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Abstract

We introduce a new method for storing, modeling, and analyzing power grid data. First, we present an 

architecture for building the network model for a power grid using the open source graph database Neo4j.

Second, we design single- and multi-threading systems for initial energization analysis of the power grid 

network. We design the shortest path search function and conditional search function based on Neo4j. Finally, 

we compare the functionality and efficiency of our graph database with a traditional relational database in 

system initial energization analysis and the shortest path function problems on small to large data sets. The 

results demonstrate the efficiency and effectiveness of topology modeling and analysis using graph database 

for a power grid network.
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1. Introduction

In the big data era, power grid systems face new 

challenges and new development opportunities.
1,2

Large data sets facilitate better resource management, 

more effective decision support systems and more 

reliable disaster warning. Computational intelligence 

is an enabling technology for the future development 

of power grid networks. However, it is challenging to

build systems to intelligently manage and process the 

explosive growth in data volume and variety.
3,4,5

Power grid data falls into three categories:

structured data, semi-structured data and unstructured 

data. Structured data refers to information that has a

high degree of organization and is readily searchable,

such as tabular data in relational databases; semi-

structured data, such as XML, only has a medium 

degree of organization; and unstructured data is 

disorganized and difficult to search
6
.

Currently, the volume of unstructured power grid

data is growing exponentially, but most information 

storage systems for power grids still use relational 

databases. Relational databases are a poor fit for 

dynamic unstructured data due to data redundancy 

and performance degradation problems. Instead,

NoSQL
7

avoids these issues.

Lu et al.
8

introduced Hadoop for electrical power 

monitoring. Hadoop is a column family technology 

based on NoSQL which allows distributed processing 

of big data. Hadoop is only used to store data that can 

be decomposed into the key-value model, and does 

not provide efficient native support to analyze

structure relationships between objects. 

Consequently, Hadoop is not as useful for analyzing

the network topology of power system, where we are 

especially interested in the relationships between 

nodes.

Considering the dynamic nature of the data and 

complex data relationships, graph database is a 

logical choice for data analytics. In this paper, we 

explore the open source graph database Neo4j
9

and 

its application in power grid network modeling and 

analysis. We design and implement functions to 

compute initial energization, shortest path and 

conditional search using Neo4j. Finally, we compare 

our graph database approach to a relational one.
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2. Related work

2.1. Relational Databases

Relational databases organize data into tables
10

and

model data relationships using key constraints and 

other constraints. PostgreSQL
11

is the most advanced 

open source database server. It can handle large 

volume of data, including data storage, rapid data 

retrieval and complex data analysis.

Relational databases are highly inefficient at

describing and traversing complex connections and 

relationships. Usually several tables must be joined to 

extract multiple relationships among entities. With 

the increasing complexity and heterogeneity of 

relationships in the real world, the number of joining 

tables in relational databases increases rapidly and 

unsustainably. Complex relational databases also 

have high maintenance costs and are difficult to 

evolve to continuously changing business needs.

2.2. NoSQL

Most NoSQL databases, whether key-value-,

document-, or column-oriented, store sets of 

disconnected documents/values/columns
12

. This 

makes it difficult to use them for connected data 

graphs. NoSQL is suitable for simple structured big 

data instead of data with plentiful properties and 

labels. If we add relationships to NoSQL data, 

aggregate joining operation are needed at the 

application level, which is prohibitively expensive for 

large data volumes.

2.3. Graph databases

With the increasing integration of components, the 

structure and characteristics of the power grid 

become more and more complicated. Many 

researchers have applied the complex network theory 

to study real networks,
13-16

mainly focusing on small 

size power grid network computing. They have made

great progress in tracking, detection and control.

Graph database is useful for power grids because of 

the continuously increasing scale of the power grid,

extremely wide distribution of power station and 

high-performance requirement of power grid needed.

Neo4j
17

, an open source graph database written in 

Java and Scala, implements generic graph models 

with full database characteristics such as ACID 

transaction compliance, cluster support, runtime 

failover, and query language. It denotes the different 

roles by nodes with multiple labels, and represents 

the relationships by paths between nodes. Due to the

path-oriented data model, path-based operations in 

Neo4j are highly efficient and suitable for use in 

production scenarios.

3. Neo4j Architecture

3.1. Architecture

The main components of Neo4j’s architecture are its

REST-based API, cache, transaction log, and record 

files (Fig. 1). Neo4j provides GET, POST, and PUT

calls to discover service information. The Traverser 

API allows users to traverse the graph using 

callbacks. Users can define an approach to search a 

graph or subgraph using specific rules and 

algorithms, such as depth-first or breadth-first. Neo4j 

also exposes certain core APIs that can be directly 

used by JVM-based languages for working with 

graphs.

Cypher Traverser API Core API

Cache

(Object, file system)

Record Files

Disk

Transaction Log

Fig. 1. Neo4j Architecture

Caching is one of the most important components

in Neo4j because it directly affects read and write 

performance. Neo4j provides two different types of 

caching layers. One is the file buffer cache which 

uses off-heap memory to cache data stored on disk. 

The other is an object cache. All writes and reads are 

performed through these caches to improve 

throughput. All writes are written to the caches and 

data in these caches are flushed to durable storage 

only when the logical logs are rotated. Neo4j also 

improves write performance by batching small 

writes.

Transaction logs maintain all the events and 

operations that happen over a Neo4j database, which 

is helpful in scenarios where the database needs to be 

recovered from a crash.

Record files are files that store information on

nodes, relationships and properties. Neo4j 

recommends using ext4 or ZFS to support 

features such as flush (fsync, fdatasync) that help 

guarantee ACID properties.

3.2. Scalability and Redundancy

Neo4j high availability (HA) uses a master-slave 

cluster architecture
18

. As the Fig. 2 illustrates
19

, there 

are two parts to each Neo4j instance. One part is the 
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database itself, the other is the cluster management 

component. The cluster management component 

continuously stays in sync with all instances in the 

cluster, keeping track of any instances joining or 

leaving.  When a master election becomes necessary, 

the cluster management component ensures that a 

new master is consistently elected. The database 

layer manages the rest of the system.

Fig. 2. Neo4j Cluster Architecture

In a Neo4j HA cluster, the full graph is replicated 

to each instance in the cluster
20

. Regardless of the 

number of instances that fail, all the data is kept safe 

as long as one instance remains available. One single 

instance of Neo4j can house at most 34 billion nodes, 

34 billion relationships, and 68 billion properties.

3.3. Cypher

Cypher is a declarative graph database query 

language
21

. It is simple and expressive, closely

resembling the natural way of representing patterns in 

graphs through ASCII art diagrams.

In this paper, we mainly use the Traverser and 

Core API. Cypher is mainly used for the Shortest 

Path function.

4. System Design and Function Descriptions

4.1. Data Augmentation

IEEE 118-bus system whose network data can be 

found in 
22

is used for this study.

Fig. 3. IEEE 118-bus system

The IEEE 118-bus system is expanded to 200 

thousand, 2 million, 20 million and 200 million buses 

system respectively. Experiments are done separately 

to simulate the real power grid network environment.

Fig. 4. Expanding IEEE 118-bus system

Fig. 4 shows the process of expanding a single 118-

bus system to 4 connected 118-bus system. In the 

expanded system, four 118-bus systems form a small 

highly connected unit and the expanded system 

consists of these units. 

4.2. Database Models

Currently most power grid network data are stored in 

relational database (RDBMS) with all information 

located in numerous complex correlated relational 

tables
23

.

For the graph database structure, only two tables 

are used to build database. One is node table, and the 

other is connection table. In the node table, one row 

represents one node as well as its labels. As for the 

connection table, each row represents a connection 

and its corresponding properties. Fig. 5 gives a 

simple demonstration of information stored in these 

two tables.

Fig. 5. Topology of Graph

Table on the top is a node table with two nodes, and 

the table on the bottom is the connection table with 

connection information between node 1 and node 2. 

As it shows in the figure, two nodes can have 

multiple relationships with different properties.
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4.3. Initial Energization of Power Grid Network

System initial energization analysis is the process for 

determining what equipment has power if power is 

provided to certain nodes. Each node represents a 

physical bus. The inputs to energization analysis are

the primary energized nodes. The output is a list of 

all the nodes that are connected to these starting 

nodes, through one or more paths.

Fig. 6. Initial Energization Process

In Fig. 6, orange nodes are energized, and green ones 

are not energized. Voltage for each bus is shown in 

the figure. Connections are either lines or 

transformers, with “IncomingSwitchOn” properties 

and “OutgoingSwitchOn” properties. Transformer is 

the connection between two nodes with different 

voltage, and line is the connection between two nodes 

with the same voltage. Assuming that the starting

node is Bus1, the output energized nodes should be 

nodes {Bus4, Bus6, Bus7}. Other nodes {Bus2, 

Bus3, Bus5} are un-energized in that voltage of Bus2 

is lower than that of Bus1 (affecting Bus2 and Bus3) 

or connection properties indicate either 

“IncomingSwithOn” or “OutcomingWitchOn” is off

(affect Bus5).

4.4. The Shortest Path Search

Breadth-First
24

search is the foundation of numerous 

classical graph algorithms, including Dijkstra’s 

algorithm
25

. Dijkstra is used to find the shortest path 

between two nodes in a graph. It is very efficient 

because it computes only the lengths of a relatively 

small subset of the possible paths through the graph. 

When we have solved a node, the shortest path from 

starting node is then known, allowing all subsequent 

paths to safely build.

The A* algorithm
26

improves the classic Dijkstra 

algorithm with a best-first search and distance-plus-

cost heuristic function, that finds the least-cost path 

from an initial node to a goal node. A* is particularly 

good for path finding and shortest path search over 

the graph. Neo4j provides APIs of A*.

4.5. Conditional Topological Search Analysis

The goal of system conditional topological search is 

to store the entire topological structure into graph 

database and perform conditional topological search. 

The input of this model consists of a specified 

node (bus number), the path number to be traversed,

and some termination conditions.

Common termination conditions include arriving at 

the input node, reaching the node with status “stop”

or going through a connection with either 

“IncomingSwithOn” or “OutgoingWitchOn” off. The 

search will also be stopped when reaching to a bus in 

some specific area. In real power grid networks,

some buses belong to a specific power station, such 

as central stations used for generating electricity.

When reaching such buses, the search will be 

stopped.

Fig. 7. Conditional Topological Structure

Fig. 7 shows the Conditional Topological Search 

structure. In the end, this process returns all the paths 

and corresponding nodes as result.

5. Function Implementation based on Neo4j

5.1. Energization

5.1.1. Initial Energization

Initial energization uses one node as the starting 

node, then applies Breadth-First search to this node to 

find all the adjacent nodes which satisfy energized 

conditions (Sec 4.3). The subtree for each node

adjacent to the starting node is stored in a HashMap.

Thus, the graph is divided into the starting node and a

group of HashMap.

In each HashMap, we use Depth-First search to 

check the properties of connection and labels of 

nodes (‘IncomingSwitchOn’, ‘OutgoingSwitchOn’ 

and voltage) between two buses (Nodes), then add 

satisfied energized buses to the Energized Queue.
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Fig. 8. Initial Energization of Power Grid Network

Fig. 8 shows the architecture of initial energization

of power grid network. Before energizing a bus 

(node), we need to check whether this bus is in the 

Energized Queue or not. If this bus is already in 

queue, then there will be an early stop. This 

implementation is effective when testing on 10,000

nodes. However, when testing on 20,000,000 or more

nodes, the search takes a long time. Because real-

world power grid networks have over 200 million 

nodes, we must implement a more efficient initial 

energization approach.

5.1.2. Multi-threading platform

In the former initial energization model (Sec 5.1.1),

CPU occupancy is up to 90%, therefore, further 

improvement of the efficiency requires multicore 

processing. A multiple worker framework, which 

depends on the CPU number, is set up to boost the 

efficiency. Breadth-First search method is used to put 

all the buses into Breadth-First Queue. All the 

workers will automatic pull buses from Breadth-First 

Queue (each time 1000 buses). If the bus is not in the 

Energized Queue, then use Depth-First search to 

energized the remaining buses. After that, insert the 

bus into the Energized Queue as shown in Fig. 9.

Depending on the data size, multi-threading or 

single thread searching can be implemented 

accordingly. Multi-threading is more suitable for data 

size over 20,000,000.

5.2. Shortest Path Search

Neo4j provides the shortest path function based on 

A* algorithm. We preprocess the power grid data and 

implement the shortest path query based on Cypher. 

For comparison, Dijkstra’s shortest path algorithm is 

also performed based on PostgreSQL using Java.

Fig. 9. Initial Energization on multi-threading

5.3. Conditional Search

Traversal API provided by Neo4j implements

BreadthFirst function to go through all graph 

database. We also design a HashMap function which 

can save nodes from Traversal API. In addition, a

REST API environment is get up to obtain all the 

nodes from HashMap. Fig. 10 demonstrates the data 

flow of the model.

Fig. 10.  Data Flow on Conditional Search

REST APIs provide GET and POST function for 

conditional search. These functions can be called 

either from PowerShell or directly from Neo4j client.

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 1355–1363
___________________________________________________________________________________________________________

1359



6. Experimental Results

REST request is a simple HTTP request. There is no 

additional overhead. Therefore, in all the tests of the 

experiment conditions, REST API is used.

6.1. Test Environment

Hardware environment: CPU Intel(R) Core(TM) i5-

4460 (3.20GHz), 4 Cores, installed memory (RAM) 

12.0 GB. Software environment: using the Neo4j 

community version 3.1.0, Windows PowerShell 

version 5.0, Apache Maven 3.3.9, Java version 

1.8.0_101, PostgreSQL version 9.5.

The basic model of test data is shown in Fig. 5. 

There is only one type of node: Bus with 20 labels,

whereas two types of relations are presented: Line 

and Transformer, each with 20 properties.

6.2. Test Method

Table 1. Test Scenario 1

Data 1 200,000 nodes, 260,000 

relationships, 4,660,000 properties,

180 MB database disk usage 

Data 2 2,000,000 nodes, 2,600,000 

relationships, 46,600,000 

properties,

1.28 GB database disk usage 

Data 3 20,000,000 nodes, 26,000,000 

relationships, 466,000,000 

properties,

12.4GB database disk usage 

Data 4 200,000,000 nodes, 260,000,000 

relationships, 4,660,000,000 

properties,

123GB database disk usage

Energization Initial Energization Analysis

Shortest Path Find the shortest path from Bus A 

to Bus B

There are four different data sizes and two 

functions in test scenario 1, as shown in table 1.

Table 2. Test Scenario 2

Data 150,000 nodes,

399,944 relationships,

1,150,000 properties,

92 MB database disk usage

Conditional 

Search

A: find a node (Bus) X by label

B: find a specific node by id

C: find a set of nodes that has a 

property equal to a value (Area)

As shown in Table 2, three conditional searches 

are performed in the test scenario 2.

All queries above have been executed 10 times 

where the first time is ignored since it warms up 

Neo4j caches. The values are averaged over 10 

executions.

Table 3. Test Scenario 3

Data 2 2,000,000 nodes, 2,600,000 

relationships, 46,600,000 

properties,

1.28 GB database disk usage 

Data 3 20,000,000 nodes, 26,000,000 

relationships, 466,000,000 

properties,

12.4GB database disk usage 

Data 4 200,000,000 nodes, 260,000,000 

relationships, 4,660,000,000 

properties,

123GB database disk usage

Energization Neo4j vs Postgresql

Shortest Path Neo4j vs Postgresql

There are 3 different sizes of dataset and 2 

functions running on Neo4j and PostgreSQL in these 

process, as shown in table 3.

All queries above have been executed 10 times. 

Each query time including the data warm up on 

Neo4j and PostgreSQL. The data warm up time is 

included since Read I/O (read from DB to caches) is 

also one of features in these databases. The values are 

average over 10 executions.

6.3. Test Results

6.3.1. Test Cases

Test case 1: Fig. 11 and Fig. 12 show the running 

time comparison for the test on Neo4j: All datasets

(data1-4) and energization. The time unit is 

milliseconds, and the results are shown in Fig. 11 and 

Fig. 12.

Fig. 11.  Energization with Neo4j (small data size)
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Fig. 12.  Energization with Neo4j (large data size)

Test case 2: Fig. 13 is the results for Data and 

Conditional Search in Table 2. Running time is 

recorded in milliseconds. The horizontal axis shows 

the different conditions and conditions combination.

Fig. 13.  Conditional Search Results

Test case 3: Fig. 14 and Fig. 15 present the testing 

results for Neo4j vs PostgreSQL Energization test in 

Table 3. Vertical axis represents time in milliseconds.

The horizontal axis stands for results for different 

datasets. The blue bar is the time consumption for

Neo4j, and the orange is runtime from PostgreSQL.

Fig. 14 shows the single thread results, and Fig. 15

presents the 4-thread results of different databases.

Fig. 14.  Neo4j vs PostgreSQL (Energization)

Fig. 15.  Neo4j vs PostgreSQL (Energization)

Test case 4: Fig. 16 and Fig. 17 demonstrate the 

result of Shortest Path test for Neo4j vs PostgreSQL.

The horizontal axis in the plot represents different 

search conditions on datasets with different sizes.

Fig. 16. Neo4j vs PostgreSQL (the Shortest Path, 2 million 

dataset)

Fig. 17.  Neo4j vs PostgreSQL (the Shortest Path, 20 

million datasets)

Fig. 18 shows the testing results of conditional

search on dataset with different sizes. The blue bar 

and orange bar present the time consumption on

Neo4j and PostgreSQL respectively.
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Fig. 18.  Neo4j vs PostgreSQL (the Shortest Path)

6.3.2. Impact of dataset size on energization 

performance

The impact of data sizes is fully reflected on initial 

energization analysis. Comparing Fig. 11 and Fig. 12,

we can see that if data size is small (e.g. around 0.2 

million), the energization performance of these two 

methods (single process, blue color or multiple 

threads, orange color) is independent of the amount 

of data.

6.3.3. Impact of multiple threads on

energization performance

In the initial energization analysis, comparing the 

orange bar and blue bar in Fig. 11 and Fig. 12, we 

can see that if the value of data size is relatively

small, the performance of single process is better than 

that of multiples threads. However, if the data size is 

large (e.g. 200 million), implementing multiple 

threads is a better choice.

6.3.4. Impact of query complexity to query 

performance

Fig. 13 demonstrates the impact of multiple 

conditions on the query performance. If combining

these condition queries with ‘or’, the performance is 

determined by the quickest search condition. If we 

combine these condition queries with ‘and’, the 

running time is almost the same as the sum of these 

queries’ running time.

6.3.5. Energization performance on different 

datasets (PostgreSQL vs Neo4j)

Fig. 14 shows the energization performance using 

single thread on Neo4j and PostgreSQL. There is not 

much fluctuation of running time on relative small 

datasets (datasets less than 20 million).  However,

when implemented on large scale data (more than 

200 million), the performance of Neo4j is much 

better than that of PostgreSQL. The reason is that

Neo4j provides Traversal API and Core API which 

can access memory with high affinity and usually 

faster than any SQL-based query languages, 

including Cypher.

Fig. 15 shows the energization performance using 

multiple threads (4 cores) on Neo4j and PostgreSQL.

The results indicate that running time of small dataset 

has no big difference on these two databases. When 

the dataset has more than 200 million nodes, multiple 

threads in Neo4j performs better than in PostgreSQL.

Consequently, multithread communication on Core 

API in Neo4j is more efficient than in PostgreSQL.

6.3.6. Shortest Path performance on different 

datasets (PostgreSQL vs Neo4j)

In PostgreSQL database, the shortest path is 

computed with Dijkstra’s algorithm, and it is 

compared with the implementation of Dijkstra’s 

algorithm in Neo4j. From the results shown in Fig. 16

and Fig. 17, it can be concluded that Neo4j’s shortest 

path running time depends on the query criteria. The 

more results of data, the longer the running time; the 

PostgreSQL’s shortest path performance depends on

the size of database. The larger size, the longer 

running time. Fig. 18 provides more evidence to the

above claims. We try to find the shortest path from 

node 1 to node 100,000 on different sizes of database.

Neo4j uses almost the same time on different sizes of 

database which is totally different from the 

PostgreSQL’s results.  It demonstrates that when 

PostgreSQL attempts to handle data with large 

amount of relations among nodes, the performance 

degrades. Therefore, Neo4j is a better choice for the 

big data with complex relations.

7. Conclusion

Graph databases can achieve significant performance 

improvements for complex data relations. We build a

graph database structure for power grid network

based on Neo4j, and develop single and multi-

threading systems for initial energization analysis of 

power grid network. The experiments demonstrate

that energy network analysis using Neo4j has better 

performance than using PostgreSQL. In addition, we 

implement a shortest path search function based on 

Neo4j’s Cypher and conditional search function 

based on Neo4j’s Traversal API. Experiments show 

that for more than 20 million nodes, using multiple 

threads is much faster than using single thread for 

initial energization analysis. However, in small data

sets, multi-threading introduces extra communication 

time costs, leading to longer runtimes than using 

single thread. It is also shown in the experiments that 

with data sets of 200 million nodes, shortest path 

performs much better in Neo4j than in PostgreSQL.
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Our test results demonstrate the effectiveness and 

efficiency of using a graph database for power grid 

network modeling and analysis.
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