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TOPOLOGY OF ALMOST CONTACT MANIFOLDS

D. E. BLAIR & S. I. GOLDBERG

Introduction

In his Colloquium Lectures on G-structures [2], S. S. Chern asked for the
conditions, both local and global, on a C°° manifold in order that a linear
differential form η exist such that

η Λ {dηY φ 0

for a given value of p. The form η defines a differential system and it is im-
portant to study the local and global properties of its integral manifolds. To
this end, the notion of a quasi-Sasakian structure on an almost contact metric
manifold was introduced by one of the authors [1] and its main properties
developed. In the present paper their topological properties are considered
and it is shown that both compact Sasakian and cosymplectic manifolds have
global properties similar to compact Kaehler manifolds. Examples are the
unit hypersphere S2n+1 in Euclidean space, and in fact, the circle bundles over
any compact Hodge variety. In the latter class, examples are provided by
M X S1 where M is any compact Kaehler manifold. As one might expect,
therefore, not only locally, but topologically as well, the compact cosymplec-
tic spaces are the proper odd dimensional analogues of the compact Kaehler
manifolds. A complete, but not compact, simply connected cosymplectic
manifold is a product with one factor Kaehlerian.

The notation and terminology in this paper will be the same as that em-
ployed in [1].

1. Topology of Sasakian manifolds

Define two operators L and A, dual to each other, on a quasi-Sasakian
manifold by L = ε(Φ) and A = c(Φ) where ε and c are respectively the exterior
and interior product operators. We say that a p-form a(p > 2) is effective if
Λa = 0. Since t(Φ) = * ε(Φ) * where * is the Hodge star isomorphism, A = * L *.

An orthonormal basis of g2n+1 on an almost contact metric manifold M2n+1

of the form {ξ, Xi7 Xt* = φXi}, i = 1, , n, is called a φ-basis. It is well
known that such a basis always exists. For, let V = {X<zMm\g(X, ξ) = 0}.
Equations (1.1) and (1.2) of [1] show that φ \ v is an almost complex structure
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on V and g\v is a Hermitian metric. If an orthonormal basis of V of the
form {Xi9 (φ I γ)Xi}, i = 1, , n is then chosen, we obtain a ^-basis of Mm.

In terms of a ^-basis {ξ, Xiy Xt*} with dual basis {η, ωί9 ωt*} we have

Φ = Σiωί A αv, id = Σ< '(α><*Mα>0 •

Lemma 1.1. On <z quasi-Sasakian manifold M 2 n + 1 ί/ze operators L and A

satisfy

(ΛL - LΛ)# = (n - p)α

/or Λ/IJ p-form a.
Proof. By linearity it suffices to consider the decomposable forms ω^ Λ

• • • Λ ^ Λ ^ i Λ ' Λ ωj*9 q + r = p and 37 Λ ωh Λ Λ ωiq Λ ω;* Λ
• Λ <Dj*r, q + r — p — 1. The result then follows by a long computation
similar to that in [4] for almost hermitian manifolds.

S. Tachibana [6] proved that if a is a harmonic p-form with 1 < p < n on
a compact Sasakian manifold M271"1, n > 1, then αr is 'orthogonal' to £, that
is, c(ξ)cc = 0.

Define an operator C on p-forms in an almost contact manifold by

Ca(Xl9 .- ,XP) = a(φX19 ? φXp) .

Lemma 1.2. /n a compact (In + \)-dimensional quasi-Sasakir** manifold
of rank 2n + 1 or 1 ί/*e operator C sends harmonic p-forms i rmonic
p-forms for p < n in the Sasakian case and forp= 1, , 2n ιu >,\t cosym-
plectic case.

Proof. The rank In + 1 case is a consequence of the fact that harmonic
p-forms are orthogonal to ξ ίor 1 < p < n (see [6]). The rank 1 case follows
from Theorem 5.2 of [1] since then the linear transformation field φ is cova-
riant constant. We give the proof for 1-forms only, the corresponding state-
ment for p-foπns, p > 1, following in an analogous manner. We require the
following fact valid for p-forms. Since Fφ = 0,

VCa = CVa .

For,

VχCa{Y» • , Yp) = Xa(φY19 , φYp) - Σ «(φYi, , φVjYu , ^^p)

, ΦYP) = crza(YΊ, . •, YP) .

Applying the interchange formula to φ we see that the operator C and the
Ricci curvature operator Q commute, that is,

= CQ.
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Thus, since
Qa = <FFa, >

is a necessary and sufficient condition for a 1-form α o n a compact manifold
to be harmonic (see [4, Theorem 3.2.3]), we obtain

<FFCa,X> = <CFFa,X>
= <FFa,φX>
= Qa(φX)
= CQa{X)
= <QCa,X> .

It is known that the odd-dimensional betti numbers Bp (p: odd) of a com-
pact Kaehler manifold are even [4]. Here we prove an analogous result for
compact Sasakian manifolds not valid for cosymplectic manifolds since the
first betti number of S1 X PC, is 1. (Observe that Cη vanishes on a quasi-
Sasakian manifold of any rank, since Cη(X) = η(φX) = 0. So, since η is
harmonic on a cosymplectic manifold, Cη and η are not independent.)

Theorem 1.3. The p-th betti number of a compact Sasakian manifold
M2n+ι is even if p is odd and p < n. For p > n + 1, Bp is even if p is even.

Proof. The second statement follows from the first by Poincare duality.
So let a be a harmonic p-form with p < n; we shall show that a and Ca are
independent, that is, Ca Φ la. First of all we have using equations (1.1) of [1]

, XP) = a(φ*X19 , φ2XP)

. . . , _ * „ + η(Xp)ξ)

since c(ξ)a = 0. Hence if Ca = 0, a must also vanish. Suppose now that
Ca = λa. Then C2a = λCa = λ2a. But C2a = (— l)*α, so if p is odd, λ2a =
— α, that is a = 0.

Theorem 1.4. TΛere are no covariant constant p-forms on a compact
Sasakian manifold M2n+1 for 1 < p < In.

Proof. Let a be a covariant constant p-form with 1 < p < n and let

X, 72, ., Yp € # 2 Λ + 1 . Then since *(£)« = 0 and Fxξ = - — φX (see [1,

Lemma 4.3]), we have

0 = (FΦA<(S)«))(Y2> '->Yp) = Wφj&aXXi, , ΎP)

Thus «ί = 0. The same is true for forms of degree p, n + 1 < p < 2n, since
* α is covariant constant whenever a is, and * is an isomorphism.
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Applying [4, Theorem 3.2.2] we obtain
Corollary 1.5. // the Ricci curvature of a compact Sasakian manifold is

positive semi-definite, Bτ = 0.
A contact manifold M is homogeneous if there is a connected Lie group

which acts transitively and effectively on M as a group of diffeomorphisms
and leaves the contact form invariant. A contact symmetric space is a homo-
geneous contact manifold which is Riemannian symmetric with respect to the
contact metric structure.

The Ricci curvature of a compact homogeneous Sasakian manifold M may
not be positive semi-definite. For, let ^4(52n+1) be the automorphism group of
S2n+1 with the almost contact metric structure Σ = (φ, ξ, η, g). ^4(52n+1) is
transitive. If / <= A(S2n+1)

f * (μg + (a2—a)η (x) η) = ag + (a2 — a)η®η

where a is a constant. Hence, A(S2n*1) is also the automorphism group of
the Sasakian structure Σ = (φ, f, η, g) with

φ = φ, f = — ξ, η = aη, g = ag + (a2 - a)η ® η .

A 0-basis for Σ can be modified to a 0-basis for Σ, so from the sectional
curvatures Kaβ and Kaβ of Σ and Σ,

Ku* = — [£«• + 3(1 - a)] = 4 ~ 3 a .

If we put a == 2, then A^* = — 1.
Theorem 1.6. Tλe fundamental group πL(M) of a compact symmetric

Sasakian manifold M is finite.
Proof. Since a harmonic form on a compact symmetric space has vanish-

ing covariant derivative, Bλ = 0 by Theorem 1.4. Let M = G/K and assume
that K is connected. Consider the exact homotopy sequence

0 -» π îC) -* π^G) -> ^(M) -> 0 .

Since ^(G) is abelian, so is πλ{M). Hence ^ ( M , Z) « *i(M)l[nx(hl), πλ(M)]
« 7r!(M). Thus, since ^ = 0, Hλ(M, Z) is a finite group since it is a finitely
generated torsion group, so πλ{M) is finite also.

If K is not connected, let KQ be the connected component of the identity in
K and consider the exact sequence

0 - ^(GIK0) -> π^G/K) — £/# 0 -> 0 .

Since K is compact, K/Ko is finite. Hence, since π^G/K) is an extension of
by £/K0, it is finite.
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Added in proof. If M = G/K is simply connected, one of the authors has
recently shown that M is (globally) isometric to a Euclidean sphere (see
S. I. Goldberg, On the topology of compact contact manifolds, to appear in
Tόhoku Math. J., August, 1968).

2. Topology of cosymplectic manifolds

In terms of a 0-basis {$, Xu Xt*} with dual basis {η, ωt, ω^} we define six
new operators as follows

d'=Σi <<»i)rzt, d"=Σi <ω*Wχ^ d° = ε(η)Fξ

? = - Σt t&iWxi^ t" = - Σt '(vfWzt, δ° = -

Then, d = d' + d" + d° and δ = δ' + δ" + δ°.
Lemma 2.1. On a cosymplectic manifold

δL-Lδ = d'- d" .

The proof is a computation similar to the corresponding one for Kaehler
manifolds (see [4]) it is important to note the role played by VXΦ = 0 for
every X <ε <^2n+1 in this computation. Thus, lemmas of this sort do not hold
on non-cosymplectic quasi-Sasakian manifolds. We also make use of the fact
that

δ°L - Lδ° = 0 .

It should also be kept in mind that Φ Φ dη on a cosymplectic manifold but
that Φn Φ 0 and dη = 0.

The following lemmas are analogues of those for Kaehler manifolds [4].
Lemma 2.2. On a cosymplectic manifold

d'd'
d"d"
d°d°

= 0,

= o,
= 0,

d'
dc

dc

d"
d'

d"

+

+

d"d!
d'd°
d"d°

= 0,
= 0 ,
= 0 .

Lemma 2.3. L commutes with the Laplace-Beltrami operator Δ.
Thus we see that L maps Λ&> the space of harmonic p-forms into Λ£+2,

the space of harmonic (p 4- 2)-forms.
Theorem 2.4. The betti numbers of a compact cosymplectic manifold are

non-zero.
Proof. We deduce B2p Φ 0 by showing the existence of a non-zero harmo-

nic 2p-form, 1 < p < n; since the manifold is odd-dimensional, B2p+1 Φ 0
follows by Poincare duality. Since VYΦ — 0 for every Y e <^2Λ+1, we see that
Δφ = 0, that is φ is harmonic. Now suppose Φp~λ is harmonic, then

A(φp) = Δ(LΦ*-Ύ) = L(ΔΦ*-λ) = 0
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by Lemma 2.3. Thus Φp is harmonic for every p, 1 < p < n, and since
φn φ 0, Φp Φ 0 completing the proof.

In this regard let us discuss briefly the case of a compact quasi-Sasakian
manifold M2n^ of rank r = 2p + 1 under the hypothesis that VX6 — 0 for
every X € £c2n+1. An example of such a space can be given by taking the direct
product of a compact Sasakian manifold M2p+1 and a compact Kaehler mani-
fold M2q (see [1, Theorem 3.2]). Then, VXQ = 0 for every Xε£2n+ι and
Θ(X, 7) = g(X, ΘY). Hence θ is harmonic and Φ = Θ + dη. Now Θ re-
stricted to the Kaehler manifold M2?, g = n — p, is the fundamental 2-form
of the Kaehler structure [1], and θ(X, Y) = 0 if either X or 7 is in £2p*\
Hence, θ* =£ 0 for 1 < i < q giving us the following theorem which generalizes
Theorem 2.4.

Theorem 2.5. In the locally decomposable case the first q even-dimen-
sional betti numbers of a compact quasi-Sasakian manifold M2 n + 1 of rank
2p + 1, p -f q = n, are different from zero.

Several lemmas leading to a monotonicity condition on the betti numbers
of a cosymplectic manifold are now given. These are valid for any quasi-
Sasakian manifold no matter what its rank.

Lemma 2.6. The operators L and A satisfy

(ΛLk - LkΛ)a = k(n-p-k+ l)Lk~ιa

for any p-form a.
Proof. By induction using Lemma 1.1.
Lemma 2.7. Every p-form a with p < n + 1 may be written uniquely as

a sum

* = Σ
ft = 0

where the βp.^'s are effective forms of degree p — 2k and r = — L

Proof. The proof is analogous to that of the corresponding result for
Hermitian manifolds (see [4, Theorem 5.7.1]), and so is omitted.

Lemma 2.8. ΛL is an automorphism of the space of p-forms Λ p for p <
n — 1. Furthermore, L is an isomorphism of Ap into /\pJr2 for p <n — 1.

Proof. Analogous to the proofs of the corresponding results for Hermitian
manifolds [4, Corollaries 5.7.1 and 5.7.2].

A theorem due to S. S. Chern [3] says that if M is a compact Riemannian
manifold with G the structural group of its tangent bundle, WΛ, , Wt the
irreducible invariant subspaces of Λέ under the action of G, and PWi the
projection map of Λ# into Wu then if a p-form a is harmonic so is PWia
Now, let Λ3r denote the subspace of Λ& of effective harmonic p-forms. In
our case, since Φ is invariant under the action of G c U(ri) X 1, each
Lk'/\^~2k is an invariant subspace of Λ£. Thus, each Lk/\^~2k is a sum of Wt's
and hence the projection of a harmonic form into L*Λέ~2fc is again harmonic.
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We therefore have the following statement.
Proposition 2.9. Every harmonic p-form a on a cosymplectic manifold

M2n+1 with p < n + 1 may be written uniquely as a sum

« = Σ L%.2k

where the βp-2k* are effective harmonic forms of degree p — 2k and r = — .

(Since a harmonic p-form p < n, on a compact Sasakian manifold is easily
seen to be effective, Proposition 2.9 is trivially true in that case. For cosym-
plectic manifolds, the effective harmonic forms are not devoid of geometric
content.)

From Lemmas 2.3 and 2.8, it is seen that L is an isomorphism of Λ # into
Λ£ + 2 Thus,

Theorem 2.10. The betti numbers Bv of a compact cosymplectic manifold
M2n+1 satisfy

forl<p<n-l.
The difference Bp — Bp_2 may be measured in terms of the number of ef-

fective harmonic forms of degree p, p < n •+- 1.
Theorem 2.11. On a compact cosymplectic manifold, the dimension of

the space of effective harmonic p-forms is Bp — Bp_2, p < n + 1.
Proof. Analogous to the proof of the corresponding result for Kaehler

manifolds [4, Theorem 5.7.2].
Observe that on a quasi-Sasakian manifold of any rank c(ξ)Φn = 0, so

c(ξ)(η Λ Φn) = Φn, from which

η Λ Φn Φ 0

— a statement resembling the definition of a contact manifold. (A (In + 1)-
dimensional manifold admitting a global 1-form η and 2-form Φ such that
η Λ Φn Φ 0 is called almost contact by S. Takizawa, and cosymplectic if,
moreover, φ is closed [7]. They have been studied by means of sheaf theory
but, in view of their generality, no examples were provided other than the
contact manifolds where φ = dη.)

A relation between η and φ is suggested. Since c(η)ε(η)φn = φn,

* φn = * t(γj) ** e(η) ** φn = e{η)c(η) * φn = fη

where f=c(η)*φn. We show that |/ | = | φ Λ j . To this end, observe that
c 2 * 1 =φnA*Φn = fηΛΦn where c 2 = <φn, φn>. Thus, c2 = / * ε(^) ** φn

= ft{rj) *φ« = f.

Proposition 2.12. On a quasi-Sasakian manifold the forms η and Φ are
related by
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η = 4- _ί_ * 0* .

~ \Φn\

Corollary 2.13. On α quasi-Sasakian manifold
η A Φn = ± I Φn I * 1 .

By Lemma 4.3 and Theorem 5.2 of [1] it is seen that on a cosymplectic
manifold the 1-forms η and *φn have vanishing covariant derivatives. Thus,
I φn I is a constant.

Corollary 2.14. On a cosymplectic manifold the l-form * φ n is a constant
multiple of η.

Note that on a cosymplectic manifold harmonic forms are not, in general,
orthogonal to the 'vertical' vector field ξ. For c{ξ)η = 1. In addition, c(ξ) * Φ
Φ 0 in fact, 97 Λ Φw Φ 0 implies ^ Λ Φ ^ O .

Observe that from Theorem 3.1 of [1] that a cosymplectic manifold is
locally the product of a Kaehler manifold with a circle or a line.

For complete simply connected cosymplectic manifolds M the only ex-
amples are given by M = M' X M" where M" is Kaehlerian. Indeed, since
FΦ = 0,M'm = {XeMm\φ(X, Mm) = 0} defines a parallel distribution. There-
fore, the orthogonal complement MZ (with respect to the Riemannian metric)
also gives a parallel distribution. Applying the de Rham decomposition theo-
rem [5] we obtain M = M' X M" where φ = 0 on M' and φ has maximal
rank on M". Thus, since φ is closed, M" is symplectic. In fact, since FΦ
vanishes, M" is a Kaehler manifold. However these manifolds are not com-
pact by Theorem 2.4.

To construct the normal almost contact structure on the cosymplectic
manifold M X S1 given in the Introduction take any point (m, t) of M x S1

and set φ(X, Y) = (JX, 0), X e Mm, 7 e SJ, f = (0, d/Λ) and 37 = (0, A) where
/ is the complex structure of M.
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