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The non-Hermitian skin effect can arise in materials that have asymmetric hoppings between
atoms or resonating units, which makes the bulk eigen-spectrum sensitive to boundary conditions.
When skin effect emerges, eigenstates in the bulk continuum can become localized on the edges,
making the distinction between edge and bulk states challenging. We establish the bulk-boundary
correspondence for a Chern insulator model with non-Hermitian skin effect by combining two ap-
proaches (“non-Bloch” approach and “biorthogonal” approach). Both approaches can suppress the
skin effect but they are based on different mathematical tools. A biorthogonal inverse participation
ratio is used as a measure to distinguish between bulk states and edge states, and a non-Bloch Chern
number is used to characterize the topology and predict the number of topological edge bands. In
addition to tangential degeneracies, crossing degeneracies are found to occur between the bulk and
edge bands. Their presence enriches the (de)localization behavior of the edge states but does not
affect the Chern number. The phase diagram of the system has interesting features that are not
found in Hermitian systems. For example, one topological transition and two non-Hermitian phase
transitions can be induced by tuning a single parameter. The gapless phase is topologically pro-
tected due to the stable existence of the non-Hermitian band degeneracies guaranteed by nonzero
discriminant numbers.

I. INTRODUCTION

Topological band theory has inspired extensive re-
search in various domains of physics and material science
[1–3]. Among various interesting implications of topolog-
ical theory, the bulk-boundary correspondence (BBC) is
regarded as a cornerstone as it relates the bulk topologi-
cal invariant [4, 5] to topological edge modes, which have
many potential applications due to their robustness. The
BBC is well established for Hermitian Hamiltonians.

Most real-world systems are coupled to their environ-
ment and thus cannot be completely described by Her-
mitian Hamiltonians. Non-Hermitian Hamiltonians are
needed for describing many physical systems such as
wave systems with loss and gain [6–9], open systems [11–
14] and solids where non-Hermitian self-energy emerges
due to electron interactions [15, 16] or disorders [17, 18].
Diverse phenomena in non-Hermitian systems and espe-
cially those involving exceptional points (EPs) have at-
tracted booming interest [6–8, 10].

In particular, the non-Hermitian skin effect (NHSE) is
a remarkable phenomenon that can emerge when the cou-
pling parameters in a Hamiltonian become asymmetric,
leading to the anomalous localization of bulk eigenstates
at the boundaries [19–22]. The NHSE manifests itself
as extreme sensitivity to boundary conditions, namely
that the eigenspectrum of the open boundary conditions
(OBC) dramatically differs from that calculated using pe-
riodic boundary conditions (PBC) [19–21]. Consequently
the topological transitions in such OBC systems with
NHSE cannot be accounted for properly by the conven-
tional BBC that relies on the topological invariant of the
periodic bulk [23–25].
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Topological properties of non-Hermitian systems have
been studied [9, 26–50] and it was uncovered that the
NHSE originates from the intrinsic non-Hermitian topol-
ogy [41–43]. Several works reestablished the BBC in
the presence of NHSE [23–32]. One approach is the
non-Bloch approach that defines a topological invariant
for a non-Bloch Hamiltonian constructed via the gener-
alized Brillouin zone (GBZ), which embodies informa-
tion of the OBC system [23, 24, 29, 30]. Another ap-
proach is the biorthogonal approach, which treats a two-
dimensional (2D) Chern insulator ribbon as a family of
one-dimensional (1D) systems parameterized by k‖ and
directly relates topological phase transitions to jumps of
biorthogonal polarization of boundary states, without in-
volving bulk eigenvectors and Chern numbers [25].

In this work, we consider the BBC in a certain class
of boundary condition sensitive systems which has the
skin effect due to asymmetric hoppings between resonat-
ing units or atoms. We provide a unified understanding
of the BBC in such non-Hermitian systems, focusing on
a prototypical system. The key lies in suppressing the
NHSE so that the BBC could be treated in a similar
way as Hermitian cases. We show that the bulk and
edge states can be identified without ambiguity by us-
ing biorthogonal inverse participation ratio (bi-IPR) de-
fined via the biorthogonal density [34, 51, 52] instead
of wavefunctions. The edge states become delocalized
when they touch the bulk bands. There are generally
two types of such bulk-edge degeneracies: the tangential
and the anomalous crossing degeneracies that have a non-
Hermitian origin. The number of topological edge bands
is dictated by the non-Bloch Chern numbers computed
from the non-Bloch Hamiltonian.

The phase diagram exhibits novel features, includ-
ing the existence of both topological and non-Hermitian
phase transitions [52], which are associated with Dirac
points and EPs, respectively, as band degeneracies. The
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gapless phase is found to be topologically protected due
to the topological protection of the non-Hermitian de-
generacies (i.e., EPs) by nonzero discriminant numbers
[33, 45, 46].
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FIG. 1. (a) The non-Hermitian Chern insulator with two sites
per unit cell. The dashed arrows denote imaginary hoppings.
(b) The effective 1D chain model of (a).

II. TOPOLOGY OF NON-HERMITIAN CHERN
INSULATORS WITH SKIN EFFECT

A. Model system and Non-Hermitian skin effect

As a prototypical system exhibiting NHSE, we con-
sider a non-Hermitian Chern insulator [25] as shown pic-
torially in Fig. 1(a). There are two sites (A, B) per
unit cell and the hopping parameters t,∆, δ, g are all
real numbers. The system contains imaginary hoppings
±i∆/2 that breaks time-reversal symmetry, and asym-
metric hoppings t↓/↑ = t±g that cause NHSE in the y
direction. The Bloch Hamiltonian takes the form,

H(k) =

(
m u+ + se−iky

u− + seiky −m

)
, (1)

wherem = −∆ sin kx, s = t−δ cos kx and u± = u±g with
u = t+ δ cos kx. For a given kx, Eq. (1) describes the 1D
Rice-Mele model [53] with asymmetric intracell hoppings,
i.e., u− 6= u+ when g 6= 0, as shown in Fig. 1(b).

We consider a ribbon with Ny = 2ny + 1 sites in the
y direction and PBC in the x direction. Without loss of
generality, we fix ∆ = 1 and t = 0.5, and allow g and δ
to vary.

When g = 0, the system is Hermitian and has a topo-
logically nontrivial gap with gap size Eg = 4δ for δ < t
and Eg = 4t for δ > t. In Fig. 2(a), we show the ribbon’s
band structure, which comprises bulk bands (orange) and
a topological edge band E = m = −∆ sin kx (red/blue),
assuming ny = 50 and Ny = 101. The edge band touches
the orange bulk bands tangentially at kx = π/2 and 3π/2.
For an odd Ny, the edge band E = −∆ sin kx always ex-
ists and the associated eigenvectors have analytic forms
that vanish at all the B sites, reminiscent of the zero
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FIG. 2. (a) The band structure of an OBC ribbon with
Ny = 101 consists of green (navy) curves for the real (imagi-
nary) part of bulk bands, and a blue/red curve for the edge
band. The parameters are δ = ∆ = 1,t = 0.5 and g = 0.25.
The orange bands are for g = 0. The black (gray) curves
denote the real (imaginary) part of the band edges of the
PBC system. (b) The bi-IPR of the bulk (green) and edge
(blue/red) states. The conventional IPRs of the bulk (gray)
and edge (black) states are also shown. (c) The non-Bloch
bands are denoted by red curves, with solid (dashed) curves
for the real (imaginary) parts. The black (gray) curves denote
the real (imaginary) parts of Bloch bands.

energy states in systems with sublattice (chiral) symme-
try. There are four ny-fold degeneracies at kx = 2π/3
and 4π/3 where the intracell hoppings u vanish, namely
t+δ cos kx = 0, as marked by the orange gridlines labeled
“D”.

When g = 0.25, some eigenvalues become complex and
the bulk bands are denoted by green and navy curves for
Re(E) and Im(E), respectively. The edge band remains
the same red/blue curve E = −∆ sin kx as the g = 0
case. However, the bulk-edge degeneracies are shifted
to kx ≈ 0.49π and 1.51π, which divide the red and blue
segments. The non-Hermitian system inherited the topo-
logical edge band from its Hermitian counterpart and is
thus supposed to bear a BBC description.

The non-Hermiticity (g 6= 0) splits the four ny-fold de-
generacies (for g = 0) into four pairs of ny-th-order EPs,
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as marked by green gridlines labeled “E”. The EPs are lo-
cated at k+

1 ≈ 0.77π, k+
2 ≈ 1.23π and k−−1 ≈ 0.58π, k−2 ≈

1.42π for g = 0.25, which are given by u+ = u + g = 0
and u− = u−g = 0, respectively, that signify the vanish-
ing of effective intracell hoppings. The spacing between
each EP pair increases with g. In addition to the ny-th-
order EPs, there also exists another type of ny-fold de-
generacies at kx = π/3 and 5π/3 (labeled “NDP”) where
the intercell hopping vanish, i.e., s = t − δ cos kx = 0.
In this case, the 1D chain is decoupled into ny identi-
cal dimers giving rise to ny-fold non-defective degeneracy

points (NDPs) at E = ±3
√

3/4.
The PBC spectrum σ(PBC) for g = 0.25 is also

shown in Fig. 2(a), where its real and imaginary parts
occupy the regions bounded by black curves and gray
curves, respectively. The Bloch bands of Eq. (1) are
given by E±(k) = ±

√
A+G where A = m2 + u2 +

s2 + 2us cos ky and G = −g2 + 2igs sin ky results from
the non-Hermiticity, which accounts for the small per-
turbation of O(g2) in Re[σ(PBC)] relative to the orange
bands (Hermitian spectra), as shown in Fig. 2(a).

For an edge state with E = m = −∆ sin kx, the right
and left eigenvectors are

|ψ〉 =
[
1, 0, r, 0, r2, · · · , 0, rny

]T
,

〈ϕ| =
[
1, 0, l, 0, l2, · · · , 0, lny

]
,

(2)

where r = −u−/s and l = −u+/s.
The right eigenvector |ψ〉 is delocalized when u− =

s, giving kx ≈ 0.46π and kx ≈ 1.54π (labeled “R” in
Fig. 2(a)), due to the balanced competition between the
two localization mechanisms: the bandgap and the NHSE
[54]. For example near kx ≈ 1.54π, |ψ〉 is localized at the
upper boundary when g = 0, while the presence of NHSE
(g 6= 0) tend to localize the states to the lower boundary
due to |u+| > |u−|. It turns out that the delocalization
points of |ψ〉 coincide with the crossing between the edge
band and the PBC spectrum σ(PBC), as is shown in
Fig. 2(a) where “R” lies at the intersection of the blue
curve and the black curve that denotes the PBC band
edge [54].

Furthermore, we found that the delocalization points
of 〈ϕ|, kx ≈ 0.54π and kx ≈ 1.46π (labeled “L”) given by
u+ = s, also signify the degeneracies between the edge
band and the PBC spectrum, as is shown in Fig. 2(a).
Such a result can be understood via the delocalization of
the right eigenvector |ϕ〉∗ of HT noting that HT |ϕ〉∗ =
E|ϕ〉∗ and HT has the same spectrum as H.

We note that |ψ〉 in Eq. (2) is also delocalized when
u− = −s, leading to the condition g = 2t = 1. The
kx independence implies that |ψ〉 is delocalized for all
kx. This corresponds to the special case when the
PBC spectrum is gapless [56] and contains an eigenvalue
E(k) = −∆ sin kx (when ky = 0) that is degenerate with
the edge band of the OBC system which is gapped. Sim-
ilarly 〈ϕ| is delocalized for all kx when u+ = −s.

The OBC and PBC spectra have striking differences
for g = 0.25, manifesting NHSE. Figure 2(a) shows that

the PBC bulk spectrum encloses the OBC bulk spec-
trum, like the case of one-band models studied in Refs.
[43, 52]. Due to NHSE, the wavefunctions of the OBC
bulk states are localized, making it difficult to distinguish
between bulk and edge states. We show that the bulk and
edge states can be distinguished unambiguously using the
biorthogonal IPR and the topological edge bands can be
related to Chern numbers defined over the GBZ.

B. Bulk-boundary correspondence

For a given state, its biorthogonal inverse participation
ratio (bi-IPR) is defined as

Ibi =
∑Ny

j=1
ρ2
j/

(∑Ny

j=1
ρj

)2

, (3)

where ρj = |ϕjψj | denotes the biorthogonal density at
the jth site and involves both the left eigenvector 〈ϕ| and
right eigenvector |ψ〉. The biorthogonal density has been
demonstrated to be a good measure of localization in the
study of Hatano-Nelson model [34, 55]. We found that
the topological edge states can be well distinguished from
the skin-localized bulk states by the bi-IPR, since |ϕjψj |
captures the delocalization property of bulk states.

Specifically, the bi-IPRs tend to be small for all bulk
states of the OBC system as denoted by the green curves
in Fig. 2(b). However, the bi-IPRs of the edge states are
not small as denoted by the red and blue curves, which
represent localization of biorthogonal density at the lower
and upper boundaries, respectively. They are of order
one except around the two delocalization points where
the edge modes are degenerate with the bulk continuum.

For an edge state with eigenvectors given in Eq. (2), its
biorthogonal density ρ is

ρ = |ϕ ◦ ψ| = N
[
1, 0, µ, 0, µ2, · · · , 0, µny

]
, (4)

where ϕ ◦ ψ means the component-wise product, µ =∣∣u−u+/s
2
∣∣, and N is the biorthogonal normalization fac-

tor. Requiring ρ in Eq. (4) to be delocalized, the condi-
tion for the transition points is obtained to be [56]

u+u− = ±s2. (5)

For the case of δ = 1 and g = 0.25, the two delocaliza-
tion points in Fig. 2(b) are found from u+u− = s2 (i.e.,
cos kx = g2/4tδ) to be kx ≈ 0.49π and 1.51π, which coin-
cide with the two tangential bulk-edge degeneracies (be-
tween the edge band and green OBC bulk bands) shown
in Fig. 2(a). The bi-IPRs are thus justified. As expected,
the delocalization point kx ≈ 1.51π of ρe lies between
“L” and “R”, the delocalization points of 〈ϕ| and |ψ〉,
shown in Fig. 2(a).

We find that u+u− = −s2 also predicts delocalization
points of edge states, but they correspond to an unusual
type of degeneracies that involve the crossing between the
edge and bulk bands, which would be expounded later.
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Equation (5) resembles the condition given by the non-
Bloch approach for the topological transition in the non-
reciprocal SSH model [23], indicating the equivalence of
the two approaches in suppressing the NHSE.

For comparison, the conventional IPRs defined via
solely right eigenvectors ψj (i.e., with ρj = |ψj |2) are
also shown in Fig. 2(b), where black and gray curves rep-
resent the edge and bulk states, respectively. Unlike the
bi-IPRs, the conventional IPRs do not show a clear-cut
distinction between the edge and bulk states, since the
bulk right eigenvectors are also localized due to NHSE.
The transitions of the black curve occur when u− = s,
namely at kx ≈ 0.46π and 1.54π (corresponding to “R”
in Fig. 2(a)), which differ from the bulk-edge degenera-
cies at kx ≈ 0.49π, 1.51π. Thus the bi-IPR is a good
measure to characterize the bulk and edge states.

The red (blue) curve reaches unity at those kx val-
ues that correspond to EPs (NDPs) in Fig. 2(a), namely
where u± = 0 (s = 0), because of complete localization
of ρj at one site. The black curve reaches unity when
u− = 0 and s = 0 due to complete localization of ψj .

The rationale behind the non-Bloch approach is to find
a substitute NHSE-free system that shares the same OBC
spectrum with the original system so that the BBC can
be established. Following the non-Bloch approach [23,
24] with β = |β|eiθ substituted for eiky in Eq. (1), the
GBZ is found to be a circular loop with radius

|β| =
√
|u−/u+| (6)

for given kx. The 2D GBZ is then a torus parameterized
by kx and θ, both with the range [0, 2π]. By the replace-
ment eiky → |β|eiθ in Eq. (1), we obtain the non-Bloch
Hamiltonian

H(k′) =

(
m u+ + s|β|−1e−iθ

u− + s|β|eiθ −m

)
, (7)

where k′ = (kx, θ), which has the same bulk eigenspec-
trum as the OBC system associated with Eq. (1).

All bulk eigenvectors are delocalized at kx = 2π/3 and
4π/3, namely when |β| = 1, because u+ = −u− = g
and the NHSE is absent. The bulk right eigenvectors
are localized at the lower boundary when |β| < 1, that
is, when kx ∈ (2π/3, 4π/3), and they are localized at
the upper boundary for kx ∈ [0, 2π] − [2π/3, 4π/3]. The
opposite goes for the left eigenvectors and therefore the
combination of the left and right eigenvectors suppresses
the NHSE.

Equation (7) is not well defined at kx = k+
1 , k+

2 , k
−
1 , k

−
2 ,

which are associated with EPs in Fig. 2(a), because either
off-diagonal element diverges due to |β| = ∞ or |β|−1 =
∞. However, if choose a different unit cell in Fig. 1(a)
so that t ± g become intercell hoppings, we obtain the
non-Bloch Hamiltonian with a different form:

h(k′) =

(
−m s+ u−|β|−1e−iθ

s+ u+|β|eiθ m

)
. (8)

Equation (8) is free of divergence problem

because u−|β|−1 = sgn (u−)
√
|u−u+| and

u+|β| = sgn (u+)
√
|u−u+| and both vanish at

kx = k+
1 , k

+
2 , k

−
1 , k

−
2 . And there is no NHSE for

h(k′) since u−|β|−1 = ±u+|β| [34]. Equation (8) with-
out |β| and |β|−1 is the corresponding Bloch Hamiltonian
h(k).

Equations (7) and (8) share the same non-Bloch bands,
which are shown by red curves in Fig. 2(c), with solid
(dashed) curves for the real (imaginary) parts. For com-
parison, the Bloch bands E±(k) from H(k) = H(kx, ky)
are also shown with black (gray) curves for the real (imag-
inary) parts. The horizontal axis represents k′ = (kx, θ)
and k = (kx, ky) for the non-Bloch and Bloch bands, re-
spectively. Two band structures almost coincide in some
regions, but they show notable differences at kx = k+

1 and
k−1 . This is expected because the NHSE is most promi-
nent near the EPs. In particular, the Re[E±(k′)] bands
exhibit sharp cusps when kx = k+

1 and k−1 . Taking θ = 0
(i.e., along ΓX) for example, the cusps are caused by the

presence of the term f =
√
|u−u+|[sgn(u−) + sgn(u+)]

in E±(k′) = ±
√
m2 + s2 + u−u+ + sf .

Unlike H(k), the non-Bloch system h(k′), as well as
H(k′), is free of the NHSE, which is essential to the non-
Bloch approach. Since the Chern number is independent
of the choice of unit cell, h(k′) can serve as the bulk sys-
tem in establishing the BBC. The validity of h(k′) is fur-
ther confirmed by the fact that the OBC bulk spectrum
in Fig. 2(a) coincides with the projection bands computed
from h(k′).

We define the non-Bloch Chern number as an integral
over the GBZ [24, 33],

Cn =
1

2π

∫
GBZ

εijB
n
ijd

2k′, (9)

where n = ±, i, j = x, y, and εxy = −εyx = 1, and
Bnij = i〈∂iϕn(k′)|∂jψn(k′)〉 with ∂x ≡ ∂kx and ∂y ≡ ∂θ
[24, 33]. The normalization condition 〈ϕ(k′)|ψ(k′)〉 = 1
is assumed for the left and right eigenvectors of h(k′).
C± = ±1 is obtained for the E±(k′) bands [56]. The BBC
is now established that the number of edge bands, iden-
tified by the biorthogonal density and IPR, is dictated
by the non-Bloch Chern numbers, in a similar manner as
the conventional BBC.

C. Topological phase with crossing degeneracies

Next we investigate another nontrivial case with g in-
creased to 0.75. The spectrum of the system with OBC
is shown in Fig. 3(a). The real (imaginary) part of bulk
bands is denoted by the green (navy) curves, and the
edge band E = −∆ sin kx is colored in red/blue for states
with bi-IPRs localized at the lower/upper boundary. The
zoomed view of the band structure is shown in Fig. 3(b),
where the dashed lines A and B mark an unusual type of
bulk-edge degeneracies, which we coin as crossing degen-
eracies, and the line C marks the tangential degeneracy.
The crossing degeneracies A, B and tangential degener-
acy C manifest themselves clearly as the intersections and
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FIG. 3. (a) The band structure of the OBC system with
δ = ∆ = 1, t = 0.5 and g = 0.75. The green (navy) curves
denote Re(E) and Im(E) of bulk bands, and the blue/red
curve is the edge band. (b) The zoomed view of (a). (c) The
crossing degeneracies A, B and tangential degeneracy C occur
at the intersections and tangential point, respectively, of the
edge-band curve with the surface that represents the complex
bulk eigenvalues. (d) The bi-IPR of the bulk states (green)
and edge states (blue/red).

tangential points, respectively, of the edge-band curve
with the surface that represents the complex bulk eigen-
values, as shown in Fig. 3(c). Their mirror images C’ (A’,
B’) in Fig. 3(a) also correspond to tangential (crossing)
degeneracies.

All bulk-edge degeneracies become exact when Ny →
∞ and can be located by u+u− = ±s2, where “±” cor-
respond to the two cases when h(k′) is Hermitian and
non-Hermitian, respectively. Therefore bulk eigenvalues
are purely real around C (and C’), which manifest as
a vertical flat suface in Fig. 3(c), and the degeneracies
there are forced to be tangential. In contrast, the bulk
spectrum around A, B (and also A’, B’) contains both
complex and purely real eigenvalues and manifests as a
curved surface shown in Fig. 3(c), which allows crossing
degeneracies with the edge band. The crossing degenera-
cies are thus intrinsically non-Hermitian and do not exist
in Hermitian systems.

The bi-IPRs are shown in Fig. 3(d), where the red/blue
curves denotes edge states that are localized at the
lower/upper boundary, and the green curves represent
the bulk states. All the delocalization points of the edge-
band bi-IPRs correspond to the bulk-edge degeneracies in

Fig. 3(a). The edge-band bi-IPRs reach the largest value
of unity at kx ≈ 0.42π, 1.58π and also at kx = 5π/3,
where EPs and NDPs occur in Fig. 3(b), due to the single-
site confinement of the biorthogonal density [56].

The edge band E = −∆ sin kx is divided into six seg-
ments by the bulk-edge degeneracies (i.e., delocalization
points) A,B,C,A’,B’,C’. Only the two segments A’A and
CC’ traverse the gap and connect the valence band to the
conduction band, and are thus topologically robust. In
contrast, the segments AB and B’A’, each of which are
pinned by crossing degeneracies in the same bulk band,
can be eliminated by tuning parameters without closing
the gap so that the bands resembles the g = 0.25 case
(Fig. 2) with only tangential degeneracies. The case of
Fig. 3 therefore lies in the same nontrivial phase as Fig. 2,
as is validated by C± = ±1 calculated for the non-Bloch
bands.

D. Phase diagram

The Hermitian systems (h(k′) with g = 0) is gapless
when δ = 0. The presence of hoppings ±δ/2 with δ 6= 0
opens a gap with real-valued bands E±(k′) and C± =
±1. At g = 0, the Im(E±) bands are identically zero.
Assuming a large g, Eq. (8) becomes h(k′) = −mσz +

(s+ ig′ sin θ)σx− ig′ cos θσy with g′ =
√
g2 − u2 > 0 and

σi denoting Pauli matrices, and the eigenvalues become
E±(k′) ≈ ±(ig′ + s sin θ) , the real parts of which are
always gapless at θ = 0 and π [56]. It is expected that
C± = 0 since the time-reversal breaking parameter ∆
becomes negligible when g →∞. As g is increased from
0 to ∞, the non-Bloch bands therefore must undergo a
topological transition from C± = ±1 to C± = 0, and
two non-Hermitian phase transitions that correspond to
the gap-closing of Re(E) bands and the gap-opening of
Im(E) bands, respectively. The non-Hermiticity g is thus
expected to induce rich features to the phase diagram.

Without loss of generality, we assume ∆ = 1 and
t = 0.5. The phase diagram in the δg-plane is shown
in Fig. 4(a), where the red, white and blue regions rep-
resent nontrivial gapped (C± = ±1), trivial gapped
(C± = 0) and gapless phases, respectively. The red and
two blue phase boundaries respectively correspond to the
aforementioned topological and two non-Hermitian phase
transitions, and can be derived analytically by requiring
|E(k′)| = 0 [56].

The system is gapless at (δ, g) = (0, 0), and the hop-
pings ±δ/2 with δ 6= 0 are necessary to open a non-trivial
gap when g = 0. In contrast, a nonzero g opens a triv-
ial gap when δ = 0. There must then be the red phase
boundary curve in Fig. 4(a) that corresponds to topolog-

ical transitions. It is a parabola g =
√

4tδ =
√

2δ and
corresponds to gap closing and reopening accompanied
by an NDP (Dirac point) at Γ or Y [56], reminiscent of
Hermitian topological transitions.

The blue phase boundaries consist of a hyperbola g =√
2δ2 + 2t2 =

√
2δ2 + 1/2 and a line g =

√
∆2 + 2t2 =
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FIG. 4. (a) The phase diagram in the δg-plane. The nontriv-
ial/trivial/gapless phase region is colored in red/white/blue.
The green region supports purely real spectrum. The crossing
bulk-edge degeneracies occur in the region between the gray
line and the blue hyperbola. The green curve corresponds to
the occurrence of EP lines. (b) The evolution of the tangential
(T) and crossing (C) bulk-edge degeneracies with increasing
g for δ = 0.2 and δ = 1.

√
6/2 without δ dependence, and they are associated with

EPs at Γ, X,M, Y and ±Γ+X
2 ,±Y+M

2 , respectively [56].
They correspond to non-Hermitian phase transitions at
EPs, in contrast to the topological transitions associated
with NDPs. A topological invariant ν called discriminant
number,

ν (k′EP ) =
1

2πi

∮
C(k′

EP )
dk′ · ∇k′ lnDf (k′), (10)

can characterize the topology of the discrete EPs [45,
46, 56], where C (k′EP ) denotes a loop that encircles k′EP
and Df (k′) denotes the discriminant of the characteristic
polynomial fE(k′) = det[E − h(k′)].

At the blue phase boundaries, there are 4 unstable
EPs characterized by ν = 0 and they each get gapped
or split into two EPs with ν = ±1 when leaving the
boundaries [56]. When (δ, g) is tuned from the blue hy-
perbola to the blue line, the 8 EPs with ν = ±1 move
from Γ, X to ±Γ+X

2 , or from M,Y to ±Y+M
2 , with

their locations given by k′ = (kx, θ) where kx satisfies

cos (2kx) = g2−δ2−∆2

δ2−2t2 and θ = 0, π [56]. During the evo-
lution, the discrete EPs remain stable due to the topolog-
ical protection by nonzero discriminant numbers ν = ±1
[56]. Therefore the gapless phases have a topological ori-
gin.

Since
√

4tδ ≤
√

2t2 + 2δ2 with the equality satisfied
only when δ = t, the red parabola (topological transition)
lies below the blue hyperbola and they must touch at
δ = t.

As g is increased, the lower (upper) blue boundary
corresponds to the gap closing (reopening) in the Re(E±)
(Im(E±)) bands, confirming our analysis. Their crossing

at (δ, g) = (
√

2/2,
√

6/2) corresponds to the simultaneous

gap closing and reopening. For δ < 3/4 (i.e.,
√

2δ <√
6/2), the mere increase of non-Hermiticity g thus not

only induces two non-Hermitian phase transitions, but

also a topological transition, which is quite unusual. For
δ > 3/4, a gapless range lies between the trivial and
nontrivial phases.

The touching point (δ, g) = (0.5, 1) signifies the switch-
ing of the NDP from Y to Γ at the topological (red)
phase boundary [56]. In addition to EPs at X,M , a
NDP nodal line occurs at ΓY for (δ, g) = (0.5, 1), be-
cause m = s = u− = 0 and h(k′) becomes a zero ma-

trix. Along the green trajectory g =
√

2− (t/δ)2 in the
gapless phase, two EP lines arise from the splitting of
the NDP nodal line and occur at kx = ± cos−1(t/δ) in
the kxθ-plane. The EP lines are associated with s = 0.
When (δ, g) is tuned to cross the green trajectory, 4 of the
8 discrete EPs change to the EP lines and then back to 4
discrete EPs, accompanied by a switch in their charges,
i.e., ν = ±1→ ν = ∓1 [56].

The green region g + δ ≤ t supports purely real OBC
spectrum since h(k′) becomes Hermitian due to u+ ≥
u− ≥ 0 for any k′.

The crossing degeneracies occur in the region between
the gray line g =

√
2/2 and the blue hyperbola, and tan-

gential degeneracies occur in the lower region bounded
by the red parabola. The points P1 and P2 separated by
the gray line correspond to the two typical cases shown
in Figs. 1 and 2, respectively. Similarly, P3/P4 rep-
resents two typical trivial phases with/without crossing
degeneracies [56].

For comparison, the phase boundaries determined from
H(k) are shown as black dashed lines in Fig. 4(a), which
both correspond to non-Hermitian phase transitions and
deviate drastically from the (correct) red/blue phase
boundaries derived from h(k′). The red/blue boundaries
are circumscribed by the black dashed lines, which arises
from the fact that the OBC bulk spectrum is enclosed
by the PBC spectrum in the complex plane [43, 52], that
is, σ(OBC) may still be gapped when σ(PBC) becomes
gapless.

E. Evolution of bulk-edge degeneracies

Next we show the evolution of bulk-edge degeneracies
and their relevance to phase transitions. In Fig. 4(b), we
plot the trajectories of kx values that correspond to the
tangential (solid) and crossing (dashed) degeneracies as
g is increased. The solid and dashed curves are given by
g =

√
4tδ cos kx and g =

√
2t2 + 2δ2 cos2 kx, which are

derived from Eq. (5), and they are shown as red (blue)
curves for δ = 0.2 (δ = 1). ∆ and t remain the same as
in Fig. 4(a). The cutoff g value for the tangential degen-

eracies at kx = 0, namely g =
√

4tδ, gives the red phase
boundary in Fig. 4(a), because the bulk bands that come
in ±EB(kx) pairs become gapless noting that their de-
generacy with the edge band E = −∆ sin kx at kx = 0
implies ±EB = 0, namely gap closing.

The crossing degeneracies emerge when g reaches a
threshold of

√
2/2 for any value of δ, indicating their

non-Hermitian origin. Such degeneracies disappear at
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g =
√

2δ2 + 1/2, which coincide with the blue hyperbolic
phase boundary in Fig. 4(a). The domain of g pinned
at kx = 0 by the two red curves in Fig. 4(b) is thus
the range of the trivial phase for δ = 0.2 in Fig. 4(a).
g = 2t = 1 derived from u+u− = ±s2 = 0 corresponds to
the coincidence between the tangential and crossing de-
generacies at two kx values where cos kx = t/δ for δ ≥ t,
as is shown in Fig. 4(b). Their coincidence corresponds
to h(k′) = −mσz and therefore ny-fold degeneracies at
E = ±m in the ribbon bands.

III. CONCLUSION

We establish the BBC for a prototypical non-
Hermitian Chern insulator model with NSHE by combin-
ing the non-Bloch approach and biorthogonal approach,
both aiming at suppressing the NHSE. Specifically, a
Chern number is defined for the non-Bloch bands and
we use the biorthogonal IPRs instead of the wave func-
tions to distinguish between the edge and bulk bands,

utilizing the fact that the bulk-edge degeneracies coin-
cide with the delocalization of edge states in terms of the
biorthogonal density. The system undergoes one topolog-
ical transition and two non-Hermitian phase transitions
when only a single parameter is tuned. That leads to
a rich phase diagram which contains nontrivial gapped,
trivial gapped and gapless phases. The gapless phase is
topologically protected due to the stability of the EPs
ensured by nonzero discriminant numbers. The pres-
ence of crossing degeneracies which are intrinsically non-
Hermitian enriches the properties in all three phases.
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