Topology Control Meets SINR: The Scheduling Complexity of Arbitrary Topologies

Thomas Moscibroda
Roger Wattenhofer
Aaron Zollinger

MOBIHOC 2006

Topology Control Meets SINR

?

- Which topologies can be scheduled efficiently?
- How should requests/topologies be scheduled?
- Are currently used MAC-layer protocols good? (competitive compared to "optimal MAC protocol")

What is topology control?

- Idea: Drop links to long-range neighbors
- Goal: Reduces energy and interference!

But still stay connected (or even spanner)

What is topology control?

- Topology control papers argue that:

The selected topology should satisfy desirable properties beyond connectivity

Some related work:
[Takagi \& Kleinrock 1984]
[Hou \& Li 1986]
[Hu 1993]
[Ramanathan \& Rosales-Hain INFOCOM 2000]
[Rodoplu \& Meng J.Sel.Ar.Com 1999]
[Wattenhofer et al. INFOCOM 2000]
[Li et al. PODC 2001]
[Jia et al. SPAA 2003]
[Li et al. INFOCOM 2002]
[Li et al. MOBICOM 2005]
[Santi, 2005]
Thomas Moscibroda, MOBIHOC 2006

What is topology control?

- Topology control papers argue that:

The selected topology should satisfy desirable properties beyond connectivity
\rightarrow Spanner properties
\rightarrow Low node degree
Sparseness (few links)
\rightarrow Low static interference
\rightarrow Etc...

No node should be disturbed by many other nodes.

$\mathrm{I}_{\text {in }}$: Measuring a topology's interference

- Given a topology (or a set of communication requests) T
- $\mathrm{I}_{\text {in }}$ is the maximum number of nodes by which a receiver can potentially be disturbed.
- Formally,

Interference arises at the receiver!

- Node u may disturb all nodes closer than its farthest neighbor Draw a disk around each node with radius = longest outgoing link
- Interference of node $u=$ \#nodes whose distance to u is at most the distance to their farthest neighbors \#disks by which u is covered - 1
- $\mathrm{I}_{\text {in }}$ Interference of topology or set of requests T = maximum interference over all nodes

Thomas Moscibroda, MOBIHOC 2006

Eventually, links must be scheduled...

- Topology control papers argue that:

The selected topology should satisfy desirable properties beyond connectivity

Topology Control is based on a graph-based model of wireless communication!

radio signals, signal propagation
Thomas Moscibroda, MOBIHOC 2006

Physical SINR Model

$\bigcirc \longrightarrow$

- Scheduling is a low-level task \rightarrow requires low-level model.
- Physical message reception determined by the signal-to-noise-plus-interference (SINR) ratio!
- Message arrives if SINR is larger than β at receiver

Thomas Moscibroda, MOBIHOC 2006

Graph-based Topology vs. Physical Scheduling?

0

Fundamenal question:
structure of topology
structure of topology
(set of comm. requests)
(set of comm. requests)

What is the relationship between

 topology control and physical scheduling?

Simple examples of a connected topology:

- Scheduling requires $\geq \mathrm{n} / 2$ time
- $\mathrm{I}_{\text {in }}$ of this topology is high

- Scheduling requires $\mathrm{O}(1)$ time
- $\mathrm{I}_{\text {in }}$ of this topology is low

Is this a law of nature... or just a lucky example...?
Thomas Moscibroda, MOBIHOC 2006

Good topology or bad topology...?

A wants to sent to B, C wants to send to D

Can A and C send simultaneously...?
No, they cannot!
D is inside A's transmission range! it seems... Interference causes a collision at D!

Good topology or bad topology...?

A wants to sent to B, C wants to send to D

- Let $\alpha=3, \beta=3$, and $N=10 n W$
- Set the transmission powers as follows $\mathrm{P}_{\mathrm{C}}=-15 \mathrm{dBm}$ and $\mathrm{P}_{\mathrm{A}}=1 \mathrm{dBm}$
- SINR at D is: $\frac{1.26 m W /(7 m)^{3}}{0.01 \mu W+31.6 \mu W /(3 m)^{3}} \approx 3.11 \geq \beta$

- SINR at B is:

$$
\frac{31.6 \mu W /(1 m)^{3}}{0.01 \mu W+1.26 m W /(5 m)^{3}} \approx 3.13 \geq \beta
$$

Simultaneous transmission is possible !

Thomas Moscibroda, MOBIHOC 2006

Scheduling - Some Related Work

- There is a lot of related work on scheduling
\rightarrow numerous practical scheduling protocols
\rightarrow wireless MAC layer protocols
- Capacity of wireless networks [Gupta, Kumar, Trans.Inf.Theory'00]
- Combined power assignment and scheduling problems [Behzad, Rubin, Infocom'05], [Jain, Padhye, Padmanabhan, Qiu, Mobicom'03], [Bjorklund, Varbrand, Yuan, Infocom'03], etc...
- Specifically SINR based scheduling protocols [Ephremides,Truong,Trans.Comm'90], [EIBatt, Ephremides, Infocom'02], [Cruz, Santhanam, Infocom'03], etc...
- Comparison between graph-based and SINR-based scheduling [Gronkvist, Hansson,Mobihoc'01], etc...

Capturing the difficulty of scheduling...?

Graph-based topology vs.
SINR-based scheduling?

Scheduling in Wireless Networks

$\xrightarrow{\circ}$ Relationship between a topology and scheduling is not trivia!!
\rightarrow Often counter-intuitive!

1) There are topologies with high $I_{\text {in }}$ that can be scheduled quickly!
2) There are topologies with low $I_{\text {in }}$ that are difficult to schedule!
\rightarrow Big discrepancy between graph-based and SINR-based models
\rightarrow Interference created by simultaneous senders cumulates
\rightarrow Power may not be chosen uniformly
\rightarrow Power assignment policy is decisive!
```
We need a measure that
captures how quickly a
topology can be scheduled
Scheduling Complexity in Wireless Networks
```

 Not clear whether topology control helps in scheduling!

Outline

- Topology control
- Scheduling in SINR-environments
- Graph-based protocol design vs. physical interference!
- The scheduling complexity of wireless networks
- Intuitive, but inefficient scheduling protocols
- A note on the energy metric
- Our efficient $\mathrm{O}\left(\mathrm{l}_{\mathrm{in}} \cdot \log ^{2}(\mathrm{n})\right)$ protocol
- Topologies with low $I_{\text {in }}$
- Symmetric versus asymetric links
- Conclusions

The Scheduling Complexity of Wireless Networks

- n nodes in 2D Euclidean plane (arbitrary, possibly worst-case position)
- An arbitrary topology T (analogous: a set of communication requests)
- Nodes can choose power levels $\left[{ }_{\sigma}=[]\right.$
- Message successfully received if SINR at receiver sufficient

Scheduling Complexity S(T)
 The minimum number of time slots required until all links in T have been successfully scheduled at least once!

What is known... Clearly,
$\mathrm{S}(\mathrm{T}) \leq \boldsymbol{n}$
(if broadcast
allowed)

Scheduling Complexity of Strong Connectivity: $\mathrm{S}(\mathrm{T}) \leq \mathrm{O}\left(\log ^{4} \mathrm{n}\right)$

Thomas Moscibroda, MOBIHOC 2006

Scheduling Complexity - Example

Consider topology T:

Time-Slot Links:
6
$\left.\begin{array}{ll}\mathrm{t}_{1}: & \begin{array}{l}1 \rightarrow 2,4 \rightarrow 5,6 \rightarrow 7 \\ \mathrm{t}_{2}:\end{array} \\ \mathrm{t}_{3}: & \begin{array}{l}3 \rightarrow 1,5 \rightarrow 4,7 \rightarrow 6 \\ \mathrm{t}_{4}:\end{array} \\ 7 \rightarrow 8,3 \rightarrow 5 \\ 8 \rightarrow 4\end{array}\right\}$
\rightarrow Scheduling complexity of T is at most 4 !

Do good topologies have a small scheduling complexity?
graph-based topology control
SINR-based scheduling
Thomas Moscibroda, MOBIHOC 2006

Our Results

In the paper we prove the following theorem:

Theorem:
Scheduling Complexity of any topology T with in-interference $l_{\text {in }}$ is at most $\mathbf{S}(\mathrm{T}) \in \mathbf{O}\left(\mathrm{I}_{\mathrm{in}} \cdot \log ^{2} \mathrm{n}\right)$

- This result hold in every (even worst-case) networks
- Theoretically, good static topologies can be scheduled eficiently \rightarrow no fundamental scaling problem in scheduling
- This implies that topology control (reducing I_{in}) helps!
- But, achieving this result requires highly non-trivial power assignments and scheduling!

Bad Scheduling in SINR

- Consider the exponential chain:

Thomas Moscibroda, MOBIHOC 2006

Bad Scheduling in SINR

- Consider the exponential chain:
[Moscibroda, Wattenhofer, Infocom 2006]

- This topology has interference $\mathrm{I}_{\mathrm{in}}=1$ Not trivial...
- All links can be scheduled in $\mathrm{O}(1)$ time!
- But, it can be shown that:

By a factor $\Theta(\mathrm{n})$ slower!

- Any protocol with uniform power assignment has time $\Omega(\mathrm{n})$
- Any protocol with power according to $P \sim O\left(d^{\alpha}\right)$ has time $\Omega(\mathrm{n})$

Transmitting according to energy-metric implies slow scheduling!

Thomas Moscibroda, MOBIHOC 2006

Our Protocol

- How can we break the $\Omega(\mathrm{n})$ barrier...?
- Observation: Scheduling a set of links of roughly the same length is easy...
\rightarrow Partition the set of links in length-classes
\rightarrow Schedule each length-class independently one after the other...
- The problem is...
\rightarrow there may be up to n different length-classes
\rightarrow We must schedule links of different lengths simultaneously!
- How can we assign powers to nodes?
\rightarrow Making the transmission power dependent on the length of link is bad!
- We must make the power assigned to simultaneous links dependent on their relative position of the length class!

Our Protocol - Power Assignment

- A node v in length-class τ and a link of length d transmit roughly with a power of
 Intuitively, nodes with small links must overpower their receivers!
- But now, short links disturb distant long links!!!
- Therefore, we also need to carefully select the transmitting nodes!

Thomas Moscibroda, MOBIHOC 2006

Our Protocol - Scheduling Links

- Short links are "overpowered"
\rightarrow create much more interference
this precludes simple geometric arguments!

- Partition the set of nodes into sets, according to their longest link
- In each iteration $\mathrm{k}=0 \ldots \log (3 \beta \mathrm{n})-1$, consider nodes in sets

- In each iteration, schedule all links belonging to nodes in these sets.

Our Protocol - Scheduling Links

- Short links are "overpowered"
\rightarrow create much more interference
\rightarrow this precludes simple geometric arguments!
- In each time slot, consider all nodes in decreasing order of longest link
- Add a node to E_{T} if allowed() evaluates to true
$\operatorname{allowed}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{E}_{\mathrm{t}}\right)$
1: for each $v_{j} \in E_{t}$ do
2: $\quad \delta_{i j}:=\tau\left(v_{i}\right)-\tau\left(v_{j}\right)$;
3: if $\tau\left(v_{i}\right)=\tau\left(v_{j}\right)$ and $\mu \cdot r_{i}>d\left(v_{i}, v_{j}\right)$ return false
4: else if $r_{i} \cdot(3 n \beta)^{\frac{\delta_{i j}+1}{\alpha}}+r_{j}>d\left(v_{i}, v_{j}\right)$ return false

5: end for
6: return true
Please find details
in the paper...

Thomas Moscibroda, MOBIHOC 2006

Outline

- Topology control
- Scheduling in SINR-environments
- Graph-based protocol design vs. physical interference!
- The scheduling complexity of wireless networks
- Intuitive, but inefficient scheduling protocols
- A note on the energy metric
- Our efficient $O\left(\mathrm{l}_{\mathrm{in}} \cdot \log ^{2}(\mathrm{n})\right)$ protocol
- Topologies with low $\mathrm{I}_{\text {in }}$
- Symmetric versus asymetric links
- Conclusions

What is the value of $\mathrm{I}_{\text {in }}$?

Theorem:

> | Scheduling Complexity of a topology T |
| :--- |
| with in-interference $l_{\text {in }}$ is most |
| $\qquad S(T) \in O\left(l_{\text {in }} \cdot \log ^{2} n\right)$ |

Topology	$\mathrm{I}_{\text {in }}$	our protocol	uniform power energy-metric
nearest neighbor forest	≤ 5	$S(T) \in O\left(\log ^{2} \mathrm{n}\right)$	$\mathrm{S}(\mathrm{T}) \in \Omega(\mathrm{n})$
exponential chain (directed)	1	$S(T) \in O\left(\log ^{2} n\right)$	$\mathrm{S}(\mathrm{T}) \in \Omega(\mathrm{n})$
- (drected)	Improves the scheduling complexity of connectivity!		
- asymmetric links	$\mathrm{O}(\log \mathrm{n})$	$S(T) \in O\left(\log ^{3} n\right)$	$\mathrm{S}(\mathrm{T}) \in \Omega(\mathrm{n})$

Thomas Moscibroda, MOBIHOC 2006

What is the value of $\mathrm{l}_{\text {in }}$?

Theorem:

> Scheduling Complexity of a topology T with in-interference $I_{\text {in }}$ is at most $$
S(T) \in O\left(l_{\text {in }} \cdot \log ^{2} n\right)
$$

| Topology | $\mathbf{I}_{\text {in }}$ | our protocol | uniform power
 energy-metric |
| :--- | :---: | :---: | :---: | :---: |
| nearest neighbor forest
 exponential chain
 (directed) | ≤ 5 | $\mathrm{~S}(\mathrm{~T}) \in \mathrm{O}\left(\log ^{2} \mathrm{n}\right)$ | $\mathrm{S}(\mathrm{T}) \in \Omega(\mathrm{n})$ |
| strong connectivity | | | |
| - asymmetric links | | | |
| - symmetric links | 1 | $\mathrm{~S}(\mathrm{~T}) \in \mathrm{O}\left(\log ^{2} \mathrm{n}\right)$ | $\mathrm{S}(\mathrm{T}) \in \Omega(\mathrm{n})$ |

Thomas Moscibroda, MOBIHOC 2006

Outline

- Topology control
- Scheduling in SINR-environments
- Graph-based protocol design vs. physical interference!
- The scheduling complexity of wireless networks
- Intuitive, but inefficient scheduling protocols
- A note on the energy metric
- Our efficient $O\left(\mathrm{I}_{\mathrm{in}} \cdot \log ^{2}(\mathrm{n})\right)$ protocol
- Topologies with low $\mathrm{I}_{\text {in }}$
- Symmetric versus asymetric links
- Conclusions

Conclusion - Our Contributions

1) Improved "scheduling complexity of connectivity"
\rightarrow from O($\log ^{4} n$ n) [Moscibroda, Wattenhofer, Infocom 2006] to $\mathrm{O}\left(\log ^{3} \mathrm{n}\right)$

Conclusion - Our Contributions

1) Improved "scheduling complexity of connectivity"
\rightarrow from O($\log ^{4} n$ n) [Moscibroda, Wattenhofer, Infocom 2006] to $\mathrm{O}\left(\log ^{3} n\right)$
2) Scheduling symmetric vs. asymmetric links in topologies \rightarrow using symmetric links has numerous practical advantages (ACK, ..) \rightarrow but, asymmetric topologies can be scheduled much faster!

Conclusion - Our Contributions

1) Improved "scheduling complexity of connectivity"
\rightarrow from O($\log ^{4} n$ n) [Moscibroda, Wattenhofer, Infocom 2006] to $\mathrm{O}\left(\log ^{3} n\right)$
2) Scheduling symmetric vs. asymmetric links in topologies
\rightarrow using symmetric links has numerous practical advantages (ACK, ..)
\rightarrow but, asymmetric topologies can be scheduled much faster!
3) Power assignment is crucial
\rightarrow uniform power assignment leads to extremely slow schedules!
\rightarrow "energy-metric" power assignment $\mathrm{P} \sim \mathrm{d}^{\alpha}$, too!
energy-spanner, energy minimum broadcast,...

Conclusion - Our Contributions

1) Improved "scheduling complexity of connectivity"
\rightarrow from O($\log ^{4} n$ n) [Moscibroda, Wattenhofer, Infocom 2006] to O($\left.\log ^{3} n\right)$
2) Scheduling symmetric vs. asymmetric links in topologies
\rightarrow using symmetric links has numerous practical advantages (ACK, ..)
\rightarrow but, asymmetric topologies can be scheduled much faster!
3) Power assignment is crucial
\rightarrow uniform power assignment leads to extremely slow schedules!
\rightarrow "energy-metric" power assignment $\mathrm{P} \sim \mathrm{d}^{\alpha}$, too!
4) Bridge gap between information theoretic world (SINR) and protocol design (graph-based, topology control)
\rightarrow fundamental justification for topology control

Thomas Moscibroda, MOBIHOC 2006

Graph-based Protocol Design vs. SINR Scheduling?

$\bigcirc \longrightarrow 0$
Fundamenal question:
$\underset{\sim}{\text { What is the relationship between }}$

SINR Scheduling

- Information theoreticians use SINR (physical) models
- e.g. capacity of wireless networks

Topology Control helps in scheduling!

but, only if scheduling is done right!

Thomas Moscibroda, MOBIHOC 2006

