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Abstract. In the network querying problem, one is given a protein com-
plex or pathway of species A and a protein–protein interaction network
of species B; the goal is to identify subnetworks of B that are similar
to the query. Existing approaches mostly depend on knowledge of the
interaction topology of the query in the network of species A; however,
in practice, this topology is often not known. To combat this problem,
we develop a topology-free querying algorithm, which we call Torque.
Given a query, represented as a set of proteins, Torque seeks a matching
set of proteins that are sequence-similar to the query proteins and span
a connected region of the network, while allowing both insertions and
deletions. The algorithm uses alternatively dynamic programming and
integer linear programming for the search task. We test Torque with
queries from yeast, fly, and human, where we compare it to the QNet
topology-based approach, and with queries from less studied species,
where only topology-free algorithms apply. Torque detects many more
matches than QNet, while in both cases giving results that are highly
functionally coherent.

1 Introduction

Sequence-based searches have revolutionized modern biology, serving to infer
gene function, homology relations, protein structure, and more. In the last few
years, there has been an effort to generalize these techniques to the network level.
In a network querying problem, one is given a small subnetwork, corresponding
to a pathway or a complex of interest. The goal is to identify similar instances in
a large network, where similarity is measured in terms of sequence or interaction
patterns.

The largest body of previous work on network querying concerns querying
subnetworks across species. Kelley et al. [14] and later Shlomi et al. [29] devised
fixed-parameter algorithms for querying linear paths within a protein–protein
interaction (PPI) network. These algorithms were subsequently extended in the
QNet software to allow searching for trees and bounded treewidth graphs [23].
A related work by Pinter et al. [21] presented a polynomial algorithm for detect-
ing homeomorphic subtrees within a tree representing a collection of metabolic



pathways. Another approach that relaxes the homomorphism but requires target
and query nodes to agree in their neighborhood was given by Narayanan and
Karp [18]. Sohler and Zimmer [30] developed a general framework for subnetwork
querying, which is based on translating the problem to that of finding a clique in
an appropriately defined graph. Due to its complexity, their method is applicable
only to very small queries. Yang and Sze [35] examine both query paths and the
general case, but since their method is based on exhaustive enumeration, it can
also handle only small queries.

Another line of work on network querying has been the search for small motifs
that are defined in terms of the functional attributes of their member proteins
and the interactions among them. Lacroix et al. [16] suggested a branch-and-
bound approach for finding connected subgraphs whose vertex set matches a
query, which they applied to small queries (of size 2–4) only. Betzler et al. [4]
gave a fixed parameter algorithm for the latter problem and some extensions of
it. An additional heuristic solution was offered by Zheng et al. [37] to a similar
problem, in the context of querying metabolic networks. Finally, Ferro et al. [9]
presented the GraphFind algorithm, which utilizes fast heuristics for subgraph
isomorphism to identify approximate matches of queries within a collection of
networks.

A limitation of the approaches above (except for [16],[4]) is that they rely on
precise information on the interaction pattern of the query pathway. However,
often this information is missing. For example, hundreds of protein complexes
have been reported in the literature for yeast [27], human [25], and other species.
However, for most of these complexes no information exists on their interaction
patterns [36], motivating a topology-free approach for the querying problem.

Here we devise Torque (TOpology-free netwoRk QUErying), a novel ap-
proach for network querying that does not rely on knowledge of the query topol-
ogy. The input to our method is a set of proteins, representing a protein complex
or pathway of interest and a network in which the search is to be conducted.
The goal is to find matching sets of proteins that span connected regions in the
network. The corresponding theoretical problem that we study is searching a
colored graph for connected subgraphs whose vertices have distinct given col-
ors. We provide fixed-parameter algorithms that are based on the color-coding
paradigm [1] and dynamic programming (DP) for several variants of this prob-
lem. In addition, we provide an integer programming (ILP) formulation of it.
That formulation includes a novel way to describe subgraph connectivity con-
straints, which can be useful in other problems as well. The methods can handle
edge weights, insertions of network vertices (that do not match any query pro-
tein), and deletions of query nodes. By using DP and ILP approaches, we can
query complexes of all sizes within current networks in reasonable time.

We applied Torque to query about 600 known complexes of size 4–25 from
a variety of species in the PPI networks of yeast, fly and human. We tested our
algorithm both on queries from species for which a PPI network is available,
where we compared it to the QNet [23] topology-based approach, and on queries
from less studied species, where only topology-free algorithms apply. Torque
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detected many more matches than QNet, while in both cases giving results that
are highly functionally coherent.

Due to space limitations, some proofs are omitted. They will be included in
a full version of this manuscript.

2 Algorithms

Let G = (V,E) be a PPI network where vertices represent proteins and edges
correspond to PPIs. Denote |V | = n and |E| = m. For a vertex v, let N(v)
denote the set of its neighbors, i. e., N(v) = {u : (u, v) ∈ E}. For two disjoint
sets S1 and S2, we write S1 ]S2 for their union S1 ∪S2. We denote by G[K] the
subgraph of G induced by the vertex set K.

Given a set of colors C = {1, 2, . . . , k}, a coloring constraint function Γ :
V → 2C associates with each v ∈ V a subset of colors Γ (v) ⊆ C. For S ⊆ C, we
define a subset H ⊆ V as S-colorful if |H| = |S| and there is a function c that
assigns each v ∈ H a color from Γ (v), such that there is exactly one vertex in
H of each color in S. The basic problem that we study is the following:

Problem 1 (C-colorful Connected Subgraph). Given a graph G = (V,E),
a color set C, and a coloring constraint function Γ : V → 2C , is there a connected
subgraph of G that is C-colorful?

This problem was shown to be NP-complete by Fellows et al. [8], even for the
case of trees of maximum degree 3. Here we provide fixed-parameter tractable
algorithms for several variants of this problem, where the parameter is the size
of the query complex. A problem is fixed-parameter tractable with respect to a
parameter k if an instance of size n can be solved in O(f(k)·nO(1) time, where f is
an arbitrary function. Thus, fixed-parameter algorithms allow solving relatively
large instances of NP-hard problems exactly [19], as long as the parameter value
is modest.

2.1 Single color constraints

In the first variant of the problem, we consider only coloring constraint functions
that associate each v ∈ V with a single color. In this case, the input is a graph
where each vertex is assigned a color from C, and we aim to find a connected
subgraph having exactly one vertex of each color.

Since every connected subgraph has a spanning tree, it suffices to look for
colorful trees. This problem has been studied by Scott et al. [26] in another
context, as well as by Kalaev et al. [13], Betzler et al. [4]. For completeness,
we provide a dynamic programming (DP) algorithm, which is the unweighted
version of the algorithm given by Scott et al. [26]. We construct a table B with
rows corresponding to vertices and columns corresponding to subsets C ′ ⊆ C. We
define B(v, S)= True if there exists in G a subtree rooted at v that is S-colorful,
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Fig. 1. Network query problems. Left: the network, where vertex j is non-colored.
Right: queries. For the basic problem disallowing indels, Q1 is solved by {c, b, i}, while
Q2 and Q4 have no solution. When allowing a single arbitrary insertion, Q2 has so-
lution {a, d, h, i} and Q4 has the solution {a, b, c, d, i}. When allowing a single special
insertion, Q3 has the solution {a, b, g, j}. When allowing one deletion, Q2 has the solu-
tions {a, d}, {i, f}. When allowing repeated nodes and no indels, Q5 has the solution
{b, c, i, f, g}.

and False otherwise. For S = {γ} and v ∈ V we initialize B(v, γ) =True iff
Γ (v) = {γ}. Other entries of B can be computed using the following recurrence:

B(v, S) =
∨

u∈N(v)
S1]S2=S

Γ (v)∈S1,Γ (u)∈S2

B(v, S1) ∧B(u, S2), (1)

The algorithm runs in O(3km) time3. One can easily generalize (1) to the
weighted case, where each edge is assigned a weight, and the heaviest tree is
sought.

Insertions and Deletions. Exact matches are often impossible due to evolution-
ary variation and noise in the data. Hence, we would like to allow deletions of
query proteins that cannot be matched and insertions of network proteins that
assist in connecting matched vertices. Deletions can be directly handled by the
DP algorithm: If no C-colorful solution was found, then B(v, C) =False for all v.
Allowing up to Ndels deletions can be done by scanning the entries of B. If there
exists Ĉ ⊆ C such that |Ĉ| ≥ |C| − Ndels, and B(v, Ĉ) =True then a valid
solution exists.

When allowing insertions, there are several problem variants to consider (see
Figure 1). In the first variant, some network vertices are not assigned a color, and
only non-colored vertices can be inserted. For convenience, assign non-colored
vertices the color 0. Let us call such insertions special.
3 It can be further reduced to O(2km) using the techniques of Björklund et al. [5];

however, this version cannot be generalized to the weighted case, so we do not use
it in the following.
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Definition 1. An S-colorful solution allowing j special insertions is a connected
subgraph H ⊆ G, where ∃H ′ ⊆ H such that V (H ′) is S-colorful and all other
vertices of H are non-colored.

An obvious extension of the DP algorithm to handle up to Nins special insertions
is based on the color-coding paradigm of Alon et al. [1]: Randomly color the non-
colored vertices with Nins new colors and use DP to look for colorful trees. This
procedure is repeated a sufficient number of times to ensure that every tree is
colorful with high probability. However, the running time increases by a factor
of (3e)Nins . We provide a more efficient solution below.

Theorem 1. Finding a C-colorful connected subgraph with up to Nins special
insertions can be solved in O(3kmNins) time.

Proof. We extend the DP table to represent also the number of special insertions
used in an intermediate solution. Formally, B(v, S, j) iff there is an S-colorful
subtree rooted at v that allows j special insertions, and j is the minimal number
of insertions possible. Here j ranges between 0 and Nins. We initialize the table
by setting all entries to False, except: (i) For γ 6= 0, B(v, {γ}, 0) iff Γ (v) = γ;
and (ii) if Γ (v) = 0, B(v, ∅, 1). Entries for which |S| ≥ 1 and j > 0 are then
computed using the following recurrence:

B(v, S, j) =
[ ∨
u∈N(v)
S1]S2=S
j1+j2=j

B(v, S1, j1) ∧B(u, S2, j2)
]
∧ ∀j′ < j : ¬B(v, S, j′) (2)

We prove correctness by induction on |S| and j. The cases j = 0 and S = ∅
are immediate. Therefore, consider j > 0 and as the first case S = {γ} (i. e.,
|S| = 1). By definition:

B(v, {γ}, j) ⇐⇒ ∃u ∈ N(v), S1, S2, j1, j2 :
B(v, S1, j1), B(u, S2, j2), S1 ] S2 = {γ}, j1 + j2 = j, ∀j′ < j : ¬B(v, {γ}, j′)

Assuming there are u, S1, S2, j1, j2 as above, then S1 cannot be {γ} since ∀j′ <
j : ¬B(v, {γ}, j′). It follows that S1 = ∅ and S2 = {γ}, implying that Γ (v) = 0,
j1 = 1, and j2 = j−1 (see initialization of B). By the induction hypothesis on j,
B(u, {γ}, j − 1) implies that there exists a tree T rooted at u having one vertex
colored γ and a minimal number of j − 1 non-colored vertices. Clearly, v /∈ T .
Otherwise, there will be a tree T ′ rooted in v having one vertex colored γ and
j′ < j special vertices, in contradiction to the minimality of j. Since u ∈ N(v),
then T ]{v} is a tree having one vertex colored γ and j non-colored vertices, as
desired.

It remains to handle the case where |S| > 1. By definition:

B(v, S, j) ⇐⇒ ∃u ∈ N(v), S1, S2, j1, j2 :
B(v, S1, j1), B(u, S2, j2), S1 ] S2 = S, j1 + j2 = j, ∀j′ < j : ¬B(v, S, j′)
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Suppose such u, S1, S2, j1, j2 exist. Then by the induction hypothesis, there is
a tree Tv rooted at v that is S1-colorful and contains a minimal number j1 of
special vertices. Similarly, there is a tree Tu rooted at u that is S2-colorful and
contains a minimal number j2 of special vertices. Tu and Tv are clearly disjoint:
Otherwise, there would be another tree T ′ rooted at v which is S-colorful and
contains j′ < j1 + j2 special vertices, in contradiction to ¬B(v, S, j′). Since
u ∈ N(v), the union of these trees is (S1 ] S2)-colorful and has j1 + j2 special
vertices, as desired.

To achieve the stated running time, we maintain an auxiliary function t(v, S)
which is set to j when for the first time B(v, S, j) is true for some j. In the
recursion (2), we replace the condition j1 + j2 = j by t(v, S1) + t(u, S2) = j.
Since the table is (Nins + 1) times the size of the table in the basic case, the
running time increases by a factor of Nins compared to the basic case. ut

In a second variant of insertion handling, any vertex can be inserted (rather
than only non-colored ones). We solve this variant by using the algorithm for the
problem with special insertions as a black box. Instead of running the algorithm
on the input graph G, we run it on an auxiliary graph G′ = (V ′, E′), which
is constructed as follows: Add a non-colored copy v0 for each v ∈ V , and set
E′ = E ∪ {(v0, u) | (v, u) ∈ E} ∪ {(v0, u0) | (v, u) ∈ E}. This variant has a
running time of O(Nins3km).

2.2 Multiple color constraints

We now turn to the more general case, where a color constraint function can
associate each vertex with a set of colors and not just a single color. This problem
arises when a network vertex protein is homologous to several query proteins.
Betzler et al. [4] gave a fixed-parameter algorithm for the problem, where the
running time is increased by a factor of (2e)k compared to the case of single color
constraints. Here we give an alternative fixed-parameter algorithm (coupled with
some speedup heuristics). The basic idea is to reduce the problem to the single
color case by randomly choosing a single valid color for every vertex. Our main
effort is in computing an upper bound on the number of coloring iterations
needed.

Define a color graph to be a bipartite graph B = (V,C,E) where V is the
set of network vertices, C is the set of colors and (v, c) ∈ E ⇐⇒ c ∈ Γ (v).
Consider a possible match to the query; for clarity, we assume that this match
does not contain insertions or deletions. Then we can prove the following bound:

Theorem 2. The probability for a subset of vertices of size k to become colorful
in a random coloring is at least 1

k! .

The above theorem implies an overall running time of O(k!3kmN2
ins) in the

case of multiple color constraints. However, this bound is excessive in many
instances, for the following reason. Let V ′ be a colorful set of vertices. Follow-
ing [23], define the constraint graph G(V ′) as follows: the vertices are the colors,
and an edge exists between two colors γ1, γ2 if there is a vertex v in V ′ such
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that γ1, γ2 ∈ Γ (v). The resulting graph is then partitioned into connected com-
ponents P1, P2, . . . , Ps. This partition induces a partition of the colored network
vertices into sets Q1, Q2, . . . , Qs, where all the vertices of Qi can be colored only
by colors from Pi. The expected number of iterations required for a Pi-sized
subset of Qi to become colorful is bounded by |Pi|!, and thus the number of
iterations required for a solution of size k to become colorful is bounded by∏s
i=1 |Pi|!. Therefore, since the number of iterations required by the algorithm

is bounded by the number of iterations required before V ′ becomes colorful, the
expected number of iterations of the algorithm is also bounded by the same
product. Note, however, that the bound cannot be precomputed, although an
upper bound can be obtained by taking V ′ = V .

We can reduce this upper bound using the following two rules: (i) If for
some i, the product of all color degrees in Qi is smaller than |Pi|!, then it is
beneficial to exhaustively enumerate all possible colorings of Qi. (ii) By Hall’s
Theorem [17], if a graph has a perfect matching and its minimum degree is d,
then it has at least d! perfect matchings. Therefore, if the minimal color degree
in Qi is d, |Pi|!

d! random iterations suffice.

2.3 An integer programming formulation

In this section we provide an ILP formulation of the network querying prob-
lem, allowing us to employ industrial solvers that on certain instances are faster
than DP. Formally, the problem that we aim to solve using the ILP is Prob-
lem 1 (C-colorful Connected Subgraph) with exactly Nins arbitrary in-
sertions. Further, we are given edge weights ω : E → Q and wish to find a
vertex subset K ⊆ V of size t := k +Nins that maximizes the total edge weight∑

(v,w)∈E,v,w∈K ωvw.
We declare binary variables {cv : v ∈ V } that express whether a vertex v is

selected into the complex K. It is easy to give constraints that ensure correct
coloring; the difficulty is in expressing the connectivity. The idea is to find a
flow4 with t− 1 selected vertices as sources of flow 1, and a selected sink r that
drains a flow of t − 1, while disallowing flow between non-selected vertices. We
use the following variables:

{cv : v ∈ V }, cv ∈ {0, 1} vertex v is selected (v ∈ K) (3)
{evw : (v, w) ∈ E, v < w}, evw ∈ {0, 1} edge (v, w) is in G[K] (4)
{rv : v ∈ V }, rv ∈ {0, 1} vertex v is the sink (5)
{fvw, fwv : (v, w) ∈ E}, fvw, fwv ∈ Q flow from v to w/w to v (6)
{gvγ : v ∈ V, γ ∈ Γ (v)}, gvγ ∈ {0, 1} vertex v has color γ (7)

4 That is, a function f : V × V → Q that satisfies skew symmetry (∀v, w ∈ V :
f(v, w) = −f(w, v)) and flow conservation (

∑
w∈V f(v, w) = 0) for all vertices v

except sources and sinks; see e. g. Cormen et al. [7] for an introduction on flows.
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and the following constraints∑
v∈V

cv = t (8)∑
v∈V

rv = 1 (9)

evw ≤
1
2
cv +

1
2
cw ∀(v, w) ∈ E (10)

fvw = −fwv ∀(v, w) ∈ E (11)∑
w∈N(v)

fvw = cv − trv ∀v ∈ V (12)

fvw, fwv ≤ (t− 1)evw ∀(v, w) ∈ E (13)∑
γ∈Γ (v)

gvγ ≤ 1 ∀v ∈ V (14)

∑
v∈V

gvγ = 1 ∀γ ∈ C (15)

gvγ ≤ cv ∀v ∈ V, γ ∈ Γ (v) (16)

with the objective
maximize

∑
(v,w)∈E

ωvwevw. (17)

The ILP can be easily adapted to allow Ndel deletions by changing the con-
straint (15).

3 The implemented algorithm

We implemented a pipeline for querying a complex given as a set of proteins
from a source species, in the PPI network of a target species. For each complex,
Torque is applied with increasing number of allowed indels until a match is
found or a pre-specified bound on the number of indels is reached. We use the
multiple colors per vertex model and arbitrary insertions. The possible matches
for the query in each network sub-component (see below) are assigned a score
based on edge weights, and the highest scoring match is finally output. We will
now describe the stages of the algorithm, the scoring scheme, and the parameters
we used for our testing.

Preprocessing. A protein complex is specified as a set of proteins. We associate
a distinct color with each query protein and define a corresponding coloring
constraint function. Each vertex in the target network is associated with a subset
of colors corresponding to the query proteins it is sequence-similar to. In practice,
only 5% of the vertices on average are associated with one or more colors. The
rest are treated as non-colored.
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While some of the non-colored vertices can be used as insertion vertices, many
are too far from any colored vertex to be feasible insertions under the given upper
bound Nins. Let v be a non-colored vertex, and let d0(u, v) be the the length
(number of edges) of the shortest path between u and v where every vertex on
the path is required to be non-colored. We keep v if there are colored vertices
u1, u2 such that d0(u1, v) + d0(u2, v) ≤ Nins + 1, and the corresponding paths
are vertex-disjoint. Otherwise, we remove v from the network. On the networks
and complexes that we tested (see below), subnetworks containing only colored
vertices are usually of size less than 50, those allowing 1–2 insertions have 200–
1000 vertices, and those allowing more insertions typically cover up to 99% of
the network.

After computing the current subnetwork to search in, we partition it into
its connected components and search in each one independently. We call a com-
ponent feasible if the color constraints of its vertices contain at least k − Ndels
colors of the query. Next, we process feasible connected components of increasing
size, searching for the highest scoring matched complex using the DP or the ILP
methods. We increase the number of indels, generating larger connected compo-
nents, until a solution is found that contains the minimal number of insertions
and deletions, where insertions are preferred over deletions, as they can be better
attributed to incomplete data.

Running the query algorithms. When querying a connected component, its unique
properties dictate which of our two methods will find a match more efficiently.
As a rule of thumb, when the number of vertices is very close to the number of
colors k, and k is large, the ILP algorithm is preferable, since we have observed
that its running time is not as sensitive to k, while the color-coding algorithm
has an exponential dependency. Empirically, we apply the ILP algorithm when-
ever 2n−k < 3k, where n is the size of the connected component. This condition
was satisfied in about 2/3 of the queries we used. For the DP algorithm, we used
the multiple colors per vertex model, generating coloring assignments for the
vertices using the bounds described in Section 2.2, thus reducing the number of
iterations required.

Scoring. We score a set of proteins matching a query using the approach of
Sharan et al. [28]. Briefly, a match is assigned a likelihood ratio score, which
measures its fit to a protein complex model (assuming that every two proteins
in a complex should interact with high probability, independently of all other
pairs) vs. the chance that its connections in the target network arise at random.
To accommodate for information on the reliability of interactions, the interaction
status of every vertex pair is treated as a noisy observation, and its reliability is
combined into the likelihood score.

When applying the DP algorithm, we output the highest scoring tree rooted
at each vertex. Then, for each such solution tree, we compute the score of the
subgraph that is induced by its vertices, taking into account edges and non-edges,
to produce a final score for this vertex set. For the ILP, we improve the running
time by assuming that all negatively weighted vertex pairs (v, w) (non-edges in
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the network) have the same weight penalty, thus avoiding to introduce integer
variables evw.

Parameter setting. Our tests were performed using the following set of param-
eters. We queried complexes of size 4–25. Query and network protein sequence
similarities were evaluated using BLAST. For a vertex v and a color γ, we let
γ ∈ Γ (v) if the BLAST E-value obtained by comparing the sequences of v and
the query protein corresponding to γ was less than 10−7. For each complex, we
allowed Torque to run at most 4000 seconds, and took the best solution up to
that point. We set the number of allowed insertions and deletions to 2 of each
for small complexes (size < 7), 3 of each for medium sized complexes (size 8–14),
and 4 of each for larger complexes. We intend to explore the robustness of these
parameters in the journal version.

The algorithms were implemented with Python 2.5.2; for the ILP we used
CPLEX 11.0.1. The test machine was a 3 GHz Intel Xeon (only one CPU was
used) with 8 G of memory, running Debian GNU/Linux 4.0.

4 Experimental results

We applied Torque to query protein complexes within the three largest eukary-
otic PPI networks available to date: yeast (5430 proteins, 39936 interactions),
fly (6650 proteins, 21275 interactions) and human (7915 proteins, 28972 inter-
actions). As queries, we used six collections of protein complexes from different
species: yeast, fly, human, bovine, mouse, and rat. The first three served us to val-
idate our algorithm and compare it to the state-of-the-art QNet algorithm [23]5.
The last three, for which no large-scale PPI information exists, allowed us to
explore the power of the algorithm in querying protein complexes for which no
topology information is available. In the following we describe the data, evalua-
tion measures and the results obtained.

Data acquisition. For yeast, fly and human we obtained up-to-date PPI data,
gathered from recently published papers [31, 24, 32, 11, 15, 22] and from public
databases [34, 10, 20]. High-throughput mass spectrometry data [11, 15] was
translated into binary PPIs using the spoke model [2]. Yeast complexes were
downloaded from SGD [27] (Macromolecular Complex GO-Slim category). Fly
complexes were obtained using the AmiGo [12] browser to collect all proteins
annotated with GO:0043234 (protein complex). The complexes for all mammals
(human, mouse, rat, bovine) were downloaded from the CORUM website [25].

Quality evaluation. To evaluate the quality of the matches, we used two mea-
sures: functional coherence and specificity. The first measure reports the percent
of matches that are significantly functionally coherent with respect to the Gene

5 A comparison to GraphFind [9] was not feasible, since its interface does not allow
automated execution of the more than 600 queries.
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Ontology (GO) [33] annotation. Note that while the query is functionally coher-
ent, the reported matches may not be so due to permissive homology matching
and the noise in the PPI data. To compute the functional coherence of a match,
represented as a set of proteins, we used the GO TermFinder [6] tool. The p-
values returned by the tool were further corrected for multiple match testing
using the false discovery rate (FDR) procedure [3].

The second measure reports the specificity of the suggested solution, i. e., the
fraction of matches that significantly overlap with a known protein complex. The
significance of the overlap was evaluated using the hypergeometric distribution.
The resulting p-value was compared to those obtained on 100 random sets of
proteins of the same size to produce an empirical p-value. Those p-values were
FDR-corrected for multiple testing. In the specificity computation we focused on
matches that had a non-zero overlap with the collection of complexes to which
they were compared. We also report separately those novel matches that had
no overlap with known complexes. Although it is possible that some of these
non-overlapping matches are false positives, we believe that the high percentage
of specific matches indicate that some - or most - of these are indeed novel
complexes.

Comparison to QNet. Our first set of experiments focused on the yeast, fly and
human networks and protein complex collections. For each of the three species,
we queried its complexes in the networks of the other two species. As large-scale
networks are available in this setting, we could compare ourselves to the QNet
algorithm [23], which was designed to tackle topology-based queries. While exact
topology for the query complexes is mostly unknown, QNet infers it by projecting
the complexes onto the corresponding network. This results in a set of possible
spanning trees for the complex that are hence provided to QNet as inputs. This
makes QNet very dependent on the quality of the source network, in addition
to the usual dependence on the quality and completeness of the target network.
We used the original QNet code with the same machine setup and parameters
as our algorithm: sequence similarity, insertions and deletions, and time limits.

A striking difference between Torque and QNet can be seen from the results
in Figure 2—out of 433 feasible queries overall, Torque detected matches for
311, while QNet found matches for 114 only. As we show below, this 45% gain
in sensitivity did not harm the specificity of the results.

Next, we turned to evaluate the results using the functional coherence and
specificity measures described above. The results for the three data sets are
summarized in Table 1. As evident from the table, even though Torque matched
many more queries, its results exhibit higher functional coherence and similar
specificity levels.

Topology-free queries. A unique characteristic of Torque is its ability to query
protein complexes for which a topology is not known. Here we apply our al-
gorithm to query, for the first time, sets of protein complexes of mouse (59
complexes), rat (55) and bovine (10) – species for which no large scale PPI data
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Fig. 2. Comparison of number of matches for Torque and QNet.

Table 1. Number and percentage of matches found that pass a quality significance
threshold of 0.05.

Functional coherence Specificity Novel matches

Network Complex Torque QNet Torque QNet Torque QNet

Yeast Fly 23 (100%) 2 (100%) 19 (82%) 2 (100%) 7 0
Human 134 (95%) 49 (98%) 119 (85%) 47 (94%) 8 2

Fly Yeast 8 (100%) 3 (60%) 8 (100%) 4 (80%) 1 0
Human 56 (90%) 21 (87%) 62 (100%) 23 (95%) 22 5

Human Yeast 48 (84%) 25 (78%) 43 (75%) 23 (71%) 8 6
Fly 21 (72%) 0 (—) 21 (72%) 0 (—) 7 0

Total 290 100 272 99 46 13

Table 2. Statistics of querying protein complexes for which no topology information
is available.

Network Complex #Feasible #Matches Functional coherence Specificity Novel matches

Yeast Bovine 4 4 4 4 0
Mouse 17 17 16 13 1
Rat 23 20 19 9 6

Fly Bovine 3 0 - - -
Mouse 14 7 0 1 6
Rat 34 21 17 7 14

Human Bovine 4 4 2 1 0
Mouse 48 46 32 24 6
Rat 44 43 32 24 4

Total 168 162 122 83 37
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Fig. 3. Running time as a function of complex size.

are currently available. In Table 2, we present the results of querying these com-
plexes within the networks of yeast, fly, and human. As evident from the table,
more than 95% of the feasible queries had a match, and the majority of the
matches were functionally enriched or matched a known complex.

Running time. The running time of Torque depends on many factors: complex
size, number of homologs for each query protein, and the size of the connected
component being tested. Figure 3 shows the running time of Torque for com-
plexes of size up to 10, for those instances that the algorithm finished its pro-
cessing on within the 1 hour time limit. Queries of size > 10 were handled by
the ILP algorithm, whose average running time was 0.29 seconds for the queries
whose processing was completed. Out of the total 624 feasible queries of all sizes,
the processing of 122 was not completed in time.

5 Conclusions

We presented a tool for querying protein complexes for which no topology in-
formation is available within a PPI network. Compared to a topology-based
approach, our program produces many more matches that are highly function-
ally enriched. Thus, our tool seems practical for a wide range of network query
tasks, in particular involving species with sparse data. It would be interesting
to examine matches for biological significance, in particular those that do not
overlap any known complex and may suggest unknown complexes of the target
species. This may also allow us to design a fine-tuned cost model, that takes
costs of insertions, deletions, and particular protein mappings into account.
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