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Abstract

Hidden Markov Models (HMMs) are increasingly being
used in computer vision for applications such as: gesture
analysis, action recognition from video, and illumination
modeling. Their use involves an off-line learning step that
is used as a basis for on-line decision making (i.e. a sta-
tionarity assumption on the model parameters). But, real-
world applications are often non-stationary in nature. This
leads to the need for a dynamic mechanism to learn and
update the model topology as well as its parameters. This
paper presents a new framework for HMM topology and
parameter estimation in an online, dynamic fashion. The
topology and parameter estimation is posed as a model se-
lection problem with an MDL prior. Online modifications
to the topology are made possible by incorporating a state
splitting criterion. To demonstrate the potential of the al-
gorithm, the background modeling problem is considered.
Theoretical validation and real experiments are presented.

1 Introduction
Hidden Markov Models (HMM) [R89] are a powerful tool

that has been shown to be of great use in speech and signal
processing. These models (along with variants) are increas-
ingly being applied by the vision community to problems
such as image segmentation, face recognition, gesture in-
terpretation, event understanding, and background model-
ing (e.g. [BK00], [RKJB00]). HMMs provide the frame-
work for modeling dynamical or spatial dependencies and
correlations between measurements. The dynamical depen-
dencies are modelled implicitly by a Markov chain with a
specified number of hidden states and a transition matrix,
with observations that are conditionally independent given
a state.

Numerous methods for estimation of the HMM model pa-
rameters exist in the literature. These methods can be classi-
fied into two major categories: batch [R89] and incremental
([DN96] [HL98]). Some examples of the batch methods in-
clude: the EM algorithm (i.e. Baum-Welch) and segmental
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K-means algorithm. Offline methods guarantee that the pa-
rameter estimates correspond to local maxima, but are com-
putationally expensive. The online methods cited attempt
to incrementally update HMM parameters (without topol-
ogy modifications) with initial starting points determined
by batch estimation. These methods can deal with slowly
varying drifts in model parameters with the risk of not be-
ing able to track the real parameters under sudden changes.
Once the HMM parameters are estimated, the well-known
Viterbi algorithm [R89] is used to compute the likelihood
of a given observation for a HMM model.

Major issues in the use of HMMs in real world appli-
cations involve two points: real-time computation, and
topology modification to address non-stationarities due to
dynamically varying conditions. Automatic selection of
HMM topology during batch-learning phase has been ad-
dressed in the literature. These methods use state-splitting
[MCB96],[OS97], or merging, [BK00], criteria to itera-
tively estimate the optimal number of states. More re-
cently, a maximum aposteriori estimation scheme utilizing
an entropic prior was presented wherein a redundant num-
ber of states is initially assumed and weak states satisfy-
ing a given probability threshold are eliminated iteratively
[MB98]. However, dynamic update of the model topol-
ogy was not addressed in the work. Besides, state-merging
schemes are computationally intensive and online updates
are not practical.

In video analysis applications, a topology selection
scheme based on state-splitting is more applicable since the
computational complexity is reasonable and online adapta-
tion can be done. Towards this end, we explore, compare
and validate a class of state-splitting algorithms with vari-
ous well-known criteria including: a chi-squared goodness-
of-fit test, a cross-validation criterion and, an MDL stopping
criterion. The simulations point out that state-splitting with
the MDL stopping criterion provides compact topologies
with fair accuracy. A specific application in video surveil-
lance is considered to illustrate the efficacy of the selected
state-splitting algorithm.

Background modeling is an important task in video
surveillance applications [TKBM99]. This module com-

1

0-7695-1143-0/01 $10.00 (C) 2001 IEEE



putes the ”distance” between the observed image and the
current background statistical model which is used to deter-
mine all non-stationary objects in the scene. Several meth-
ods for background modeling can be found in the literature.
A widely used linear model for background modeling is the
Kalman filter [K60],[KB90]. A significant work on back-
ground modeling and adaptation can be found in [SG99]
where the distribution of each sample is approximated as
a mixture of Gaussians components. Another interesting
piece of work for real time background modeling based on
Hidden Markov Models with fixed topology was recently
introduced in [RKJB00]. In this paper, we illustrate the
use of the state-splitting algorithm for background model-
ing using topology free HMMs. Unlike the other methods
where the model is fixed and its parameters are updated, the
new framework is dynamic, (e.g. it can change naturally
the topology over time) and can deal with sudden as well as
gradual illumination changes.

This paper is organized with the following fashion. In Sec-
tion 2, we briefly introduce the Hidden Markov Model con-
cept, while in section 3 the application context is descibed.

2 Hidden Markov Models

A hidden Markov model is a stochastic finite state ma-
chine, specified by a tuple (S; A; �) where

� S is a discrete set of hidden states with cardinality N ,

� � is the probability distribution for the initial state

�(i) = P ( si ) si 2 S :

� A is the state transition matrix with probabilities:

aij = P ( sj j si ) si; sj 2 S ;

where the state transition coefficients satisfyP
sj2S

aij = 1 ; si 2 S.

The states themselves are not observable. The information
accessible consists of symbols from the alphabet of obser-
vations O = (o1; : : : ; oT ) where T is the number of sam-
ples in the observed sequence. For every state an output
distribution is given as

bi(k) = P ( ot = k j si ) k 2 O; si 2 S :

Thus, the set of HMM parameters � consists of the initial
state distribution, the state transition probabilities and the
output probabilities. HMMs can be used for classification
and pattern recognition by solving the following problems:

� The Evaluation Problem: Given the model with pa-
rameters �, calculate the probability for an observation
sequence O. Let O = (o1; :::; oT ) denote the ob-
servation sequence and S = (s1; :::; sT ) a state se-
quence. The probability P (O j �) can be obtained by
Forward Algorithm.

s1 s

s s4s

s1 s3

2 2

3

state split

Figure 1. Example of state-splitting.

� The Decoding Problem: Find the optimal state se-
quence for an observation sequence

argmaxS2ST P (S jO; �). This can be done by the
Viterbi algorithm.

� The Learning Problem: Given an observation se-
quence O and the HMM parameters, find the pa-
rameters b� which maximize P (O j �), i.e. b� =
argmax� P (O j �).

This question corresponds to training an HMM. The
state sequence is not observable. Therefore, the prob-
lem can be viewed as a missing-data problem, which
can be solved via an EM-type algorithm. In the case of
HMM training, this is the Baum-Welch algorithm.

A tutorial on HMM models, the estimation problems men-
tioned above, and their applications to speech modeling and
recognition can be found in [R89].

3 Batch Algorithms for State Splitting

We have seen that in the applications of HMM models to
vision problems we need a way to automatically select and
update the topology as well as the parameters online. Var-
ious batch versions of algorithms for state splitting can be
found in the literature. These algorithms are considered and
presented in the next section.

The basic idea behind state splitting algorithms for HMM
topology estimation is to perform a search over all hidden
Markov models up to a certain maximum number of states.
An appropriate model selection criterion can be used to
choose the best model. The major open issues here include:

� The selection of the criterion function that is used dur-
ing for model comparison,

� The initialization of the starting point for the iterative
algorithm that estimates model parameters.

� The computational complexity of the model search.

3.1 State Splitting Using A Goodness-Of-Fit Test

The main idea is to perform the HMM model parameter
estimation for a given number of hidden states. This is done
by the Baum-Welch algorithm. Thus, given the model pa-
rameters, an optimal state labeling of the observations is
obtained using the Viterbi algorithm. This in turn provides
a mechanism for estimating the histograms corresponding
to the conditional likelihood of the observations given state
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values. A goodness of the fit test is then used to compare
the histograms with their continuous counterparts provided
by the HMM model parameters estimated. Discrepancies in
the goodness of the fit measure correspond to bad approxi-
mations. There is a number of similarity test measures like
the the chi-squared test and the Kolmogorov-Smirnov test.
In this paper the chi-squared test is considered.

In our algorithm, the chi-squared test is used to test
whether the data is Gaussian. If this hypothesis is rejected
with high significance (95%), then the state is split. There
has been prior work on state-splitting using the goodness of
fit tests. Montacié et al. selects threshold values heuristi-
cally [MCB96].

3.2 State Splitting Using a Cross Validation Cri-
terion

The idea behind cross-validation techniques is to test mod-
els for generalization performance [Z93]. The available
data is split into a training set, which is used to adapt the
model parameters, and a test set to assess the model perfor-
mance on new data. With increasing model complexity, the
error on the training set is expected to decrease. However,
on the validation set the error will begin to increase beyond
a certain model complexity because of overfitting to a given
training set. The model complexity is measured in terms of
the number of states while the model performance is evalu-
ated using the log-likelihood.

Testing for generalization performance is the idea of the
following algorithm:

1. Start with an HMM with N = 1 state.

2. Train the model on the training set using the Baum-
Welch algorithm.

3. Compute the data likelihood of the test set, given this
model.

4. If the likelihood on the test set decreases with the split,
stop.

5. Select a split candidate with a goodness-of-fit test and
split this state.

6. Goto step 2.

There is, however, the issue of how one should select the
splitting candidate in step 5. One option is a goodness-
of-fit test. This test is not efficient when higher than one-
dimensional output distributions are considered. Another
possibility is to use a heuristic ‘variability’ criterion com-
puted for every state [TS92]. Finally, the method that is
used in our experiments is to test for a likelihood increase
on a constrained parameter subset [OS97].

The term for the expected log-likelihood of the observed
data O and the state sequence S, given the parameters � can

be written as, (see [OS97]):

E [ log p(O; Sj�)jO; �] =
X
i;j2S

TX
t=1

[p(st = j; st�1 = ijO; �)

log p(st = j j st�1 = i; �)]

+
X
j2S

TX
t=1

p(st = j jO; �) log p(st = j jO; �) :

This is basically the term which is maximized in the M
step of the Baum-Welch algorithm. A computationally ex-
pensive idea is to split each state j 2 S, calculate the like-
lihood and determine the state that provides the largest in-
crease in likelihood with respect to the likelihood of the cur-
rent model.

In order to reduce the complexity, one can constrain the
unknown parameters: all transition probabilities are re-
tained except for the transitions from and to the split can-
didate [fig. (1)]. This method reduces the state probability
parameters to estimate from (N � 1)2 to 3N � 1 and the
number of output parameters from N�(1) to 2�(1), where
N is the number of states and �(1) is the number of param-
eters of the output density.

The increase in likelihood G(i); i 2 S for a split is then
just the difference in the terms of the sum containing the
split i candidate and the two new states ~i1;~i2, is given by

G(i) = �

TX
t=1

[p(st = i; st�1 = i jO; �) log p(st = i jO; �)

log p(st = i j st�1 = i; �) + p(st = i jO; �) ] +
TX
t=12

4 X

k;j2 ~S

p(st = j; st�1 = k jO; �) log p(st = j j st�1 = k; �)

+
X

j2 ~S

p(st = jjO; �) log p(st = jjO; �)

3
5 ;

where ~S denotes the set of the two states (~i1;~i2) resulting
from splitting state i.

However, the search space is still rather large, because
we are looking for the optimal transition probabilities and
output density parameters at the same time. In the speech
recognition community this problem has been approached
by dividing splits into two categories (see [J97]):

� In contextual splits, the transition probabilities are
fixed and only the likelihood increase by adapting the
output densities is estimated.

� In temporal splits also the transition probabilities are
adapted.

The likelihood increase for both of these domains are com-
puted and the better one is chosen. It is clear that the consid-
ered goodness-of-fit test corresponds to a contextual split.
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3.3 State Splitting Using an MDL Criterion

In this section an algorithm is presented, which uses the
minimum description length costs as a stopping criterion.
The splitting procedure is performed as described in the pre-
vious section. In this version of the algorithm, the idea is to
keep a copy of the current HMM with N states (modelMN )
and test the likelihood increase when splitting a state (model
MN+1). Thus, for an HMM with data vectors of dimension-
ality d, Gaussian densities for the observations in each state,
the state splitting criterion according to the MDL principle,
[R86], is given by (selection of the MN+1 model),

logL(b�MN+1
jx) � logL(b�MN

jx)

>

�
N +

d2 + 3d

4

�
logn :

We can do the same analysis for other model selection cri-
teria such as the AIC criterion [A74].

The state splitting scheme using the MDL-criterion can be
written therefore as follows:

1. Initialize a model with N=1 states and train
the model with the Baum-Welch algorithm.

2. Select the split which maximally increases
the likelihood on a constrained subset of pa-
rameters.

3. Determine the likelihood increase for the
complete model by training a model after
state-splitting with Baum-Welch.

4. If the increased likelihood is larger than the
MDL penalty difference, split and goto step
2, else stop.

4 An Online Training Algorithm

For some applications, for example in the case of a con-
tinuous data stream, the batch learning algorithm alone is
not very suitable. If we would like to apply batch learning
in these cases, we would have to use sections of the input
stream of a certain length and train the model on this data
in intervals. But several open issues have to be dealt with
in this method: the selection of the length of the time inter-
vals, the integration of the existing knowledge as well as the
cases of non-stationarity.

In this section an online learning algorithm is presented,
which can be used to train an HMM. Theoretical justifica-
tion can be found in incremental versions of the EM algo-
rithm [N91],[NH98],[FR97].

In the online version of the algorithm, the model is up-
dated after each sample value. The idea is that the forward
variables � in the forward algorithm, [R89], are updated in
every step. These variables give the probability of observ-
ing o1; :::; ot and being in state i 2 S at time t:

�t(i) = P (st = i; o1; :::; ot) i 2 S :

They can be updated as in the batch learning version, so in
the first step the forward variables are set to

�1(i) = �(i) p(o1 j s1 = i) i 2 S ;

where � is the initial state distribution, which may include
some prior knowledge. In the experiments, a uniform distri-
bution on the states was used. With every observation, the
� values are updated by summing the probabilities over all
possible paths, which end in the new state j 2 S:

�t(j) =

"
NX
i=1

�t�1(i) aij

#
p(ot j st = j) j 2 S :

The online learning problem is addressed by setting the
backward variables to 1, since for t0 > t no observations
are known. Therefore, the current time instant t is assumed
to be T :

�t+1(j) = P (ot+2:::oT j st+1 = j) = 1 j 2 S :

Thus, the probability of being in a particular state i 2 S at
time instant t, given the observation, can be written as:

t(i) := P (st = i j o1; :::; ot)

=
P (st = i; o1; :::; ot)

P (o1; :::; ot)
=

�t(i)PN

i=1 �t(i)
:

The probability of a certain state transition i ! j given
the observation is:

P (st�1 = i; st = j j o1; :::; ot)

=
P (st�1 = i; o1; :::; ot�1)P (st = jjst�1 = i)P (otjst = j)

P (o1; :::; ot)

=
�t�1(i) aij p(ot j st = j)PN

i=1 �t(i)
:

These formulas give us the re-estimation scheme. In every
step the � variables are computed and used to update the
model parameters:

� Initialize the � variables and the model parameters.

� At every time step T update the state probabilities

t(i) := P (st = i j o1; :::; ot) and P (st�1 = i; st =
j j o1; :::; ot),
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and use these values to update the model parameters
(8i; j 2 S):

baTij =
PT

t=1 P (st�1 = i; st = j j o1; :::; ot)PT
t=1 t(i)

=

PT�1
t=1 t(i)PT
t=1 t(i)

baT�1ij +
P (sT�1 = i; sT = j j o1; :::; oT )PT

t=1 t(i)

b�Ti =

PT
t=1 t(i) otPT
t=1 t(i)

=

PT�1
t=1 t(i)PT
t=1 t(i)

b�T�1i +
T (i) oTPT
t=1 t(i)

b�T
i =

PT
t=1 t(i) (ot � b�Ti )(ot � b�Ti ) 0PT

t=1 t(i)

=

PT�1
t=1 t(i)PT
t=1 t(i)

b�T�1
i +

T (i) (oT � b�Ti )(oT � b�Ti ) 0PT
t=1 t(i)

The sums in these equations are computed by storing the
values and adding the new terms. This can be seen as
continually updating sufficient statistics, which are used to
compute the new parameters. A problem with this method
is, that all values from t = 1 to the current time instant
are used to compute the sufficient statistics. If the initial
parameter settings are far away from the true values, the
errors made at this stage will slow down the convergence
process. Also, non-stationary data sources are not well han-
dled. Solutions to these problems are to compute the suf-
ficient statistics only over a finite time window, or to use
exponential forgetting. When using a time window, the past
values have to be stored, which requires a lot of memory.
Therefore, a version of the algorithm using exponential for-
getting was implemented. In this algorithm, estimates prior
in time receive less weight.

The basic idea is to replace the sums in the above re-
estimation formulas by variables which are updated recur-
sively, for example the term

PT
i=1 t(i) is replaced by vari-

ables RT
 (i) which are updated:

RT
 (i) = (1� �) RT�1

 (i) + � T (i) � 2 (0; 1) :

This is done for all sum terms in the re-estimation formulas
for the state probabilities and the distribution parameters.

5 Experiments

Simulations have been conducted to study the various
methods described above. Within these experiments, the
number of states for the generated HMMs was between
three and five while training sets with 100 to 1000 samples
have been considered.

The sensitivity of the schemes were studied by the mean
and standard deviation of the topology (in this case the num-
ber of states of the HMM) as a function of the sample sizes.
It is expected that as the sample size increases the accuracy
of the estimation increases. Figure 2 illustrates the result of
applying state-splitting algorithm using this test on a sim-
ulated data set with three states. In 1000 test sequences,
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Figure 2. State-Splitting using the �2-test. A three-
state HMM is generated. (a) Input distribution. (b)
Output distribution using a three-states HMM model.

Sample 1 2 3 4 5 Mean Std Dev.
100 61 562 197 138 42 2.538 0.948
200 25 277 318 271 109 3.162 1.028
300 0 146 501 236 117 3.324 0.863
400 0 11 596 274 119 3.501 0.714
500 0 47 562 296 95 3.439 0.728
750 0 0 828 152 20 3.192 0.442

1000 0 0 842 144 14 3.172 0.413
1500 0 0 895 92 13 3.118 0.361
2000 0 0 909 81 10 3.101 0.333

Figure 3. Cross-validation algorithm results. Col-
umn data for cols labelled 1 through 5 correspond
to frequencies with which model with corresponding
number of states were chosen.

a model with 3 states was estimated in 94.1% of the cases.
However, the main drawback of this algorithm is the robust-
ness in the case of false splits. There were as many as seven
states estimated for certain test sequences.

In the case of cross-validation however, we note that that
topologies obtained were better. The mean number of states
was 3.172 with a standard deviation of 0.413 thus showing
that 100% of the time the number of states estimated was
five states or less. Figure 3 shows the results obtained for
samples of different sizes for the cross-validation criterion.
In these tests, the first half of the sample is used as training
set, the second half as test set. The table shows the result of
the algorithm obtained with 1000 test sequences.

The MDL criterion had the best behavior among those
tested. Figure 4 shows the behavior of the state splitting
algorithm with the MDL criterion (for an HMM with four
states). As one can see the standard deviation for number of
states estimated is 0.045 with a sample size of 1000. This
means that the state splitting method with MDL criterion
produced between three to five states almost surely. To il-
lustrate the behavior of the MDL based state-splitting algo-
rithm and to compare the MDL and AIC criterions, we use
an HMM with three states and feature vectors with dimen-
sion 2. Figure 5 shows a run of the algorithm using a sample
size of 500.

The corresponding negative log-likelihood (i.e. cost with
no priors), MDL costs, and AIC costs are shown in figure 6.
Note how the MDL cost function has a local minimum for
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Samples 1 2 3 4 5 6 Mean Std Dev.
100 0 53 465 462 20 0 3.449 0.627
200 0 48 268 631 53 0 3.689 0.645
300 0 0 160 738 81 21 3.963 0.569
500 0 0 72 826 92 10 4.040 0.450
750 0 0 47 907 46 0 3.999 0.305

1000 0 0 0 998 2 0 4.002 0.045

Figure 4. MDL-based state-splitting algorithm re-
sults for HMM with four states.
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Figure 5. Illustration of the MDL state split over
time.

the 3 state model and has higher curvature and hence has
better properties than the AIC criterion.

5.1 Experiments with the Online Version

As expected, our experiments showed that the online ver-
sion without exponential forgetting was sensitive to the ini-
tial values. One reason is that initial estimates may be
far away from the true parameters, but are nevertheless
weighted equally to all other estimates in every new estima-
tion step. The second version of the algorithm, which uses
exponential forgetting, solves the problem of adaptation to
non-stationary data sources.

This version of the algorithm was tested by using a two
state model. It can be seen that by using different learning
parameters � one can adapt the speed of the convergence.
However, the faster this adaptation, the larger is the stan-
dard deviation of the estimates. If the learning parameter
is chosen too large, the estimates of the state transitions are
not very robust. It was also found that the variance esti-
mates first increase before they decrease again to converge
to the true values. This is due to the estimation errors in the
means due to small sample size in the beginning.

In a second experiment, the ability to adapt to non-
stationary data sources was tested. This was done by chang-
ing the parameters of the generating HMM. The transition
probability matrix is switched fromA0 to A1 and the output
distribution parameters of state s0 is changed from (�0; �

2
0)

to (�1; �
2
1), where

A0 =

�
0:9 0:1
0:2 0:8

�
; �0 = 100:0; �20 = 100:0;

7650

7700

7750

7800

7850

7900

7950

8000

8050

8100

1 2 3 4 5 6 7 8 9 10

-2
 lo

g 
lik

el
ih

oo
d

number of states

-2 log likelihood
MDL
AIC

Figure 6. Negative log-likelihood, MDL and AIC
costs for HMMs with different numbers of states (cor-
responding to figure 5).
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Figure 7. Adaptation to a non-stationary data
source: (a) Online Update, (b) Online Update with
exponential forgeting. (i) Transition Probabilities, (ii)
Means, (iii) Variances.
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In figure 7 samples of length 2000 are generated with a
two-state HMM. At data point 1000, the model parameters
were changed. The plots show the means and standard de-
viations of parameter estimates, determined by running the
algorithm 1000 times using the same initial values. For the
original online update algorithm the model converges with
a very slow rate.

6 Application to Background Modeling

Real-time video processing is a key feature in a number
of surveillance applications like traffic surveillance, subway
monitoring or building surveillance. In most of the cases
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the basic module of such applications refers to background
subtraction. This module computes the ”distance” between
the observed image and the current background model. This
distance is used to determine all non-background objects
in the scene. To perform reliable object detection a robust
estimate of the background model is needed.

However, in many applications the background is non-
stationary (e.g. outdoors, indoors with several configu-
rations of the illumination sources). This task is consid-
ered to demonstrate the topology free MDL-splitting Hid-
den Markov Models concept. The considered application
refers to two scenarios: a subway environment with typi-
cally two global states, train arrival and departure, and an
indoor environment with two possible configurations of the
light source. The HMM state split algorithm is used over
a training sequence, and the algorithm generates the back-
ground model that consists of two states.

Figure 8 illustrates the use of global intensity means in
track area to analyse train arrivals and departures in a sub-
way setting.

The online algorithm was tested on the data. The plot of
the intensity means in the track area over time is shown in
[fig. (9)]. The peaks correspond to a train which is stopping
at the station. It can be observed that the illumination inten-
sity shifts over time and the online algorithm tracks these
shifts. Initialization is done using the state-splitting algo-
rithm (it produces 2 states) and the means are then adapted
with the online algorithm.

A demonstration of this model is shown in [fig. (10)]. A
person enters and walks in the room while a change on the
light source configuration occurs. The HMM background
model instantly switches to the appropriate state and pro-
vides the expected classification result. As it is clearly
shown in both cases the person is detected as foreground al-
though we have to deal with extreme light conditions. How-
ever, some errors occur due to shadows which can be dealt
with by the use of illumination invariants. Inter-pixel con-
straints can be also used to deal with this problem.

In order to validate state splitting HMM-based back-
ground modeling algorithm, a comparison with a well
known and widely used algorithm for background adapta-
tion [SG99] is shown (See figure 10). This algorithm cannot
deal with sudden global changes and one can see that nearly
the whole frame is classified as foreground when a global
lighting change occurs. 1 An HMM model handles sud-
den global state changes better as illustrated in the figure.
It has to be noted here that our tests were done offline (i.e.
on digitized video files) and that in the HMM state-splitting
method the first light turn-off/on event after the initializa-
tion will cause the state splitting. At subsequent times,
the algorithm has already adapted to the right model. The
method presented in their current form is mainly suited for
indoor settings with finite number of global state changes.

1The exponential forgetting factor in this algorithm can be adapted to
deal with rapid sudden changes in illumination at the expense of possibly
missing slowly moving objects with low contrast.
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Figure 8. Top: Example Subway data used, Middle:
Plot shows 2 states, the presence (s1) or absence (s0)
of a train in the station, Next: Intensity means of the
track region over time. Bottom: A two-state model
learned from annotations.

Real-time implementation and evaluation of the online al-
gorithm’s behavior under more realistic scenarios is a sub-
ject of further research.

7 Conclusion

In this paper we described a solution to the batch and on-
line estimation of HMM topology. For computer vision
problems where the online estimation is critical, we believe
that state-splitting is the most reasonable approach since it is
computationally efficient. We compared several state split-
ting criterions such as the chi-squared goodness-of-fit test,
the cross-validation criterion and the MDL and AIC crite-
rions. It was seen that the MDL criterion performed the
best in terms of minimal variance on the number of states
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Figure 9. Online adaptation of state parameters. The
plot shows the intensity means of the track region.

estimated. The topologies were compact and provided the
right tradeoff between approximation error and model sim-
plicity. An online version of the HMM topology estimation
algorithm was also presented. Both the online versions and
offline versions were tested on real data. The online ver-
sion with exponential forgetting was applied to real data ex-
tracted from subway video sequences to illustrate the adap-
tation to change in statistics of the process. In addition, the
HMM was shown to be useful at handling global illumina-
tion effects when compared to an online adaptive algorithm
for background adaptation. Future work involves compu-
tational speedup of the algorithm and modification of the
algorithm to address merging of states.
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