Topology Control Meets SINR: The Scheduling Complexity of Arbitrary Topologies

Thomas Moscibroda Roger Wattenhofer Aaron Zollinger

MOBIHOC 2006

Topology Control Meets SINR

- Which topologies can be scheduled efficiently?
- How should requests/topologies be scheduled?
- Are currently used MAC-layer protocols good? (competitive compared to "optimal MAC protocol")

What is topology control?

- Idea: Drop links to long-range neighbors
- Goal: Reduces energy and interference!
 But still stay connected (or even spanner)

What is topology control?

Topology control papers argue that:

The selected topology should satisfy desirable properties beyond connectivity

- → Spanner properties
- → Low node degree
- → Sparseness (few links)
- → Low static interference
- → Etc…

Some related work:

[Takagi & Kleinrock 1984] [Hou & Li 1986] [Hu 1993] [Ramanathan & Rosales-Hain INFOCOM 2000] [Rodoplu & Meng J.Sel.Ar.Com 1999] [Wattenhofer et al. INFOCOM 2000] [Li et al. PODC 2001] [Jia et al. SPAA 2003] [Li et al. INFOCOM 2002] [Li et al. INFOCOM 2005] [Santi, 2005]

What is topology control?

Topology control papers argue that:

The selected topology should satisfy desirable properties beyond connectivity

- → Spanner properties
 - → Low node degree
 - → Sparseness (few links)
 - → Low static interference
 - → Etc...

No node should be disturbed by many other nodes.

Eventually, links must be scheduled...

Physical SINR Model

- Scheduling is a low-level task \rightarrow requires low-level model.
- Physical message reception determined by the signal-to-noise-plus-interference (SINR) ratio!
- Message arrives if SINR is larger than β at receiver

0

Graph-based Topology vs. Physical Scheduling?

- Let α =3, β =3, and N=10nW
- Set the transmission powers as follows $P_c = -15 \text{ dBm}$ and $P_A = 1 \text{ dBm}$ ullet
- SINR at D is: $\frac{1.26mW/(7m)^3}{0.01\mu W + 31.6\mu W/(3m)^3} \approx 3.11 \ge \beta$
- SINR at B is: $\frac{31.6\mu W/(1m)^3}{0.01\mu W + 1.26m W/(5m)^3} \approx 3.13 \ge \beta$

Scheduling – Some Related Work

- There is a lot of related work on scheduling
 → numerous practical scheduling protocols
 → wireless MAC layer protocols
- Capacity of wireless networks [Gupta, Kumar, Trans.Inf.Theory'00]
- Combined power assignment and scheduling problems [Behzad, Rubin, Infocom'05], [Jain, Padhye, Padmanabhan, Qiu, Mobicom'03], [Bjorklund, Varbrand, Yuan, Infocom'03], etc...
- Specifically SINR based scheduling protocols
 [Ephremides,Truong,Trans.Comm'90], [ElBatt, Ephremides, Infocom'02],
 [Cruz, Santhanam, Infocom'03], etc...
- Comparison between graph-based and SINR-based scheduling [Gronkvist, Hansson, Mobihoc'01], etc...

Capturing the difficulty of scheduling...?

Graph-based topology vs. SINR-based scheduling?

Scheduling in Wireless Networks

Relationship between a topology and scheduling is not trivial!

→ Often counter-intuitive!

1) There are topologies with high I_{in} that can be scheduled quickly!

- 2) There are topologies with low I_{in} that are difficult to schedule!
- → Big discrepancy between graph-based and SINR-based models
 - → Interference created by simultaneous senders cumulates
 - \rightarrow Power may not be chosen uniformly

Outline

- Topology control
- Scheduling in SINR-environments
- Graph-based protocol design vs. physical interference!

>0

- The *scheduling complexity* of wireless networks
 - Intuitive, but inefficient scheduling protocols
 - A note on the energy metric
 - Our efficient $O(I_{in} \cdot log^2(n))$ protocol
- Topologies with low I_{in}
 - Symmetric versus asymetric links
- Conclusions

The Scheduling Complexity of Wireless Networks

• n nodes in 2D Euclidean plane (arbitrary, possibly worst-case position)

- An arbitrary topology T (analogous: a set of communication requests)
- Nodes can choose power levels
- Message successfully received if **SINR** at receiver sufficient

Our Results

In the paper we prove the following theorem:

Theorem:

Scheduling Complexity of any topology T with in-interference I_{in} is at most $S(T) \in O(I_{in} \cdot \log^2 n)$

- This result hold in every (even worst-case) networks
- Theoretically, good static topologies can be scheduled eficiently → no fundamental scaling problem in scheduling
- This implies that topology control (reducing I_{in}) helps!
- But, achieving this result requires highly non-trivial power assignments and scheduling !

Our Protocol

- How can we break the $\Omega(n)$ barrier...?
- Observation: Scheduling a set of links of roughly the same length is easy...
 - \rightarrow Partition the set of links in length-classes
 - \rightarrow Schedule each length-class independently one after the other...
- The problem is...
 - \rightarrow there may be up to n different length-classes
 - \rightarrow We must schedule links of different lengths simultaneously!
- How can we assign powers to nodes?

e.g. uniform and ${\sim}d^{\alpha} \, \text{examples}$ before

►O

→ Making the transmission power dependent on the length of link is bad!

• We must make the power assigned to simultaneous links dependent on their relative position of the length class!

Our Protocol – Power Assignment

A node v in length-class τ and a link of length d transmit roughly with a power of

$$P(\mathbf{v}) \approx (\mathbf{n}\beta)^{\tau} \cdot \mathbf{d}^{\alpha}$$

Intuitively, nodes with small links must *overpower* their receivers!

• But now, short links disturb distant long links!!!

This v

• Therefore, we also need to carefully select the transmitting nodes!

Ooops, now it gets complicated ...!

Our Protocol – Scheduling Links

- Short links are "overpowered"
 - \rightarrow create much more interference
 - \rightarrow this precludes simple geometric arguments!

 \sim

- Partition the set of nodes into sets, according to their longest link
- In each iteration k=0...log(3βn)-1, consider nodes in sets

In each iteration, schedule all links belonging to nodes in these sets.

Our protocol achieves this in $O(I_{in} \cdot \log n)$ time slots.

Our Protocol – Scheduling Links

- Short links are "overpowered"
 - \rightarrow create much more interference
 - \rightarrow this precludes simple geometric arguments!
- In each time slot, consider all nodes in decreasing order of longest link
- Add a node to E_T if **allowed()** evaluates to true

 $allowed(v_i, E_t)$

1: for each $v_j \in E_t$ do

2:
$$\delta_{ij} := \tau(v_i) - \tau(v_j);$$

- 3: if $\tau(v_i) = \tau(v_j)$ and $\mu \cdot r_i > d(v_i, v_j)$ return false $\delta_{i:+1}$
- 4: else if $r_i \cdot (3n\beta)^{\frac{\delta_{ij}+1}{\alpha}} + r_j > d(v_i, v_j)$ return false
- 5: end for
- 6: return true

Outline

- Topology control
- Scheduling in SINR-environments
- Graph-based protocol design vs. physical interference!

>0

- The *scheduling complexity* of wireless networks
 - Intuitive, but inefficient scheduling protocols
 - A note on the energy metric
 - Our efficient $O(I_{in} \cdot log^2(n))$ protocol
- Topologies with low I_{in}
 - Symmetric versus asymetric links
- Conclusions

What is the value of I_{in} ?

Theorem:

0

Scheduling Complexity of a topology T with in-interference I_{in} is at most $S(T) \in O(I_{in} \cdot \log^2 n)$

All current MAC protocols

►0

Тороlоду	l _{in}	our protocol	uniform power energy-metric	
nearest neighbor forest	≤ 5	$S(T) \in O(log^2n)$	$S(T)\in\Omega(n)$	
exponential chain (directed) strong connectivity - asymmetric links	1	$S(T) \in O(log^2n)$	$S(T) \in \Omega(n)$	
	Impr	oves the scheduling con	complexity of connectivity!	
	O(log n)	$S(T) \in O(log^3n)$	$S(T)\in \Omega(n)$	

What is the value of ${\rm I}_{\rm in}\, ?$

Theorem:

0

Scheduling Complexity of a topology T with in-interference I_{in} is at most $S(T) \in O(I_{in} \cdot log^2n)$

All current MAC protocols

►0

Topology	l _{in}	our protocol	uniform power energy-metric
nearest neighbor forest	≤ 5	$S(T) \in O(log^2n)$	$S(T)\in\Omega(n)$
exponential chain (directed)	1	$S(T) \in O(log^2n)$	$S(T)\in\Omega(n)$
strong connectivity		Scheduling asymmetric v	vs. symmetric links!
- asymmetric links	O(log n)	$S(T) \in O(log^{3}n)$	$S(T)\in\Omega(n)$
- symmetric links	$\Omega(\sqrt{n})$	$S(T) \in O(\sqrt{n} \log^{2.5} n)$	$S(T)\in\Omega(n)$
	$(\sqrt{n \log r})$	\overline{n})	

Outline

- Topology control
- Scheduling in SINR-environments
- Graph-based protocol design vs. physical interference!

>0

- The *scheduling complexity* of wireless networks
 - Intuitive, but inefficient scheduling protocols
 - A note on the energy metric
 - Our efficient $O(I_{in} \cdot log^2(n))$ protocol
- Topologies with low I_{in}
 - Symmetric versus asymetric links
- Conclusions

Improved "scheduling complexity of connectivity"
 → from O(log⁴n) [Moscibroda, Wattenhofer, Infocom 2006] to O(log³n)

→O

►0

- 1) Improved "scheduling complexity of connectivity"
 → from O(log⁴n) [Moscibroda, Wattenhofer, Infocom 2006] to O(log³n)
- 2) Scheduling symmetric vs. asymmetric links in topologies
 - \rightarrow using symmetric links has numerous practical advantages (ACK, ..) \rightarrow but, asymmetric topologies can be scheduled much faster!

- 1) Improved "scheduling complexity of connectivity"
 → from O(log⁴n) [Moscibroda, Wattenhofer, Infocom 2006] to O(log³n)
- 2) Scheduling symmetric vs. asymmetric links in topologies
 → using symmetric links has numerous practical advantages (ACK, ..)
 → but, asymmetric topologies can be scheduled much faster!
- 3) Power assignment is crucial
 - → uniform power assignment leads to extremely slow schedules!
 - → "energy-metric" power assignment $P \sim d^{\alpha}$, too!

energy-spanner, energy minimum broadcast,...

- 1) Improved "scheduling complexity of connectivity"
 → from O(log⁴n) [Moscibroda, Wattenhofer, Infocom 2006] to O(log³n)
- 2) Scheduling symmetric vs. asymmetric links in topologies
 → using symmetric links has numerous practical advantages (ACK, ..)
 → but, asymmetric topologies can be scheduled much faster!

- 3) Power assignment is crucial
 - \rightarrow uniform power assignment leads to extremely slow schedules!
 - → "energy-metric" power assignment $P \sim d^{\alpha}$, too!
- 4) Bridge gap between information theoretic world (SINR) and protocol design (graph-based, topology control)
 → fundamental justification for topology control

Graph-based Protocol Design vs. SINR Scheduling?

- Protocol designers use (various) graph models
- e.g. Topology control protocols
- Information theoreticians use SINR (physical) models
- e.g. capacity of wireless networks

Topology Control helps in scheduling! but, only if scheduling is done right!

