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Abstract—In order to steer antenna beams towards one an-
other for communication, wireless nodes with highly-directional
antennas must track the channel state of their neighbors. To keep
this overhead manageable, each node must limit the number
of neighbors that it tracks. The subset of neighbors that each
node chooses to track constitutes a network topology over which
traffic can be routed. We consider this topology design problem,
taking into account channel modeling, transmission scheduling,
and traffic demand. We formulate the optimal topology design
problem, with the objective of maximizing the scaling of traffic
demand, and propose a distributed method, where each node
rapidly builds a segment of the topology around itself by forming
connections with its nearest neighbors in discretized angular
regions. The method has low complexity and message passing
overhead. The resulting topologies are shown to have desirable
structural properties and approach the optimal solution in high
path loss environments.

I. INTRODUCTION

In recent years, mesh networking using millimeter wave

communications has emerged as a promising technology with

application to the cellular backbone [1], broadband access [2],

and data center networks [3]. Interest in this technology is

driven by the ability of millimeter wave systems to support

high throughput by accessing large portions of available spec-

trum [4]. However, access to this wide bandwidth comes at

the expense of the high path loss found at millimeter wave

frequencies [5]. Because of this severe path loss, millimeter

wave systems rely on highly-directional antennas to construct

reliable links [5].

In applications with node mobility and environmental mo-

tion, the use of directional antennas is complicated as the

channel state frequently changes [6]. To effectively use highly-

directional antennas in this setting, nodes must track the

channel state of their neighbors so that they may steer beams

towards one another for communication [4], [7]. This in-

troduces tracking overhead that grows with the number of

neighbors that a node tracks. To keep this overhead manage-

able, nodes must limit the subset of neighbors that they track

and subsequently communicate with [8]. This introduces the

need for topology control, the process of choosing the set of

neighbors with which each node can communicate within the

network.
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AST-1547331 and the Department of the Air Force under Air Force Contract
FA8721-05-C-0002. Opinions, interpretations, conclusions and recommenda-
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States Government.

Topology control for communication networks has previ-

ously been studied in both wireline and wireless settings. In

optical communication networks, topology control has focused

on building network structures that can support a specified

end-to-end traffic demand where each node in the network is

limited in the number of connections it may form [9]. In [10],

[11], and [12], this problem was formulated as an integer linear

program and branch exchange heuristics were explored for

obtaining suboptimal solutions. In contrast, [13] explored fixed

graphical structures for generating topologies with desirable

properties.

In wireless networks, topology control has been studied

in the context of power control. In this setting, nodes adjust

their transmission range to balance power consumption, inter-

ference, and connectivity. In [14] centralized and distributed

heuristics were explored for topology control. In [15] and [16]

algorithms using the geometric position of nodes were used

for constructing topologies with guaranteed performance, and

in [17] algorithms for building topologies with given degree

distributions were demonstrated.

In wireless networks with directional antennas, previous

work in topology control has focused on ensuring network

connectivity and reducing inter-link interference. In [18] and

[19] heuristic algorithms for generating connected topologies

were considered in beam steering and beam switching systems

respectively. Similarly, [20] and [21] considered algorithms

for generating topologies with low inter-link interference. The

trade-off between node-degree and path-stretch was explored

in [8].

In this work we formulate the problem of topology control

with the objective of maximizing throughput as measured

by the scaling of end-to-end traffic between users, subject

to scheduling and routing constraints. This focus is distinct

from the previous literature on directional-antenna topology

control that focused on optimizing graphical properties of

the topology such as connectivity or path length. Central to

our work is the problem of overcoming the high path loss

of millimeter wave communications. We model the wireless

channel using a generalized path loss model, where path

loss scales on the order of dα with d the distance between

transmitter and receive. Such path loss models have been

shown to approximate well the dominate effects of wireless

environments [22]. The impact of the path loss exponent, α,
on the topology design problem is fundamentally explored.

In order to mitigate some of this severe path loss, future



millimeter wave systems are envisioned as relying on highly-

directional antenna systems. Because of the channel tracking

overhead incurred by highly-directional antenna systems, we

consider topologies limited by node degree constraints. Using

the results of [23], we show that the link scheduling of

millimeter wave systems with highly-directional antennas is

restricted by primary interference constraints. Thus, in order

to form a topology with good throughput performance, the

network must take into account the interacting effects of the

channel model and wireless resource scheduling.

In this work, we formulate the topology control problem

as a mixed-integer linear program. Although solutions to this

problem are informative as to what characteristics make for

good topologies, the problem is computationally intractable

in general, and direct solution is, therefore, impractical for

implementation. We thus present a distributed method for

constructing topologies and show that under the above channel

modeling and link scheduling constraints, the topologies gen-

erated by our algorithm approach the optimal solution when

the path loss is sufficiently large. Moreover, we show through

simulation our algorithm generates near optimal topologies for

the range of path loss values reported for millimeter wave

communications.

The outline of the paper is as follows. In Section II we

discuss the impact of tracking overhead and resource schedul-

ing on topology control and formulate the optimal topology

control problem. We analyze the computational complexity of

the problem and explore the structure of optimal topologies

in Section III. In Section IV, we describe the distributed

topology control method and derive optimality properties of

the resulting topologies. In Section V, we give simulation

results and conclude in Section VI.

II. PROBLEM FORMULATION

We consider a wireless mesh network modeled as a directed

graph G = (N,E) where N is the set of nodes in the network

and E is the set of edges. A node is denoted i ∈ N and an

edge from node i to j as (i, j) ∈ E. Each edge (i, j) has

an edge capacity c(i,j). Each node in the network is equipped

with a directional antenna. At a given time a node may focus

its antenna beam towards one neighbor, whose channel state

information it is tracking, to transmit or receive data. In our

model, data may be forwarded through multiple hops in the

network from its source node s to its destination t. We define

an end-to-end demand matrix Λ, where the element Λs,t of

the matrix specifies a desired rate of flow from node s to t.

The objective of the topology control problem is to construct

a subgraphG′ = (N,E′) with E′ ⊆ E such that the maximum

degree of G′ is no greater than T and there exists a scheduling

and routing policy that maximizes a scaling factor of Λ (i.e.,

maximize ρ such that for all s, t node pair, ρΛs,t can be

supported). Note that this objective is closely related to that

of [9], [10], [11], and [12]. We now proceed to enumerate the

physical constraints of directional antenna systems, leading to

a concrete problem formulation in Section II-D.

A. Beam Steering and Tracking Overhead

In antenna array beam steering systems, nodes utilize

multiple antennas to transmit and receive over the wireless

spectrum. Through signal processing techniques applied over

each element, nodes may steer transmitter power and receiver

sensitivity towards desired spatial directions [6]. However, in

order to effectively perform this processing, nodes must learn

each other’s channel state information. In antenna arrays that

contain many elements, a necessity for high directionality [6],

this is often accomplished through beam search procedures

where a transmitter and receiver test multiple beam pattern

combinations to find a suitable pair for communication (e.g.,

[7]). Due to the time required to search over the beam set,

this process can introduce considerable overhead which grows

with increasing antenna directionality [24]. As the channel

state between nodes evolves over time, due to node mobility

and movement in the environment, beam patterns must be

continuously adapted. Thus, in order to keep this overhead

tractable, nodes must limit the number of neighbors that they

track and form connections with [8].

This constraint gives rise to a topology control problem

where each node has a degree constraint. Specifically, we

focus on networks with homogeneous nodes and thus require

a topology G′ = (N,E′) with E′ ⊆ E such that each node

in the network is incident to at most T edges in E′. As

E′ consists of all the edges maintained in the topology, any

subsequent scheduling and routing policy is limited to using

only these links.

B. Resource Scheduling

Access to the wireless medium must be shared by all nodes

in the network. Thus, in order to optimize the topology we

consider restrictions on simultaneous transmissions. In [23] it

was shown that highly-directional antenna networks operating

at millimeter wavelengths have minimal inter-link interference

between pairs of communicating nodes. However, each node

is restricted to form only a single beam to transmit or receive

over [23]. This imposes a primary interference scheduling

constraint, where simultaneous edge activations are limited to

matchings over the underlying graph.

In order to model the above we adopt the formulation of

[25]. We specify an activation set A where each element of

the set a ∈ A is a unique matching in graph G. For each time

unit that matching a is activated, edge (i, j) obtains a data rate

ca(i,j) =

{

c(i,j), if (i, j) is in matching a
0, otherwise

where c(i,j) is defined to be the capacity of edge (i, j) ∈ E.

C. Channel Modeling

Fundamental to the topology design problem is the impact

of channel path loss. In this work we assume nodes are

distributed on the two-dimensional plane with the distance

between nodes i and j denoted as d(i, j). Then the capacity

between i and j is given by the following expression that

approximates the capacity of an additive white Gaussian noise



channel in the power-limited regime under a generalized path

loss model [22].

c(i,j) = K

(

d0
d(i, j)

)α

(1)

In [27], path loss exponents (α) were empirically found to

be roughly in the range of 3 to 4.5 for millimeter wave

communications operating in urban environments. We explore

the impact of α on topology performance below.

D. Model

With the above considerations, we specify the topology

control problem as a mixed-integer linear program (2). We

define the following variables:

1) Flow variables xs,t

(i,j) specifying the rate of commodity

flow from source s to destination t transversing edge

(i, j) ∈ E.

2) Scheduling variables ya indicating the fraction of total

time (normalized to 1) that matching a ∈ A is activated.

3) Topology variables z(i,j) which take value 1 if (i, j) ∈
E′ and 0 otherwise.

As specified above, the objective is to generate an edge

subset E′ such that a feasible scheduling and routing policy

can deliver ρΛs,t rate of flow between all source s and des-

tination t pairs. The solution to the topology control problem

specifies the z(i,j) variables in (2) which completely define

the topology G′. The scheduling and routing policy can then

be viewed as an assignment to variables xs,t

(i,j) and ya such

that flow only transverses over the generated topology and the

scaling variable ρ is maximized. The following mixed-integer

linear program is a mathematical formulation of the optimal

topology design problem.

maximize ρ

subject to:

∑

j:(i,j)∈E

xs,t

(i,j) −
∑

j:(j,i)∈E

xs,t

(j,i) =







ρΛs,t if i = s
−ρΛs,t if i = t
0 if otherwise

,

(2a)

∀i, s, t ∈ N
∑

s,t∈N

xs,t

(i,j) ≤
∑

a∈A

ca(i,j)y
a, ∀(i, j) ∈ E (2b)

∑

a∈A

ya ≤ 1 (2c)

xs,t

(i,j) ≤Mz(i,j), ∀s, t ∈ N, ∀(i, j) ∈ E

(2d)

z(i,j) = z(j,i), ∀(i, j) ∈ E (2e)
∑

j:(i,j)∈E

z(i,j) ≤ T, ∀i ∈ N (2f)

xs,t

(i,j) ≥ 0, ∀s, t ∈ N, ∀(i, j) ∈ E

(2g)

ya ≥ 0, ∀a ∈ A (2h)

z(i,j) ∈ {0, 1}, ∀(i, j) ∈ E (2i)

In the above formulation, constraint (2a) forces conservation

of flow through the network subject to the exogenous data

input. Constraints (2b) and (2c) ensures that each edge receives

enough activation time to support its rate of flow and that the

total duration of all activations sums to at most one unit of

time. Constraints (2d), (2e), and (2f) state that the topology

must not violate the degree constraint requirements at each

node and that data only transverses the topology subset. The

value M in (2) is a sufficiently large number (e.g., M =
max ca(i,j)).

III. THE TOPOLOGY CONTROL PROBLEM

We now proceed to explore solutions to the topology control

problem given above. After examining the structural features

that make for good topologies, we propose a distributed

algorithm in Section IV.

A. Approximating the Scheduling Solution

Solving the scheduling problem of Section II-B is compu-

tationally complex [28]. In order to reduce the complexity of

the problem and evaluate the performance of topologies with

relatively large numbers of nodes, throughout this section we

use the approximation method of [28]. In [28] it was shown

that for given z(i,j) values, replacing constraints (2b) and (2c)

with the constraint,

∑

s,t∈N





∑

j:(i,j)∈E

xs,t

(i,j)

c(i,j)
+

∑

j:(j,i)∈E

xs,t

(j,i)

c(j,i)



 ≤
2

3
, (3)

results in a solution that is at least 2
3 of the optimal solution

of (2). The approximation of [28] abstracts the scheduling

problem as a multigraph coloring problem where each color

represents a discrete time slot and each edge a unit of data

transversing a link. The approximation then uses the well

known result that the chromatic index of a multigraph is

at most 3
2 the maximum degree of the graph, and thus the

schedule length sums to at most 1 if the total data entering

and exiting any single node is limited to 2
3 units. See [28] for

details. Throughout this section we use (3) in place of (2b)

and (2c) and interpret the resulting solutions as being closely

related to the optimal solutions to (2).

B. Computation Time

In Fig. 1, we evaluate the average computation time over

25 random problem instantiations using CPLEX, a commonly

used optimization toolbox, to directly solve the topology

control problem for increasing node set size with T = 6. In
each instant, nodes are uniformly distributed inside the unit

disk with capacity given by (1), α = 3, and each node sends

or receives one flow with unit demand to or from one other

node selected uniformly at random. We note that the time

required to solve the problem grows rapidly with the number

of nodes in the graph, with run times on the order of minutes

for |N | = 34.



(a) Demands Between Nodes (b) Optimal Topology α = 2 (c) Optimal Topology α = 4

Fig. 2: Structure of optimal topologies for 20 nodes distributed on the unit disk with T = 6.
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Fig. 1: Computation time for increasing number of nodes.

(a) Optimal Topology α = 2 (b) Optimal Topology α = 4

Fig. 3: Structure of optimal topologies for 16 nodes arranged

on a square grid with T = 8.

C. Structure of Optimal Solutions

In order to gain insight into the properties of good topolo-

gies, we now explore the structure of optimal solutions to (2).

In Fig. 2, 20 nodes are distributed inside the unit disk with

each node the source or destination of one commodity with

unit demand, as illustrated in Fig. 2a. Fig. 2b and Fig. 2c

show the optimal topologies for the cases where α is 2 and

4 respectively. The width of each edge is proportional to the

total amount of flow transversing that edge. It can be seen from

the figure that the most utilized paths contain short edges that

form corridors between sources and destinations. For α = 2
the topology uses some long distance edges to help mitigate

congestion at centrally located nodes. However, for α = 4
these long distance edges are rarely used.

The example of Fig. 2 considered relatively sparse graphs in

both node density and traffic. In order to gain insight into more

dense networks, in Fig. 3 we plot the optimal topologies when

16 nodes are arranged in a square grid and every node has unit

demand destined to every other node in the network. Again the

width of each edge is proportional to the amount of traffic. We

see that the optimal topologies use only short edges. Although

long edges could reduce the hop count between sources and

destinations, because of path loss the additional time required

to schedule these long edges undoes any benefit.

From the above observations we see that good topologies

contain paths consisting of short edges that connect source

nodes with their destinations. Because the path loss heavily

penalizes long edges, short edges support a large fraction

of the flow in the network. We next propose a sectorized-

distributed method that constructs topologies that capture this

general structure.

IV. DISTRIBUTED TOPOLOGY CONTROL

In this section we present a distributed method for rapidly

constructing a network topology that satisfies the degree

constraint T at every node. We assume all nodes exist on

a two-dimensional plane. Each node partitions the plane into

discrete cone-shaped sectors around itself where each cone

has angular width 2π
T
, as shown in Fig. 4. The node then

elects to form a topological edge with the nearest (minimum

distance) neighbor in each cone. If the choice is reciprocal

(i.e., the neighbor also elects to form an edge with that node)

an edge is established in E′. It is easy to see that this method

constructs a topology that satisfies the degree constraint T at

every node. A key result, similar to that of [15], is that if the

angular size of each cone is no greater than 60◦ (i.e., T ≥ 6)
then the resulting topology is connected for all node pairs. We

present a proof of this below. The resulting algorithm has low

computational complexity and requires only message passing

with at most T neighbors.

A. The Sectorized-Distributed Algorithm

The sectorized-distributed algorithm is implemented at each

node independently. The operations carried out at each node



Fig. 4: Sector partitioning and neighbor selection in Algo-

rithm 1

i are described in Algorithm 1. At each node, the algorithm

takes as input the distance d(i, j) and cone sector Sj of each

node j ∈ N . The sectors about node i may be arbitrarily

oriented and labeled. The algorithm uses the set N ′(i) to

denote those nodes that i elects to be neighbors. Edge (i, j)
is included in topology E′ if and only if j ∈ N ′(i) and

i ∈ N ′(j). Note that for proper function the algorithm

does not require that the distance d(i, j) of each neighbor is

known precisely, only that the relative order of each neighbor’s

distance is known. Thus, d(i, j) and Sj only need to be

updated at the rate at which nodes interchange ordered distance

from i and move between sectors. In general, this rate is orders

of magnitude smaller than the rate at which the channel state

information changes.

Algorithm 1 Sectorized-Distributed Method at Node i

Input: Distance d(i, j) and Sector Sj for each j ∈ N
Output: The set of edges (i, j) ∈ E′ for all j ∈ N
1: N ′(i)← ∅
2: for t = 1 to T do

3: if There exists at least one j with Sj = t then
4: Add to set N ′(i) the node j with minimum d(i, j)

such that Sj = t
5: end if

6: end for

7: for j ∈ N ′(i) do
8: Inform j ∈ N ′(i) that a connection is desired

9: If j replies that i ∈ N ′(j) then (i, j) ∈ E′

10: end for

In Fig. 5a we plot a topology generated by Algorithm 1 for

the same setting as Fig. 2. Note that the edges in this plot only

indicate presence in the topology and are not weighted by their

traffic flow. We see that many of the most utilized edges in

Fig. 2 are present in the generated topology. In Fig. 5b we give

the topology generated for the network of Fig. 3 again noting

that the heavily utilized edges in Fig. 3 are captured by the

topology. In Section V we compare throughput performance

results of topologies generated by Algorithm 1 to optimal

topologies.

(a) Node placement of Fig. 2 (b) Node placement of Fig. 3

Fig. 5: Topologies generated by Algorithm 1

As a final note, the sectorized-distributed algorithm does not

maximize the number of edges in the topology and many nodes

in the network could end up with far fewer than T adjacent

edges after completion of Algorithm 1. (e.g., Fig. 5a). One

technique that can improve performance is to apply additional

algorithms that add edges to a topology generated by the

sectorized-distributed algorithm until each node reaches its

degree constraint. Thus, Algorithm 1 could be a first step

in a larger topology construction process. We explore such

extensions in Section V.

B. Connectivity of the Topology

We now proceed to show that topologies generated by

Algorithm 1 are connected when T ≥ 6. Our proof is

based on a result from [15] on the connectivity of wireless

networks with omni-directional antennas. In this section and

Section IV-C we assume each edge length d(i, j) is unique. In
practice this constraint is nearly inconsequential as modifying

any duplicate d(i, j) by an arbitrary small value will fulfill the

requirement.

Theorem 1. For T ≥ 6, Algorithm 1 generates a connected

topology, G′.

We first give the following lemma, due to [15], which will

be used in the proof of Theorem 1.

Lemma 1. If T ≥ 6, ∀i, j ∈ N either j ∈ N ′(i) or ∃k ∈
N ′(i) such that d(i, k) ≤ d(i, j) and d(k, j) ≤ d(i, j).

Proof: Consider the 2π
T

wide cone extending from node

i that is occupied by node j. If j is the closest node to i,
then j ∈ N ′(i) and the lemma’s condition is met. Otherwise,

there must exist another node k in the cone such that d(i, k) ≤
d(i, j).
Now, because the cone containing j and k has angular width

no greater than π
3 (since T ≥ 6) this implies that 6 jik ≤

π
3 . Furthermore, from basic trigonometry, d(i, j) ≥ d(i, k)
implies that 6 ikj ≥ 6 ijk. Since, 6 ijk + 6 ikj + 6 jik = π,
this implies that 6 ikj ≥ π

3 ≥ 6 jik.
Thus, since 6 ikj ≥ 6 jik, d(k, j) ≤ d(i, j).
Note that by the definition of Algorithm 1 the above implies

that if (i, j) 6∈ E′ there must exist a node k such that d(i, k) ≤
d(i, j) and d(k, j) ≤ d(i, j). We now prove Theorem 1. The

proof is similar to that in [15] but uses a simpler constructive

argument.



Proof: Our proof is constructive. We show that any two

arbitrary nodes i and j are connected in the topology G′ by a

path P , and thus topology G′ is connected.

We begin by constructing a path P = {(i, j)} (i.e., the

path consisting of edge (i, j)). If edge (i, j) ∈ E′ then P
clearly connects i and j in topology G′ and the claim holds.

Otherwise, if (i, j) 6∈ E′, Lemma 1 implies there exists a node

k such that d(i, k) < d(i, j) and d(k, j) < d(i, j). (Note that

the strict inequalities follow from the assumption of unique

edge lengths.) We remove (i, j) from P and, in its place, insert

(i, k) and (k, j). Clearly P is still a path from i to j in E.

We now recursively carry out the above operation. We

choose the maximum length edge in P that is not in E′ (i.e.,

max(l,m)∈P {d(l,m) : (l,m) 6∈ E′}), remove it, and add two

edges from E of strictly smaller length that connect the end

points of the removed edge. Note that Lemma 1 guarantees

these two edges must exist and P remains a path from i to j
after the operation. Now, after each operation one of two things

must occur: either P ⊆ E′, or the length of the maximum

length edge in P that is not in E′ must decrease. Therefore,

in no more than |E| iterations we must obtain a path P ⊆ E′.

Note that an immediate result of the above proof is that

either edge (i, j) is in E′ or there exists a path from i to j in

E′ such that each edge has length less than d(i, j).

C. Structural Properties of the Topology

We next explore properties of topologies generated by the

above sectorized-distributed method. Throughout this subsec-

tion we assume that G′ = (N,E′) is a topology generated by

Algorithm 1 with T ≥ 6.
Define the capacity of an arbitrary path P from node s to t

(denoted C(P )) as the maximum flow that may transverse path

P under the link activation constraints of Section II-B. Define

the optimal path P ∗
s,t ⊆ E as the single path that obtains the

maximum capacity between s and t (i.e., C(P ∗
s,t) ≥ C(P ) for

all P ⊆ E from s to t). We show that for every s, t node pair
there exists a path P ′

s,t ⊆ E′ such that C(P ′
s,t) ≥

1
2C(P ∗

s,t), if
the edge capacity c(i,j) is a monotonically decreasing function

of d(i,j) (e.g., see (1)).

Theorem 2. ∃P ′
s,t ⊆ E′ such that C(P ′

s,t) ≥
1
2C(P ∗

s,t) if

c(i,j) is a monotonically decreasing function of d(i,j).

To prove Theorem 2, we first establish the following two

lemmas. We denote the set of all paths from node s to t in E
by Ps,t.

Lemma 2. For all s,t node pairs, ∃P ′
s,t ⊆ E′ from s to t such

that

max
{

d(i, j) : (i, j) ∈ P ′
s,t

}

=

min
P∈Ps,t

max {d(i, j) : (i, j) ∈ P}
(4)

Lemma 2 states that E′ contains a path that has the

minimum maximum edge length.

Proof: Consider any path P ⊆ E from s to t. Consider
any edge (i, j) ∈ P . Assume (i, j) 6∈ E′. Then by the proof

of Theorem 1 there exists a path from i to j in E′ such that

all edges in the path have length less than d(i, j). Since this

is true for all (i, j) ∈ P , (4) follows.

Lemma 3. For any path P ,

1

2
min

(i,j)∈P
c(i,j) ≤ C(P ) ≤ min

(i,j)∈P
c(i,j)

Proof: The capacity of any path is upper bounded by its

minimum cut, thus C(P ) ≤ min(i,j)∈P c(i,j). Now, number

the edges along path P from source s to destination t using
the natural numbers, 0, 1, 2, ..., |P |− 1. Clearly all odd (even)

edges form a valid activation. By activating the odd edges for

half of the time and even edges for the other half, it can be

observed that C(P ) ≥ 1
2 min(i,j)∈P c(i,j) is achieved and the

result follows.

We now prove Theorem 2.

Proof: From Lemma 2, there exists a P ′
s,t ⊆ E′ such

that:

max
(i,j)∈P ′

s,t

{d(i, j)} ≤ max
(i,j)∈P∗

s,t

{d(i, j)}

Since c(i,j) is a monotonically decreasing function of d(i, j)
this implies

min
(i,j)∈P ′

s,t

{

c(i,j)
}

≥ min
(i,j)∈P∗

s,t

{

c(i,j)
}

By Lemma 3,

C(P ′
s,t) ≥

1

2
min

(i,j)∈P ′

s,t

{

c(i,j)
}

C(P ∗
s,t) ≤ min

(i,j)∈P∗

s,t

{

c(i,j)
}

It can then be observed that, C(P ′
s,t) ≥

1
2C(P ∗

s,t).
Theorem 2 shows that for any node pair there exists in E′ a

single good path consisting of short hops. As was discussed in

Section III these corridors of short-hop paths form much of the

backbone for communication through the network. However,

in order to truly maximize ρ in (2) the scheduler must schedule

edge activations for multiple paths that are competing for

the wireless resources. In general, analyzing the interaction

of these multiple paths is difficult. However, we will next

show that in the presence of high path loss between nodes this

interaction becomes increasingly less important as compared

to the achievable link capacities.

In particular, assume we are given a placement of nodes on

the two dimensional plane, traffic demand matrix Λ, and edge

capacities defined by (1). Denote by ρ∗ the optimal solution

to the corresponding formulation of (2) and by ρ′ the optimal

solution when the topology variables z(i,j) are obtained using

the sectorized-distributed method. We prove that there exists

a value α0 such that for all path loss exponents α > α0,

ρ′/ρ∗ ≥ 1− ǫ for any ǫ > 0.

Theorem 3. ∀ǫ > 0, ∃α0 such that ∀α > α0,
ρ′

ρ∗
≥ 1− ǫ.

Proof: The complete proof of Theorem 3 is omitted for

brevity. Here we provide an outline of the proof that conveys

the intuition.
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Fig. 6: Ratio of achieved throughput versus optimal for varying path loss exponent with T = 6.

The capacity of edge (i, j) ∈ E is given by (1). There-

fore, for every unit of flow transversing (i, j), the schedule

must activate the edge for a length of time 1/c(i,j) =
K−1 (d(i, j)/d0)

α
. Then, for increasing α, the edge with

maximum length (and non-zero flow) requires infinitely more

activation time to schedule its flow relative to the amount of

time required by any other edge. This implies that as α→∞,

the schedule length required to schedule all units of flow in

the network is determined by the length of time needed by

this maximum length edge.

Now, let G′ be the topology generated by Algorithm 1.

Denote the optimal throughput scaling over topology G′ as

ρ′, and let ρ∗ be the optimal solution to (2). From Lemma 2,

for any s,t pair, G′ contains a path from s to t that minimizes

the maximum edge length along the path. Suppose, that for

all s,t we send Λs,t units of flow over such a path. For

traffic demand matrix Λ, such a strategy clearly minimizes

the maximum edge length in the graph with non-zero flow.

Thus, as α → ∞ the schedule length required to support Λ
is minimized. Equivalently, if we restrict the schedule to be

length 1 (c.f. constraint (2c)), the scaling of the traffic demand

matrix, ρ′, is maximized. Thus, ρ′ approaches ρ∗ as α becomes

large.

V. SIMULATION RESULTS

Theorem 3 indicates that for a sufficiently high path loss

exponent, any topology generated by Algorithm 1 can support

a throughput that achieves an arbitrarily close fraction of the

optimal throughput of (2). We now explore the performance

of the sectorized-distributed algorithm for varying path loss

values, α, through simulation and empirically observe for

different test cases and generated topologies the value of α0

needed to get within 1− ǫ of optimal.

In particular, we consider a test scenario where there are 20
nodes distributed uniformly within a unit disk, edge capacity

is given by (1) and T = 6. Each node is either a source

or a destination for one flow with demand Λs,t = 1. As

in Section III we use the approximation method of [28]

to approximate the capacity of the generated topologies. In

Fig. 6a we plot statistics of the ratio of the observed throughput

achieved via the sectorized-distributed method of Algorithm 1

versus the optimal throughput for 500 random node place-

ments and demand matrix instantiations. The effect of α is

tested at 1
2 increments with the ◦ denoting the mean of the

500 tests and the bars showing the span of the 25th to 75th

percentiles. The range of α shown covers path loss exponents

in millimeter wave applications which have been empirically

observed ranging in values from 3 to 4.5 [27].

The topologies generated by the sectorized-distributed algo-

rithm are guaranteed to be connected, but are not necessarily

dense. In order to improve the throughput performance of the

generated topologies, we consider an augmented sectorized

method that constructs a topology by first running Algorithm 1

and then greedily adds edges, in ascending order of edge

length, until no edge may be added without violating the

degree constraint at a node. 1 The results of Sections IV-B

and IV-C clearly still hold for this method. In Fig. 6b, we

plot the performance of this augmented algorithm. As can

be seen from the figure, the augmented sectorized method

significantly outperforms the plain sectorized algorithm and

achieves a mean throughput of over 90% when α > 3. The
gap between the two methods narrows at high path loss, as

both approach the throughput of the optimal solution.

In Fig. 7 we illustrate the effect of the degree constraint

T on the achievable throughput of topologies generated by

the augmented sectorized method. Specifically, we plot the

achieved throughput of the topology relative to the maximum

possible throughput of G (i.e., when there is no degree

constraint and T = ∞ in (2)). We average over 100 test

instantiations. The tests consist of 30 nodes distributed within

1Greedy algorithms similar to this may be obtained using distributed
methods.
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augmented sectorized method, relative to the complete graph,

as a function of T .

the unit circle, edge capacity given by (1), and with each node

a source or destination for one commodity with unit demand.

We see that for all α values the throughput increases most

rapidly as T increases towards 6, the necessary condition for

the results of Sections IV-B and IV-C. We further note that

for larger α values, the benefit of increasing T beyond 6
is diminished. This observation is in line with Theorem 3

which indicates that for any T ≥ 6, Algorithm 1 produces

topologies that approach optimality for sufficiently large path

loss exponents.

VI. CONCLUSION

In this paper, we examined the interacting effects of channel

modeling, resource scheduling, and end-to-end traffic demands

on mesh networks with highly-directional antenna systems.

Because of the overhead introduced in tracking a neighbor’s

channel state, each node in the network can only maintain

communication with a limited number of neighbors. This

observation gives rise to a topology control problem, where

each node must select its neighboring nodes subject to a

degree constraint. We formulated the optimal topology design

problem as a mixed-integer linear program, and developed a

low complexity, distributed algorithm that produces connected

topologies with good structural properties.

The problem formulation of Section II assumed a uniform

tracking overhead per neighbor, and many of the results of

Sections III and IV assumed channel models with capacity

that decreased monotonically with edge length. In applications

with non-uniform node mobility and shadowing environments

these assumptions may not hold. Extensions to account for

these effects are important directions for future research.
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