates (pT , η, φ)

• The three isolation quantities (ChPFIso, NeuPFIso, GammaPFIso) for the isolated lepton.
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• The lepton charge.

• The isEle flag for the isolated lepton.

The list of 801 particles is used to generate two visual representations of the events: raw representation
and abstract representation. In the raw representation, the (η, φ) plane corresponding to the detector
acceptance is divided into a barrel region (|η| < 1.5), two end-cap regions (1.5 ≤ η < 3.0 and
−3.0 < η ≤ −1.5), and two forward regions (3.0 ≤ η < 5.0 and −5.0 < η ≤ −3.0). The barrel and
endcap regions of the electromagnetic calorimeter, as well as the endcap of the hadronic calorimeter
(HCAL), are binned in cells of size 0.0187× 0.0187. The barrel region of the HCAL is binned with
cells of size 0.087× 0.087. The forward regions are binned with cells of size 0.175 in η, while the
dimension in φ varies from 0.175 to 0.35. Each cell is filled with the scalar sum of the pT of the
particles pointing to that cell. The three classes of particles (charged particles, photons, and neutral
hadrons) are considered separately, resulting in three channels. An example is shown in Fig. 2 for a
tt̄ event. This representation corresponds to the raw image recorded by the detector.

Figure 2: An example of a tt̄ event as the input of the raw-image classifier. Vertical and horizontal
axess are the φ and η coordinates, respectively, of the sub-detectors.

Recently, it was proposed to represent LHC collision events as abstract images where reconstructed
physics objects (jets, in that case) are represented as geometric shapes whose size reflects the energy
of the particle [11]. We generalize this abstract representation approach by applying it to the full list
of particles. Each particle is represented as a unique geometric shape, centered at the particle’s (η, φ)
coordinates and with size proportional to its log pT . The geometric shapes are chosen as follow:
(i) pentagons for the selected isolated electron or muon; (ii) triangles for photons; (iii) squares for
charged particles; (iv) hexagons for neutral hadrons. The images are digitized as arrays of size
5× 150× 94, where each of the first four channels contains a separated particle class, and the last
channel contains the Emiss

T , represented as a circle. As an example, the abstract representation for the
event in Fig. 2 is shown in Fig. 3.

This abstract representation allows mitigating the sparsity problem of the raw images. On the other
hand, there is no guarantee that the physics information is fully retained in this translation. As a result,
there could be a reduction of discrimination power. This is one of the points we aim to investigate in
this study.

3 Model description

In this section, we describe five types of multi-class classifiers, trained on the four data representations
described in the previous section. We start by considering a state-of-the art HEP application, based
on the high-level features listed in Sec. 2. We then consider a convolutional neural network taking as
input the raw images. This model offers the baseline point of comparison for the classifier using the
abstract images. In order to have a fair comparison between the two approaches, the same kind of
network architecture is used for the two sets of images. Next, we consider recurrent neural networks
based on LSTMs and GRUs, trained directly on the lists of 801 particles. Finally, we consider a
classifier taking both the high-level features and the list of 801 particles as inputs, using a combination
of recurrent neural networks and fully connected neural networks.

The CNNs are implemented in PyTorch [12]. The recurrent neural networks and feed-forward neural
networks are implemented in Keras [?] and trained using Theano [13] as a back-end. The Adam
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Figure 3: Example of a tt̄ event, represented as a 5-channel abstract images of photons (top-left),
charged hadrons (top-center), neutral hadrons (top-right), the isolated lepton (bottom-kleft), and the
event Emiss

T (botton-right).

optimizer [14] is used to adapt the learning rate. The training is capped at 50 epochs, and can be
stopped early if there is no improvement in terms of validation loss after 8 epochs. Categorical cross
entropy is used as the loss function. All trainings are performed on a cluster of GeForce GTX 1080
GPUs. In an early stage of this work, experiments on the recurrent models were performed on the
CSCS Piz Daint super computer, using the mpi-learn library [15] for multiple-GPU training.

3.1 High-level-feature classifier

A fully connected feed-forward DNN based on a set of high-level features (HLF classifier) is the
closest approach to the currently used rule-based trigger algorithms. We train a model of this kind
taking as input the 14 features contained in the HLF dataset (see Sec. 2). The 14 features are
normalized to take values between 0 and 1.

The final network configuration is the result of an optimization process performed using the
scikit-learn optimizer [16], which performs an exhaustive cross-validated grid-search over a set
of hyperparameters related to the network architecture and the training setup. The number of layers,
the number of nodes in each layer, and the choice of optimizer have been considered in the scan. For
a given number of layers, discrimination performances were found to be constant over the considered
range of number of nodes per layer. We believe that this is a direct consequence of the simple problem
at hand: even a relatively small networks achieve good classification performances. We then took the
smallest network as the best compromise between performance and architecture minimality.

The chosen architecture consists of three hidden layers with 50, 20, and 10 nodes, activated by
rectified linear units (ReLU) [17]. The output layer consists of 3 nodes, activated by a softmax
activation function.

3.2 Raw-image classifier

To classify events represented as raw calorimeter images (raw-image classifier), we use DenseNet-
121, a model based on the Densely Connected Convolutional Network [18]. The DenseNet-121
architecture includes 4 dense blocks, each of which contains 6, 12, 24, 16 dense layers, respectively.
Each dense layer contains two 2D convolutional layers preceded by batch normalization layers. A
dropout rate of 0.5 is applied after each dense layer. Between two subsequent dense blocks is a
transition layer consisting of a batch normalization layer, a 2D convolutional layer, and an average
pooling layer.

3.3 Abstract-image classifier

We use the same DenseNet-121 architecture above to classify the abstract image representation. We
refer to this model as abstract-image classifier.
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3.4 Particle-sequence classifier

A particle-sequence classifier is trained using a recurrent network, taking as input the 801 candidates.
To feed these particles into a recurrent network, particles are ordered according to their increasing or
decreasing distance from the isolated lepton. Different physics-inspired metrics are considered to
quantify the distance (∆R, ∆φ, ∆η, kT [10], or anti-kT [19]). The best results are obtained using
the ∆R decreasing distance ordering.

We use gated recurrent units (GRU) to aggregate the input sequence of particle flow candidate features
into a fixed size encoding. The fixed encoding is fed into a fully connected layer with 3 softmax
activated nodes. Input data is standardized so that each feature has zero mean and unit standard
deviation. The zero-padded entries in the particle sequence are skipped with the Masking layer. The
best internal width of the recurrent layers was found to be 50, determined by k-fold cross validation on
a training set of 210,000 events. We also considered using long short-term memory networks (LSTM)
to replace the GRU, but we found that the GRU architecture outperformed the LSTM architecture for
the same number of internal cells.

PFcand1 PFcand2 PFcand801
. . .

Masking

GRU (50)

Dropout

High-level features (14)

Dropout

Concatenate (64)

Dense (25)

Output (3)

Figure 4: Network architecture of the inclusive classifier.

3.5 Inclusive classifier

In order to inject some domain knowledge in the GRU classifier, we consider a modification of its
architecture in which the 14 features of the HLF dataset are concatenated to the output of the GRU
layer after some dropout (see Fig. 4). As for the other classifiers, the final output layer consists of 3
nodes, activated by a softmax activation function. We refer to this model as inclusive classifier.

4 Results

Each of the models presented in the previous section returns the probability of each event to be
associated to a given topology: yQCD, yW , and ytt̄. By applying a threshold requirement on yW or
ytt̄, one can define a W or a tt̄ classifier, respectively. By changing the threshold value, one can build
the corresponding receiver operating characteristic (ROC) curve. Fig. 5 shows the comparison of the
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ROC curves for five classifiers: the DenseNets based on raw images and abstract images, the GRU
using the list of particles, the DNN using the HLFs, and the inclusive classifier using both the HLFs
and the list of particles. Results for both a tt̄ and W selectors are shown.
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Figure 5: ROC curves for the tt̄ (left) and W (right) selectors described in the paper.

Acceptable results are obtained already with the raw-image classifier. On the other hand, the use of
abstract images allows us to reach better performances. A further improvement is observed for those
models not using an image-based representation of the event. The fact that the HLF selectors perform
so well doesn’t come as a surprise, given a considerable amount of physics knowledge implicitly
provided by the choice of the relevant features. On the other hand, the fact that the particle-sequence
classifier reaches better performances compared to the HLF selector is remarkable, as is the further
improvement observed by merging the two approaches in the inclusive classifier. In some sense,
the GRU layer is gaining a good part of the physics intuition that motivated the choice of the HLF
quantities, but not entirely. Fig. 6 shows the Pearson correlation coefficients between the GRU
scores (ytt̄ and yW ) and the HLF quantities. As one would expect, ytt̄ exhibits a stronger correlation
with those features that quantify jet activity (njets in Fig. 6), as well as with the b-jet multiplicity
(nb-jets). On the contrary, W events shows an anti-correlation with respect to jet quantities, since the
production of associated jets in W events is much more penalized than for tt̄ events. As expected,
both scores are anti-correlated to the isolation quantities, which takes larger values for non-isolated
leptons.
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Figure 6: Pearson correlation coefficients between the ytt̄ (left) and yW (right) scores of the Particle-
sequence classifier and the 14 quantities of the HLF dataset.

The performance of each of the five classifiers is summarized in Tab. 1 in terms of false-positive rate
(FPR) and trigger rate (TR) as a function of the true-positive rate (TPR). The best QCD rejection is
obtained by the inclusive classifier, which can retain 99% of the tt̄ or W events with a false-positive
rate of ∼ 5.2%.

The trigger baseline selection we use in this study, looser than what is used nowadays in CMS, gives
an overall trigger rate (i.e., summing electron and muon events) of ∼ 690 Hz, more than a factor
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Table 1: False positive rate (FPR) and trigger rate (TR) at different values of the true positive
rate (TPR), for a tt̄ (top) and W selector. Rate values are estimated scaling the TPR and process-
dependent FPR values by the acceptance and efficiency, assuming a leading-order (LO) production
cross section and luminosity of 2×1034 cm−2 s−1. TR values should be taken only as suggestions
of the actual rates, since the accuracy is limited by the use of LO cross sections and a parametric
detector simulation.

tt̄ selector
Raw-image Abstract-image HLF Particle-sequence Inclusive
(DenseNet) (DenseNet) (DNN) (GRU) (DNN+GRU)

FPR @99% TPR 76.5± 0.2% 50.1± 0.2% 28.6± 0.2% 9.2± 0.1% 5.2± 0.1%
FPR @95% TPR 41.3± 0.2% 15.7± 0.1% 6.1± 0.1% 1.7± 0.1% 0.7± 0.0%
FPR @90% TPR 26.5± 0.2% 7.4± 0.1% 2.7± 0.1% 0.6± 0.0% 0.2± 0.0%

TR @99% TPR 382.0± 0.9 Hz 250.9± 1.0 Hz 143.9± 0.9 Hz 48.1± 0.6 Hz 28.4± 0.4 Hz
TR @95% TPR 207.8± 1.0 Hz 80.3± 0.7 Hz 32.4± 0.5 Hz 11.0± 0.3 Hz 6.0± 0.2 Hz
TR @90% TPR 134.2± 0.9 Hz 39.0± 0.5 Hz 15.5± 0.3 Hz 5.2± 0.2 Hz 3.5± 0.1 Hz

W selector
Raw-image Abstract-image HLF Particle-sequence Inclusive
(DenseNet) (DenseNet) (DNN) (GRU) (DNN+GRU)

FPR @99% TPR 79.0± 0.2% 61.8± 0.2% 23.5± 0.2% 10.2± 0.1% 6.3± 0.1%
FPR @95% TPR 60.5± 0.2% 36.0± 0.2% 9.7± 0.1% 3.7± 0.1% 1.8± 0.1%
FPR @90% TPR 48.1± 0.2% 22.8± 0.2% 5.1± 0.1% 1.8± 0.1% 0.9± 0.0%

TR @99% TPR 488.9± 0.3 Hz 462.3± 0.5 Hz 301.9± 0.6 Hz 268.2± 0.5 Hz 259.7± 0.4 Hz
TR @95% TPR 454.5± 0.6 Hz 365.1± 0.8 Hz 259.2± 0.5 Hz 242.6± 0.4 Hz 238.0± 0.4 Hz
TR @90% TPR 408.2± 0.8 Hz 301.8± 0.8 Hz 235.0± 0.5 Hz 225.4± 0.5 Hz 223.3± 0.5 Hz

two larger than what is currently allocated. Using the 99% working points of the two classifiers, one
would reduce the overall rate to ∼ 270 Hz (counting the overlap between the two triggers). This
would be comparable to what is currently allocated for these triggers, but with a looser selection,
i.e., with a less severe bias on the offline analysis. In addition, the trigger efficiency (the TPR) is so
high that the bias imposed on offline quantities is quite minimal. This is illustrated in Fig. 7, where
the dependence of the TPR on the most relevant HLF quantities is shown. In our experience, any
rule-based algorithm with the same target trigger rate would result in larger inefficiencies at small
values of at least some of these quantities, e.g., the lepton pT . One should also consider that the
principle of a topology classifier could be generalized to other physics cases, as well as to other uses
(e.g., labels for fast reprocessing or access to specific subsets of the triggered samples).

Figure 8 shows the TPR and FPR of the inclusive tt̄ selector when applying the 99% TPR working-
point threshold, as a function of the number of vertices in the event, which quantifies the amount of
pileup. The TPR is fairly insensitive to PU until PU ∼ 35, (the average PU recorded by the LHC
in 2018), where the TPR drops to 97%. At the same time, the FPR increases mildly, resulting in a
rate increase from ∼ 34 Hz (at the average PU value ∼ 20) to ∼ 48 Hz at PU ∼ 35. In other words,
the algorithm trained on 2016 conditions would have been sustainable until 2018 with ∼ 15% rate
increase (with respect to the average value) or it would have required a threshold adjustment along
the way, a pretty standard operation when designing a trigger menu at the beginning of the year. We
believe that, in view of these facts, the proposed algorithm would be as robust as many state-of-the-art
algorithms operated at the LHC experiments.

5 Impact on other topologies

While reducing the resource consumption of standard physics analyses is the main motivation behind
this study, it is important to evaluate the impact of the proposed classifiers on other kind of topologies.
For this purpose, we consider a handful of beyond-the-standard-model (BSM) scenarios, and we
compute the TPR as a function of the most relevant kinematic quantities, similar to what was done in
Fig. 7 for the standard topologies.

We consider the following BSM processes:

• A → H+W : a heavy Higgs boson A with mass 425 GeV decaying to a charged Higgs
boson H+ of mass 325 GeV and a W− boson. The H+ then decays to a W+H0 final state,
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Figure 7: Selection efficiency using 99% TPR working point as functions of lepton pT , M2
T , and

Emiss
T for the tt̄ selector on tt̄ events (top) and the W selector on W events (bottom).
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Figure 8: Dependence of TPR and FPR on the amount of pileup in the event (estimated through the
number of vertices) for the inclusive tt̄ selector when applying the 99% TPR working-point threshold.
The gray histogram shows the distribution of the number of vertices in the training dataset, covering
a wide range from ∼ 10 to ∼ 40 following a Poisson distribution with mean value of 20.

where H0 is the 125 GeV Higgs boson, which we force to decay to a bottom quark-antiquark
pair. This model, introduced in Ref. [20], generates a 2b2W topology similar to that given
by tt̄ events.

• High-mass A → H+W : a high-mass variation of the previous model, in which the A and
H+ masses are set to 1025 GeV and 625 GeV, respectively.

• A → 4ℓ: a light neutral scalar particle A with mass 20 GeV, decaying to two neutral scalars
of 5 GeV each, both decaying to muon pairs, for a total of four muons in the final state.

• W ′ resonance with mass 300 GeV, decaying inclusively with W -like couplings.
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Figure 9: Selection efficiencies of different BSM models using 99% TPR working point as functions
of lepton pT , M2

T , and Emiss
T . From top to bottom, A → H+W−, High-mass A → H+W−, A → 4ℓ,

W ′, and Z ′.
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Figure 10: Distributions of the validation sample and pseudo-data. The pseudo-data is created by
adding a Gaussian noise of mean zero and standard deviation of 10% to the validation sample’s
particle momenta. The high-level features are then recomputed with the new list of particles.

Table 2: Signal efficiency (TPR) at different values of the false positive rate (FPR) for the inclusive
classifier selecting tt̄ evaluated on the validation sample and the pseudo-data.

FPR TPR on validation sample TPR on pseudo-data

5.2% 99.0± 0.1% 97.6± 0.1%
0.7% 95.0± 0.1% 90.9± 0.2%
0.2% 90.0± 0.2% 83.5± 0.2%

• Z ′ resonance with mass 600 GeV, decaying to a pair of electrons or muons.

These events are filtered with the baseline selection described in Sec. 2.

For each of these models, we consider the inclusive classifier and apply the 99%-TPR thresholds on
ytt̄ and yW . We then consider the fraction of events passing at least one of the two selectors. Results
are shown in Fig. 9 for the most relevant kinematic quantities. While the individual selectors might
show local inefficiencies, the combination of the two trigger paths is perfectly capable of retaining
any event with features different from that of a QCD multijet event. In this respect, the logical OR
of our two exclusive topology classifiers is robust enough to also select a large spectrum of BSM
topologies. On the other hand, one cannot guarantee that QCD-like topologies (e.g., a dark photon
produced in jet showers and decaying to lepton pairs) would not be rejected, a limitation which also
affects traditional inclusive trigger strategies.

6 Robustness study

As the classifier is trained on Monte-Carlo simulation samples, one needs to consider the discrepancy
between Monte-Carlo and real data when deploying the classifier in the trigger. We investigate the
robustness of our topology classifiers against this discrepancy by creating a pseudo-data sample,
which attempts to emulate real data by adding a Gaussian noise to the particles’ momenta in the
simulation samples. The Gaussian noise has mean of zero and standard deviation of 10% of the
variable’s values being applied. Fig. 10 shows some comparisons between the Monte-Carlo samples
and the pseudo-data with this Gaussian noise added.

We evaluate the performance of our fully-trained inclusive classifier on the new pseudo-data. Tab. 2
shows a slight reduction of signal efficiency: at the same background contamination rate of 5.2%,
the signal efficiency reduces by only 1.4%. This demonstrates that our classifiers can be robust
against some augmentation that mimics the discrepancy between data and Monte-Carlo simulation.
A comprehensive study on full simulation and data in proper control regions would be needed when
deploying this classifier into production.

7 Related works

Machine learning is traditionally used in high-energy physics as part of data analysis, and was an
important ingredient to the discovery of the Higgs boson, as discussed in [21]. Several classification
algorithms have been studied in the context of LHC physics application, notably for jet tagging [22,
23, 24, 25, 26, 27, 28, 29] and event topology identification [20, 30, 11] using feed-forward neural
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networks, convolutional neural networks or physics-inspired architectures. Lists of particles have
been used to define jet and event classifiers starting from a list of reconstructed particle momenta [31,
32, 33]. These studies typically consider data analysis as the main use case, focusing on small FPR
selections. This is the main difference with respect to this study, which focuses on the optimization
of real-time data-taking procedure.

In parallel, machine learning techniques have also been used in online event selection. For example,
the LHCb experiment used a decision-tree based approach for the high-level trigger in the first LHC
run [34] and re-optimized it with MatrixNet algorithm for Run II [35]; ATLAS uses BDT in its
multi-step tau trigger for Run II [36]; a BDT was also deployed on FPGA cards of the hardware-level
trigger of the CMS experiment [37]. These triggers are mainly based on high-level features related
to specific parts of a collision event. We propose instead to define an algorithm that is based on a
raw-event representation and considers the full event collision at once. To our knowledge, this is the
first demonstration of how a recurrent neural network could perform a successful inference on a full
event and improve topology identification based on object-specific features.

In addition, traditional triggers based on machine learning run in tagging mode, i.e., are used to
identify certain types of particles. Instead, we propose to use our topology classifier in veto mode:
the trigger algorithm running downstream would be a classic trigger with loose selection, which
would normally be unsustainable due to high throughput. The topology classifier would subsequently
remove a majority of background events, sustaining the trigger rate and saving downstream computing
resources.

Note. After submitting this paper for review, the study presented in Ref. [38] showed how a topology
classification based on full event information can boost tagging efficiency or purity of a single-object
trigger, or both, in the context of an offline analysis.

8 Conclusions

We show how deep neural networks can be used to train topology classifiers for LHC collision events,
which could be used as a cleanup filter to select or reject specific event topologies in a trigger system.
We consider several network architectures, applied to different representations of the same collision
datasets.

The best results are obtained by combining a set of physics-motivated high-level features with the
output of a GRU unit applied to a list of particle-level features. For the most difficult case, i.e.,
selecting rare tt̄ events, we show how a trigger based on this concept would retain 99% of the tt̄
events while reducing the FPR by more than ∼ 10 times.

The information given as input to the GRU, the abstract-image CNN and the raw-image CNN is the
same, but coded differently. The difference in performance is then a combination of two effects: the
encoding of this information in the input event representation and the way the network architecture
exploits it. The DNN case is different. The DNN uses in principle less information. On the other
hand, the list of HLFs given as input to the DNN is based on domain knowledge that the other
networks have to learn by themselves. This is why the DNN model is very competitive despite using
less information and why the inclusive classifier (GRU+DNN) improves on the GRU-based particle
sequence classifier. Nevertheless, it is remarkable that the score of the particle sequence classifier
learns interesting correlation patterns with the HLF features, showing that (to some extent) the GRU
is learning some of this domain knowledge.

We show that such a trigger would have a minimal impact on the main kinematic features of the event
topologies under consideration. The effect of operating this topology classifier as a final filter of a
given single-lepton trigger would result in small decrease of trigger efficiency by few percentage
(depending on the TPR of the chosen working point). On the other hand, such a filter would allow
for a looser selection, efficiently including non-isolated leptons with low pT without downstream
consequences in terms of computational power and storage. In addition, the logic OR of the tt̄ and W
selections would also catch a broad class of new-physics topologies, on which the classifiers were not
trained.

The advantages of running these types of algorithms comes at the cost of computational resources to
train the models. In our case, a single training of the inclusive classifier took 4 hours on a cluster
consisting of 6 GeForce GTX 1080 GPUs. Building a cluster of a few tens of GPUs of this kind, to
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be used as a training facility, is well within the budget of big-experiment computing projects. For
this reason, dedicated studies are ongoing to integrate train-on-demand services in the computing
infrastructures of LHC experiments [15] [39]. In view of the challenging trigger environment foreseen
for the High-Luminosity LHC, it would be important to test this trigger strategy as a way to preserve
a good experimental reach with a substantial reduction of computational resources. In this respect,
we look forward to the LHC Run III as an opportunity to experiment with this technique using full
simulation and study its impacts on real-time event selection.

9 Acknowledgments

This work is supported by grants from the Swiss National Supercomputing Center (CSCS) under
project ID d59, the United States Department of Energy, Office of High Energy Physics Research
under Caltech Contract No. de-sc0011925, and the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation program (grant agreement no 772369). T.N.
would like to thank Duc Le for valuable discussions during the earlier stage of this project. We thank
CERN OpenLab for supporting D.W. during his internship at CERN. We are grateful to Caltech and
the Kavli Foundation for their support of undergraduate student research in cross-cutting areas of
machine learning and domain sciences. Part of this work was conducted at "iBanks", the AI GPU
cluster at Caltech. We acknowledge NVIDIA, SuperMicro and the Kavli Foundation for their support
of "iBanks".

References

[1] Morad Aaboud et al. Performance of the ATLAS trigger system in 2015. Eur. Phys. J.,
C77(5):317, 2017.

[2] W. Adam et al. The CMS high level trigger. Eur. Phys. J., C46:605–667, 2006.

[3] Yann LeCun et al. Handwritten digit recognition with a back-propagation network. In D. S.
Touretzky, editor, Advances in Neural Information Processing Systems 2, pages 396–404.
Morgan-Kaufmann, 1990.

[4] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 9(8):1735–
1780, November 1997.

[5] KyungHyun Cho et al. On the properties of neural machine translation: Encoder-decoder
approaches. CoRR, 2014.

[6] Torbjörn Sjöstrand et al. An introduction to PYTHIA 8.2. Comput. Phys. Commun., 191:159–
177, 2015.

[7] J. de Favereau et al. DELPHES 3, A modular framework for fast simulation of a generic collider
experiment. JHEP, 02:057, 2014.

[8] D. Contardo et al. Technical proposal for the Phase-II upgrade of the CMS detector. 2015.

[9] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. FastJet user manual. Eur. Phys. J.,
C72:1896, 2012.

[10] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. The anti-kt jet clustering algorithm.
JHEP, 04:063, 2008.

[11] Celia Fernández othersx Madrazo. Application of a convolutional neural network for image
classification to the analysis of collisions in High Energy Physics. 2017.

[12] Adam others Paszke. Automatic differentiation in PyTorch. NIPS Autodiff Workshop, 2017.

[13] Rami Al-Rfou et al. Theano: A Python framework for fast computation of mathematical
expressions. 2016.

[14] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. December 2014.

[15] Dustin Anderson, Maria Spiropulu, and Jean-Roch Vlimant. An MPI-based Python framework
for distributed training with Keras. 2017.

[16] F. Pedregosa et al. Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

14

http://arxiv.org/abs/de-sc/0011925


[17] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted Boltzmann
machines. In Proceedings of ICML, volume 27, pages 807–814, 06 2010.

[18] Gao Huang et al. Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017.

[19] S. Catani et al. Longitudinally invariant Kt clustering algorithms for hadron hadron collisions.
Nucl. Phys., B406:187–224, 1993.

[20] P. Baldi, P. Sadowski, and D. Whiteson. Searching for exotic particles in high-energy physics
with deep learning. Nature Communication, 5:4308, 07 2014.

[21] Alexander Radovic et al. Machine learning at the energy and intensity frontiers of particle
physics. Nature, 560(7716):41–48, 2018.

[22] Luke de Oliveira et al. Jet-images — deep learning edition. JHEP, 07:069, 2016.

[23] Daniel Guest et al. Jet flavor classification in high-energy physics with deep neural networks.
Phys. Rev., D94(11):112002, 2016.

[24] Sebastian Macaluso and David Shih. Pulling out all the tops with computer vision and deep
learning. JHEP, 10:121, 2018.

[25] Kaustuv Datta and Andrew J. Larkoski. Novel jet observables from machine learning. JHEP,
03:086, 2018.

[26] Anja Butter et al. Deep-learned top tagging with a Lorentz layer. SciPost Phys., 5(3):028, 2018.

[27] Gregor Kasieczka et al. Deep-learning top taggers or the end of QCD? JHEP, 05:006, 2017.

[28] Patrick T. Komiske, Eric M. Metodiev, and Matthew D. Schwartz. Deep learning in color:
towards automated quark/gluon jet discrimination. JHEP, 01:110, 2017.

[29] A. Schwartzman et al. Image Processing, Computer Vision, and Deep Learning: new approaches
to the analysis and physics interpretation of LHC events. J. Phys. Conf. Ser., 762(1):012035,
2016.

[30] Wahid Bhimji et al. Deep neural networks for physics analysis on low-level whole-detector data
at the LHC. In 18th International Workshop on Advanced Computing and Analysis Techniques
in Physics Research (ACAT 2017) Seattle, WA, USA, August 21-25, 2017, 2017.

[31] Gilles Louppe et al. QCD-aware recursive neural networks for jet physics. J. Phys. Conf. Ser.,
1085:042034, 2018.

[32] Shannon Egan et al. Long Short-Term Memory (LSTM) networks with jet constituents for
boosted top tagging at the LHC. JHEP, 1901:057, 2019.

[33] Taoli Cheng. Recursive neural networks in quark/gluon tagging. Comput. Softw. Big Sci., 2(1):3,
2018.

[34] V V Gligorov and M Williams. Efficient, reliable and fast high-level triggering using a bonsai
boosted decision tree. Journal of Instrumentation, 8(02):P02013, 2013.

[35] Tatiana Likhomanenko et al. LHCb topological trigger reoptimization. Journal of Physics:
Conference Series, 664(8):082025, 2015.

[36] Pierre-Hugues Beauchemin. Real time data analysis with the ATLAS Trigger at the LHC in
Run-2. In 21st IEEE Real Time Conference (RT2018) Williamsburg, Virginia, June 11-15, 2018,
2018.

[37] Darin Edward Acosta et al. Boosted decision trees in the level-1 muon endcap trigger at CMS.
Number CMS-CR-2017-357, Geneva, Oct 2017.

[38] Joshua Lin et al. Boosting H → bb̄ with machine learning. JHEP, 10:101, 2018.

[39] Valentin Kuznetsov. Tensorflow as a service. https://github.com/vkuznet/TFaaS.

15

https://github.com/vkuznet/TFaaS


Appendix A An alternative use case

In this paper, we showed how one could use a topology classifier to keep the overall trigger rate under
control while operating triggers with otherwise unsustainable loose selections. In this appendix we
discuss how topology classifiers could be used to save resources for a pre-defined baseline trigger
selection by rejecting events associated to unwanted topologies. In this case, the main goal is not
to reduce the impact of the online selection. Instead, we focus on reducing resource consumption
downstream for a given trigger selection.

To this purpose, we consider a copy of the dataset described in Sec. 2, obtained tightening the pT
threshold from 23 to 25 GeV and the isolation requirement from ISO < 0.45 to ISO < 0.20. Doing so,
the sample composition changes as follow: 7.5% QCD; 92% W ; 0.5% tt̄. With such selections, the
trigger acceptance rate would decrease from 690 Hz to 390 Hz, closer to what is currently allocated
for these triggers in the CMS experiment.

Following the procedure described in Sec. 3 and 4, we train the same topology classifiers on this
dataset. The corresponding ROC curves are presented in Fig. 11 for a tt̄ and a W selector.
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Figure 11: ROC curves for the tt̄ (left) and W (right) selectors described in the paper, trained on a
dataset defined by a tighter baseline selection.

We then define a set of trigger filters applying a lower threshold to the normalized score of the
classifier, choosing the threshold value that corresponds to a certain TPR value. The result is
presented in Table 3, in terms of the FPR and the trigger rate.

The trigger baseline selection we use in this study, close to what is used nowadays in CMS for muons,
gives an overall trigger rate (i.e., summing electron and muon events) of ∼ 390 Hz (i.e., 190 Hz per
lepton flavor). If one was willing to take (as an example) half the W events and all the tt̄ events, this
number could be reduced to ∼ 200 Hz using the inclusive selectors presented in this study (taking
into account the partial overlap between the two triggers). A more classic approach would consist
in prescaling the isolated lepton triggers, i.e. randomly accepting half of the events. The effect on
W events would be the same, but one would lose half of the tt̄ events while still writing 15 times
more QCD than tt̄ events. In this respect, the strategy we propose would allow a more flexible and
cost-effective strategy.
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Table 3: False positive rate (FPR) and trigger rate (TR) corresponding to different values of the
true positive rate (TPR), for a tt̄ (top) and W selector. Rate values are estimated scaling the TPR
and process-dependent FPR values by the acceptance and efficiency, assuming a leading-order (LO)
production cross section and luminosity of 2×1034 cm−2 s−1. TR values should be taken only as a
loose indication of the actual rates, since the accuracy is limited by the use of LO cross sections and a
parametric detector simulation.

tt̄ selector
Raw-image Abstract-image HLF Particle-sequence Inclusive
(DenseNet) (DenseNet) (DNN) (GRU) (DNN+GRU)

FPR @99% TPR 76.7± 0.2% 55.5± 0.3% 44.3± 0.3% 13.4± 0.2% 10.2± 0.2%
FPR @95% TPR 43.5± 0.3% 20.2± 0.2% 9.1± 0.2% 2.1± 0.1% 1.5± 0.1%
FPR @90% TPR 24.8± 0.3% 9.9± 0.2% 4.2± 0.1% 0.6± 0.0% 0.5± 0.0%

TR @99% TPR 285.8± 0.9 Hz 230.4± 1.0 Hz 219.6± 1.0 Hz 56.7± 0.7 Hz 42.4± 0.6 Hz
TR @95% TPR 148.9± 1.0 Hz 84.6± 0.9 Hz 37.2± 0.6 Hz 9.9± 0.3 Hz 8.3± 0.3 Hz
TR @90% TPR 72.9± 0.8 Hz 41.6± 0.6 Hz 18.6± 0.4 Hz 3.9± 0.2 Hz 3.8± 0.2 Hz

W selector
Raw-image Abstract-image HLF Particle-sequence Inclusive
(DenseNet) (DenseNet) (DNN) (GRU) (DNN+GRU)

FPR @99% TPR 81.3± 0.2% 68.9± 0.3% 45.7± 0.3% 17.3± 0.2% 14.9± 0.2%
FPR @95% TPR 58.4± 0.3% 43.9± 0.3% 19.6± 0.2% 6.1± 0.1% 5.2± 0.1%
FPR @90% TPR 46.9± 0.3% 30.2± 0.3% 11.7± 0.2% 3.0± 0.1% 2.5± 0.1%

TR @99% TPR 385.9± 0.2 Hz 384.3± 0.2 Hz 376.3± 0.2 Hz 363.1± 0.2 Hz 362.8± 0.2 Hz
TR @95% TPR 367.5± 0.5 Hz 360.8± 0.5 Hz 349.7± 0.5 Hz 344.2± 0.4 Hz 343.9± 0.5 Hz
TR @90% TPR 343.6± 0.6 Hz 336.6± 0.6 Hz 323.8± 0.6 Hz 325.0± 0.6 Hz 324.7± 0.6 Hz
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