
Topology Modeling and Analysis of a Power Grid Network

Using a Graph Database

Bowen Kan1, Wendong Zhu 1, Guangyi Liu 1, Xi Chen1, Di Shi1, Weiqing Yu2

GEIRI North America,

250 W Tasman Dr., Suite 100

San Jose, CA 95134, USA

E-mail:
1{bowen.kan, wendong.zhu, guangyi.liu, xi.chen, di.shi}@geirina.net, 2weiqingy@umich.edu

Abstract

We introduce a new method for storing, modeling, and analyzing power grid data. First, we present an

architecture for building the network model for a power grid using the open source graph database Neo4j.

Second, we design single- and multi-threading systems for initial energization analysis of the power grid

network. We design the shortest path search function and conditional search function based on Neo4j. Finally,

we compare the functionality and efficiency of our graph database with a traditional relational database in

system initial energization analysis and the shortest path function problems on small to large data sets. The

results demonstrate the efficiency and effectiveness of topology modeling and analysis using graph database

for a power grid network.

Keywords: Graph Database, Conditional Search, Shortest Path, Neo4j, Power Grid Network, Topological

Analysis

1. Introduction

In the big data era, power grid systems face new

challenges and new development opportunities.
1,2

Large data sets facilitate better resource management,

more effective decision support systems and more

reliable disaster warning. Computational intelligence

is an enabling technology for the future development

of power grid networks. However, it is challenging to

build systems to intelligently manage and process the

explosive growth in data volume and variety.
3,4,5

Power grid data falls into three categories:

structured data, semi-structured data and unstructured

data. Structured data refers to information that has a

high degree of organization and is readily searchable,

such as tabular data in relational databases; semi-

structured data, such as XML, only has a medium

degree of organization; and unstructured data is

disorganized and difficult to search
6
.

Currently, the volume of unstructured power grid

data is growing exponentially, but most information

storage systems for power grids still use relational

databases. Relational databases are a poor fit for

dynamic unstructured data due to data redundancy

and performance degradation problems. Instead,

NoSQL
7

avoids these issues.

Lu et al.
8

introduced Hadoop for electrical power

monitoring. Hadoop is a column family technology

based on NoSQL which allows distributed processing

of big data. Hadoop is only used to store data that can

be decomposed into the key-value model, and does

not provide efficient native support to analyze

structure relationships between objects.

Consequently, Hadoop is not as useful for analyzing

the network topology of power system, where we are

especially interested in the relationships between

nodes.

Considering the dynamic nature of the data and

complex data relationships, graph database is a

logical choice for data analytics. In this paper, we

explore the open source graph database Neo4j
9

and

its application in power grid network modeling and

analysis. We design and implement functions to

compute initial energization, shortest path and

conditional search using Neo4j. Finally, we compare

our graph database approach to a relational one.

Received 2 April 2017

Accepted 30 August 2017

Copyright © 2017, the Authors. Published by Atlantis Press.

This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 1355–1363

1355

2. Related work

2.1. Relational Databases

Relational databases organize data into tables
10

and

model data relationships using key constraints and

other constraints. PostgreSQL
11

is the most advanced

open source database server. It can handle large

volume of data, including data storage, rapid data

retrieval and complex data analysis.

Relational databases are highly inefficient at

describing and traversing complex connections and

relationships. Usually several tables must be joined to

extract multiple relationships among entities. With

the increasing complexity and heterogeneity of

relationships in the real world, the number of joining

tables in relational databases increases rapidly and

unsustainably. Complex relational databases also

have high maintenance costs and are difficult to

evolve to continuously changing business needs.

2.2. NoSQL

Most NoSQL databases, whether key-value-,

document-, or column-oriented, store sets of

disconnected documents/values/columns
12

. This

makes it difficult to use them for connected data

graphs. NoSQL is suitable for simple structured big

data instead of data with plentiful properties and

labels. If we add relationships to NoSQL data,

aggregate joining operation are needed at the

application level, which is prohibitively expensive for

large data volumes.

2.3. Graph databases

With the increasing integration of components, the

structure and characteristics of the power grid

become more and more complicated. Many

researchers have applied the complex network theory

to study real networks,
13-16

mainly focusing on small

size power grid network computing. They have made

great progress in tracking, detection and control.

Graph database is useful for power grids because of

the continuously increasing scale of the power grid,

extremely wide distribution of power station and

high-performance requirement of power grid needed.

Neo4j
17

, an open source graph database written in

Java and Scala, implements generic graph models

with full database characteristics such as ACID

transaction compliance, cluster support, runtime

failover, and query language. It denotes the different

roles by nodes with multiple labels, and represents

the relationships by paths between nodes. Due to the

path-oriented data model, path-based operations in

Neo4j are highly efficient and suitable for use in

production scenarios.

3. Neo4j Architecture

3.1. Architecture

The main components of Neo4j’s architecture are its

REST-based API, cache, transaction log, and record

files (Fig. 1). Neo4j provides GET, POST, and PUT

calls to discover service information. The Traverser

API allows users to traverse the graph using

callbacks. Users can define an approach to search a

graph or subgraph using specific rules and

algorithms, such as depth-first or breadth-first. Neo4j

also exposes certain core APIs that can be directly

used by JVM-based languages for working with

graphs.

Cypher Traverser API Core API

Cache

(Object, file system)

Record Files

Disk

Transaction Log

Fig. 1. Neo4j Architecture

Caching is one of the most important components

in Neo4j because it directly affects read and write

performance. Neo4j provides two different types of

caching layers. One is the file buffer cache which

uses off-heap memory to cache data stored on disk.

The other is an object cache. All writes and reads are

performed through these caches to improve

throughput. All writes are written to the caches and

data in these caches are flushed to durable storage

only when the logical logs are rotated. Neo4j also

improves write performance by batching small

writes.

Transaction logs maintain all the events and

operations that happen over a Neo4j database, which

is helpful in scenarios where the database needs to be

recovered from a crash.

Record files are files that store information on

nodes, relationships and properties. Neo4j

recommends using ext4 or ZFS to support

features such as flush (fsync, fdatasync) that help

guarantee ACID properties.

3.2. Scalability and Redundancy

Neo4j high availability (HA) uses a master-slave

cluster architecture
18

. As the Fig. 2 illustrates
19

, there

are two parts to each Neo4j instance. One part is the

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 1355–1363

1356

database itself, the other is the cluster management

component. The cluster management component

continuously stays in sync with all instances in the

cluster, keeping track of any instances joining or

leaving. When a master election becomes necessary,

the cluster management component ensures that a

new master is consistently elected. The database

layer manages the rest of the system.

Fig. 2. Neo4j Cluster Architecture

In a Neo4j HA cluster, the full graph is replicated

to each instance in the cluster
20

. Regardless of the

number of instances that fail, all the data is kept safe

as long as one instance remains available. One single

instance of Neo4j can house at most 34 billion nodes,

34 billion relationships, and 68 billion properties.

3.3. Cypher

Cypher is a declarative graph database query

language
21

. It is simple and expressive, closely

resembling the natural way of representing patterns in

graphs through ASCII art diagrams.

In this paper, we mainly use the Traverser and

Core API. Cypher is mainly used for the Shortest

Path function.

4. System Design and Function Descriptions

4.1. Data Augmentation

IEEE 118-bus system whose network data can be

found in
22

is used for this study.

Fig. 3. IEEE 118-bus system

The IEEE 118-bus system is expanded to 200

thousand, 2 million, 20 million and 200 million buses

system respectively. Experiments are done separately

to simulate the real power grid network environment.

Fig. 4. Expanding IEEE 118-bus system

Fig. 4 shows the process of expanding a single 118-

bus system to 4 connected 118-bus system. In the

expanded system, four 118-bus systems form a small

highly connected unit and the expanded system

consists of these units.

4.2. Database Models

Currently most power grid network data are stored in

relational database (RDBMS) with all information

located in numerous complex correlated relational

tables
23

.

For the graph database structure, only two tables

are used to build database. One is node table, and the

other is connection table. In the node table, one row

represents one node as well as its labels. As for the

connection table, each row represents a connection

and its corresponding properties. Fig. 5 gives a

simple demonstration of information stored in these

two tables.

Fig. 5. Topology of Graph

Table on the top is a node table with two nodes, and

the table on the bottom is the connection table with

connection information between node 1 and node 2.

As it shows in the figure, two nodes can have

multiple relationships with different properties.

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 1355–1363

1357

4.3. Initial Energization of Power Grid Network

System initial energization analysis is the process for

determining what equipment has power if power is

provided to certain nodes. Each node represents a

physical bus. The inputs to energization analysis are

the primary energized nodes. The output is a list of

all the nodes that are connected to these starting

nodes, through one or more paths.

Fig. 6. Initial Energization Process

In Fig. 6, orange nodes are energized, and green ones

are not energized. Voltage for each bus is shown in

the figure. Connections are either lines or

transformers, with “IncomingSwitchOn” properties

and “OutgoingSwitchOn” properties. Transformer is

the connection between two nodes with different

voltage, and line is the connection between two nodes

with the same voltage. Assuming that the starting

node is Bus1, the output energized nodes should be

nodes {Bus4, Bus6, Bus7}. Other nodes {Bus2,

Bus3, Bus5} are un-energized in that voltage of Bus2

is lower than that of Bus1 (affecting Bus2 and Bus3)

or connection properties indicate either

“IncomingSwithOn” or “OutcomingWitchOn” is off

(affect Bus5).

4.4. The Shortest Path Search

Breadth-First
24

search is the foundation of numerous

classical graph algorithms, including Dijkstra’s

algorithm
25

. Dijkstra is used to find the shortest path

between two nodes in a graph. It is very efficient

because it computes only the lengths of a relatively

small subset of the possible paths through the graph.

When we have solved a node, the shortest path from

starting node is then known, allowing all subsequent

paths to safely build.

The A* algorithm
26

improves the classic Dijkstra

algorithm with a best-first search and distance-plus-

cost heuristic function, that finds the least-cost path

from an initial node to a goal node. A* is particularly

good for path finding and shortest path search over

the graph. Neo4j provides APIs of A*.

4.5. Conditional Topological Search Analysis

The goal of system conditional topological search is

to store the entire topological structure into graph

database and perform conditional topological search.

The input of this model consists of a specified

node (bus number), the path number to be traversed,

and some termination conditions.

Common termination conditions include arriving at

the input node, reaching the node with status “stop”

or going through a connection with either

“IncomingSwithOn” or “OutgoingWitchOn” off. The

search will also be stopped when reaching to a bus in

some specific area. In real power grid networks,

some buses belong to a specific power station, such

as central stations used for generating electricity.

When reaching such buses, the search will be

stopped.

Fig. 7. Conditional Topological Structure

Fig. 7 shows the Conditional Topological Search

structure. In the end, this process returns all the paths

and corresponding nodes as result.

5. Function Implementation based on Neo4j

5.1. Energization

5.1.1. Initial Energization

Initial energization uses one node as the starting

node, then applies Breadth-First search to this node to

find all the adjacent nodes which satisfy energized

conditions (Sec 4.3). The subtree for each node

adjacent to the starting node is stored in a HashMap.

Thus, the graph is divided into the starting node and a

group of HashMap.

In each HashMap, we use Depth-First search to

check the properties of connection and labels of

nodes (‘IncomingSwitchOn’, ‘OutgoingSwitchOn’

and voltage) between two buses (Nodes), then add

satisfied energized buses to the Energized Queue.

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 1355–1363

1358

Fig. 8. Initial Energization of Power Grid Network

Fig. 8 shows the architecture of initial energization

of power grid network. Before energizing a bus

(node), we need to check whether this bus is in the

Energized Queue or not. If this bus is already in

queue, then there will be an early stop. This

implementation is effective when testing on 10,000

nodes. However, when testing on 20,000,000 or more

nodes, the search takes a long time. Because real-

world power grid networks have over 200 million

nodes, we must implement a more efficient initial

energization approach.

5.1.2. Multi-threading platform

In the former initial energization model (Sec 5.1.1),

CPU occupancy is up to 90%, therefore, further

improvement of the efficiency requires multicore

processing. A multiple worker framework, which

depends on the CPU number, is set up to boost the

efficiency. Breadth-First search method is used to put

all the buses into Breadth-First Queue. All the

workers will automatic pull buses from Breadth-First

Queue (each time 1000 buses). If the bus is not in the

Energized Queue, then use Depth-First search to

energized the remaining buses. After that, insert the

bus into the Energized Queue as shown in Fig. 9.

Depending on the data size, multi-threading or

single thread searching can be implemented

accordingly. Multi-threading is more suitable for data

size over 20,000,000.

5.2. Shortest Path Search

Neo4j provides the shortest path function based on

A* algorithm. We preprocess the power grid data and

implement the shortest path query based on Cypher.

For comparison, Dijkstra’s shortest path algorithm is

also performed based on PostgreSQL using Java.

Fig. 9. Initial Energization on multi-threading

5.3. Conditional Search

Traversal API provided by Neo4j implements

BreadthFirst function to go through all graph

database. We also design a HashMap function which

can save nodes from Traversal API. In addition, a

REST API environment is get up to obtain all the

nodes from HashMap. Fig. 10 demonstrates the data

flow of the model.

Fig. 10. Data Flow on Conditional Search

REST APIs provide GET and POST function for

conditional search. These functions can be called

either from PowerShell or directly from Neo4j client.

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 1355–1363

1359

6. Experimental Results

REST request is a simple HTTP request. There is no

additional overhead. Therefore, in all the tests of the

experiment conditions, REST API is used.

6.1. Test Environment

Hardware environment: CPU Intel(R) Core(TM) i5-

4460 (3.20GHz), 4 Cores, installed memory (RAM)

12.0 GB. Software environment: using the Neo4j

community version 3.1.0, Windows PowerShell

version 5.0, Apache Maven 3.3.9, Java version

1.8.0_101, PostgreSQL version 9.5.

The basic model of test data is shown in Fig. 5.

There is only one type of node: Bus with 20 labels,

whereas two types of relations are presented: Line

and Transformer, each with 20 properties.

6.2. Test Method

Table 1. Test Scenario 1

Data 1 200,000 nodes, 260,000

relationships, 4,660,000 properties,

180 MB database disk usage

Data 2 2,000,000 nodes, 2,600,000

relationships, 46,600,000

properties,

1.28 GB database disk usage

Data 3 20,000,000 nodes, 26,000,000

relationships, 466,000,000

properties,

12.4GB database disk usage

Data 4 200,000,000 nodes, 260,000,000

relationships, 4,660,000,000

properties,

123GB database disk usage

Energization Initial Energization Analysis

Shortest Path Find the shortest path from Bus A

to Bus B

There are four different data sizes and two

functions in test scenario 1, as shown in table 1.

Table 2. Test Scenario 2

Data 150,000 nodes,

399,944 relationships,

1,150,000 properties,

92 MB database disk usage

Conditional

Search

A: find a node (Bus) X by label

B: find a specific node by id

C: find a set of nodes that has a

property equal to a value (Area)

As shown in Table 2, three conditional searches

are performed in the test scenario 2.

All queries above have been executed 10 times

where the first time is ignored since it warms up

Neo4j caches. The values are averaged over 10

executions.

Table 3. Test Scenario 3

Data 2 2,000,000 nodes, 2,600,000

relationships, 46,600,000

properties,

1.28 GB database disk usage

Data 3 20,000,000 nodes, 26,000,000

relationships, 466,000,000

properties,

12.4GB database disk usage

Data 4 200,000,000 nodes, 260,000,000

relationships, 4,660,000,000

properties,

123GB database disk usage

Energization Neo4j vs Postgresql

Shortest Path Neo4j vs Postgresql

There are 3 different sizes of dataset and 2

functions running on Neo4j and PostgreSQL in these

process, as shown in table 3.

All queries above have been executed 10 times.

Each query time including the data warm up on

Neo4j and PostgreSQL. The data warm up time is

included since Read I/O (read from DB to caches) is

also one of features in these databases. The values are

average over 10 executions.

6.3. Test Results

6.3.1. Test Cases

Test case 1: Fig. 11 and Fig. 12 show the running

time comparison for the test on Neo4j: All datasets

(data1-4) and energization. The time unit is

milliseconds, and the results are shown in Fig. 11 and

Fig. 12.

Fig. 11. Energization with Neo4j (small data size)

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 1355–1363

1360

Fig. 12. Energization with Neo4j (large data size)

Test case 2: Fig. 13 is the results for Data and

Conditional Search in Table 2. Running time is

recorded in milliseconds. The horizontal axis shows

the different conditions and conditions combination.

Fig. 13. Conditional Search Results

Test case 3: Fig. 14 and Fig. 15 present the testing

results for Neo4j vs PostgreSQL Energization test in

Table 3. Vertical axis represents time in milliseconds.

The horizontal axis stands for results for different

datasets. The blue bar is the time consumption for

Neo4j, and the orange is runtime from PostgreSQL.

Fig. 14 shows the single thread results, and Fig. 15

presents the 4-thread results of different databases.

Fig. 14. Neo4j vs PostgreSQL (Energization)

Fig. 15. Neo4j vs PostgreSQL (Energization)

Test case 4: Fig. 16 and Fig. 17 demonstrate the

result of Shortest Path test for Neo4j vs PostgreSQL.

The horizontal axis in the plot represents different

search conditions on datasets with different sizes.

Fig. 16. Neo4j vs PostgreSQL (the Shortest Path, 2 million

dataset)

Fig. 17. Neo4j vs PostgreSQL (the Shortest Path, 20

million datasets)

Fig. 18 shows the testing results of conditional

search on dataset with different sizes. The blue bar

and orange bar present the time consumption on

Neo4j and PostgreSQL respectively.

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 1355–1363

1361

Fig. 18. Neo4j vs PostgreSQL (the Shortest Path)

6.3.2. Impact of dataset size on energization

performance

The impact of data sizes is fully reflected on initial

energization analysis. Comparing Fig. 11 and Fig. 12,

we can see that if data size is small (e.g. around 0.2

million), the energization performance of these two

methods (single process, blue color or multiple

threads, orange color) is independent of the amount

of data.

6.3.3. Impact of multiple threads on

energization performance

In the initial energization analysis, comparing the

orange bar and blue bar in Fig. 11 and Fig. 12, we

can see that if the value of data size is relatively

small, the performance of single process is better than

that of multiples threads. However, if the data size is

large (e.g. 200 million), implementing multiple

threads is a better choice.

6.3.4. Impact of query complexity to query

performance

Fig. 13 demonstrates the impact of multiple

conditions on the query performance. If combining

these condition queries with ‘or’, the performance is

determined by the quickest search condition. If we

combine these condition queries with ‘and’, the

running time is almost the same as the sum of these

queries’ running time.

6.3.5. Energization performance on different

datasets (PostgreSQL vs Neo4j)

Fig. 14 shows the energization performance using

single thread on Neo4j and PostgreSQL. There is not

much fluctuation of running time on relative small

datasets (datasets less than 20 million). However,

when implemented on large scale data (more than

200 million), the performance of Neo4j is much

better than that of PostgreSQL. The reason is that

Neo4j provides Traversal API and Core API which

can access memory with high affinity and usually

faster than any SQL-based query languages,

including Cypher.

Fig. 15 shows the energization performance using

multiple threads (4 cores) on Neo4j and PostgreSQL.

The results indicate that running time of small dataset

has no big difference on these two databases. When

the dataset has more than 200 million nodes, multiple

threads in Neo4j performs better than in PostgreSQL.

Consequently, multithread communication on Core

API in Neo4j is more efficient than in PostgreSQL.

6.3.6. Shortest Path performance on different

datasets (PostgreSQL vs Neo4j)

In PostgreSQL database, the shortest path is

computed with Dijkstra’s algorithm, and it is

compared with the implementation of Dijkstra’s

algorithm in Neo4j. From the results shown in Fig. 16

and Fig. 17, it can be concluded that Neo4j’s shortest

path running time depends on the query criteria. The

more results of data, the longer the running time; the

PostgreSQL’s shortest path performance depends on

the size of database. The larger size, the longer

running time. Fig. 18 provides more evidence to the

above claims. We try to find the shortest path from

node 1 to node 100,000 on different sizes of database.

Neo4j uses almost the same time on different sizes of

database which is totally different from the

PostgreSQL’s results. It demonstrates that when

PostgreSQL attempts to handle data with large

amount of relations among nodes, the performance

degrades. Therefore, Neo4j is a better choice for the

big data with complex relations.

7. Conclusion

Graph databases can achieve significant performance

improvements for complex data relations. We build a

graph database structure for power grid network

based on Neo4j, and develop single and multi-

threading systems for initial energization analysis of

power grid network. The experiments demonstrate

that energy network analysis using Neo4j has better

performance than using PostgreSQL. In addition, we

implement a shortest path search function based on

Neo4j’s Cypher and conditional search function

based on Neo4j’s Traversal API. Experiments show

that for more than 20 million nodes, using multiple

threads is much faster than using single thread for

initial energization analysis. However, in small data

sets, multi-threading introduces extra communication

time costs, leading to longer runtimes than using

single thread. It is also shown in the experiments that

with data sets of 200 million nodes, shortest path

performs much better in Neo4j than in PostgreSQL.

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 1355–1363

1362

Our test results demonstrate the effectiveness and

efficiency of using a graph database for power grid

network modeling and analysis.

Acknowledgment

This work was supported by State Grid

Corporation technology project SGRIJSKJ(2016)800.

Reference

1. Fang, Xi, et al. "Smart grid—The new and improved

power grid: A survey." IEEE communications surveys

& tutorials 14.4 (2012): 944-980.

2. Ribeiro, Paulo F., et al. "Energy storage systems for

advanced power applications." Proceedings of the

IEEE 89.12 (2001): 1744-1756.

3. Song, Yaqi, Guoliang Zhou, and Yongli Zhu. "Present

status and challenges of big data processing in smart

grid." Power System Technology 37.4 (2013): 927-

935.

4. Yao, Jianguo, et al. "Development Trend Prospects of

Power Dispatching Automation System

[J]." Automation of Electric Power Systems 13

(2007): 001.

5. Mao, Peng, et al. "Research on framework of CIM

conformance test based on OSI

architecture." Advanced Technology of Electrical

Engineering and Energy 32.2 (2013): 8-71.

6. Baars, Henning, and Hans-George Kemper.

"Management support with structured and

unstructured data—an integrated business intelligence

framework." Information Systems Management 25.2

(2008): 132-148.

7. Cattell, Rick. "Scalable SQL and NoSQL data

stores." Acm Sigmod Record 39.4 (2011): 12-27.

8. Lu, Lin, et al. "A novel mass data processing

framework based on Hadoop for electrical power

monitoring system." Power and Energy Engineering

Conference (APPEEC), 2012 Asia-Pacific. IEEE,

2012.

9. Developers, Neo4J. "Neo4J." Graph NoSQL Database

[online] (2012).

10. Codd, Edgar F. "Relational database: a practical

foundation for productivity." Communications of the

ACM 25.2 (1982): 109-117.

11. Stonebraker, Michael, and Lawrence A. Rowe. The

design of Postgres. Vol. 15. No. 2. ACM, 1986.

12. Han, Jing, et al. "Survey on NoSQL

database." Pervasive computing and applications

(ICPCA), 2011 6th international conference on. IEEE,

2011.

13. M. Babaei, H. Ghassemieh, and M. Jalili, “Cascading

failure tolerance of modular small-world networks,”

IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 58, no.

8, pp. 527–531, Aug 2011.

14. A. M. Amani, M. Jalili, X. Yu, and L. Stone, “Finding

the most influential nodes in pinning controllability of

complex networks,” IEEE Trans. Circuits Syst. II,

Exp. Briefs, vol. PP, no. 99, pp. 1–1, 2016.

15. J. Wu, C. K. Tse, and F. C. M. Lau, “Optimizing

performance of communication networks: An

application of network science,” IEEE Trans. Circuits

Syst. II, Exp. Briefs, vol. 62, no. 1, pp. 95–99, Jan

2015.

16.
filter design and relaxation for nonlinear systems via

tensor product technique,” Signal Process., vol. 127,

pp. 191–205, 2016.

17. Webber, Jim. "A programmatic introduction to

neo4j." Proceedings of the 3rd annual conference on

Systems, programming, and applications: software for

humanity. ACM, 2012.

18. Montag, David. "Understanding neo4j

scalability." White Paper, Neotechnology (2013).

19. https://neo4j.com/neo4j-scales-web-enterprise/

20. Robinson, Ian, Jim Webber, and Emil Eifrem. Graph

databases: new opportunities for connected data. "

O'Reilly Media, Inc.", 2015.

21. Holzschuher, Florian, and René Peinl. "Performance

of graph query languages: comparison of cypher,

gremlin and native access in Neo4j." Proceedings of

the Joint EDBT/ICDT 2013 Workshops. ACM, 2013.

22. [Online]. Available:

http://www2.ee.washington.edu/research/pstca/

23. H. P. Mooney and J. W. Evans, A complete relational

DBMS for an EMS product[J],IEEE Trans. On Power

Systems, Vol. 3,No. 1,February 1988,325-329

24. Chad Vicknair , Michael Macias , Zhendong Zhao ,

Xiaofei Nan , Yixin Chen , Dawn Wilkins, A

comparison of a graph database and a relational

database: a data provenance perspective, Proceedings

of the 48th Annual Southeast Regional Conference,

April 15-17, 2010, Oxford, Mississippi

25. Goldfarb, Donald, Jianxiu Hao, and Sheng-Roan Kai.

"Shortest path algorithms using dynamic breadth-first

search." Networks 21.1 (1991): 29-50.

26. Seet, Boon-Chong, et al. "A-STAR: A mobile ad hoc

routing strategy for metropolis vehicular

communications." International Conference on

Research in Networking. Springer Berlin Heidelberg,

2004.

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 1355–1363

1363

