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TOPOLOGY OF CERTAIN SUBMANIFOLDS

IN THE EUCLIDEAN SPHERE

Y. L. XIN

Abstract. Using the nonexistence theorem for stable harmonic maps, we study the

fundamental group of certain submanifolds in the Euclidean sphere.

1. Introduction. In [3] R. Schoen and S. T. Yau made the first attempt to study

the geometry of manifolds by using harmonic maps. They proved that if M is a

complete noncompact stable immersed hypersurface in a manifold of nonnegative

curvature and D is a compact domain in M with smooth simply connected

boundary, then there is no nontrivial homomorphism from trx(D) into the funda-

mental group of a compact manifold with nonpositive curvature.

In this paper we consider certain submanifolds in the Euclidean spUere. First of

all we generalize the nonexistence theorem in our previous paper [5] as foUows:

Let M be a compact «-dimensional immersed submanifold with second funda-

mental form B and mean curvature H in the Euclidean sphere. When n > 2 + B

there is no nonconstant stable harmonic map from M to any Riemannian manifold

N, where

B = {2j2<Bet,eBek,ej>-<H,Behej>)2}    .

According to the J. Simons' theorem [4], when M as above is minimal, it cannot be

stable.

Using the above nonexistence theorem and Eells-Sampson's theorem [1], we find

a topological restriction similar to that in Schoen-Yau's theorem. The result is the

following:

Let M be a compact «-dimensional submanifold with second fundamental form

B and mean curvature H in the Euclidean sphere. When « > 2 + B there is no

nontrivial homomorphism from the fundamental group w,(M) into the fundamen-

tal group of a compact manifold with nonpositive curvature.

2. Preliminary notation. We refer the basic notion about harmonic maps to the

paper [2]. Our purpose in this section is to sketch the immersed submanifolds.

Let M be a compact «-dimensional Riemannian manifold in M, which is an

w-dimensional Riemannian manifold. Set m = n + p, where p is the codimension
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644 Y. L. XIN

of M in M. We shall use the following ranges of indices throughout this paper:

1 < A,B, C,. . . <m = « +/?,

1 < ij, k,l<n,

« + 1 < a, ß, y, . . . < n + p.

Let TM and NM denote the tangent bundle and the normal bundle of M,

respectively, such that for any x G M c M we have an orthogonal spütting

TX(M) = TX(M) © NX(M).

With respect to this splitting we decompose any vector X G TX(M) as X = (X)T ©

(X)N. M inherits the Riemannian connection from one V of M as foUows: let X

and Y be vector fields on M. Then for X = X(x)

v,? = (vxy)r, (2.1)

which is the unique Riemannian connection induced by the metric inherited from

M.

The second fundamental form of M in M is a section of Hom(rM ® TM, NM),

defined as follows: for any X, Y G TXM

BX,Y = {VXY)N (2.2)

where Y is an extension of F to a local tangent vector field on M. At each point

x G M, Bx represents a symmetric bilinear map of TXM into NXM. Thus we can

define

Hx = trace(Bx) (2.3)

for each x G M. H is called a mean curvature vector field.

Sometimes it is convenient to consider B in adjoint form. For v G NXM we

define A ': TXM -* TXM with

A'(X) = - (Vxp)T (2.4)

for X G TXM, where v is any local extension of v to a normal vector field. It is easy

to check the relation

<A"(X), Y) = (Bx,Y,r}. (2.5)

We define the squared length of B at each x G M in the usual way as

ll*||2=  S  ll^ll2 (2.6)
V-l

where [ex, . . ., e„} is a local orthonormal basis of M.

Let /? and R be the curvature tensors of M and M, respectively. For any X, Y, Z,

W G TXM we have Gauss' formula for submanifolds:

</^yZ, W) = (RX¡YZ, W} - (BXtW, BYZ> + iBxz, BY<wy, (2.7)

which we shall have occasion to use below. We adopt the sign convention of [2]

about the curvature.

Let us consider a submanifold in the Euclidean spUere M c Sm G Rm+I. Let 9

denote the (« + l)-dimensional vector space of vector fields on Sm by
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TOPOLOGY OF CERTAIN SUBMANIFOLDS 645

9= {grad/|s„:/ishnearonRm+1}.

For any V G 9 there is a unique decomposition V\M = VT + Vs. We denote

It is easy to check the following relations:

VXVN=-Bxvr, (2.8)

and

VXVT = Av\X)-fX. (2.9)

3. The proof of the results. Let M c Sm be a compact immersed submanifold.

We consider any harmonic map <J>: M-*M, where the image manifold is any

Riemannian manifold. By means of this map <i> we obtain an induced vector bundle

<b~xTM over M which inherits a Riemannian connection V from the canonical

connection in M. Choose a local orthonormal basis {e¡}, such that (Vee,)x = 0 at a

given point x G M. For VT G 9T, taking the cross section <j>^VT, we have the

following lemmas:

Lemma 3.1.

_
+ <**,. OV,*.e,-*,Kr. (3.1)

Proof. Using (2.5), (2.8) and (2.9), we have

= Ve!iA^(e^,ejy^ej-^VT

= <yeA ""(e,), efy^ej + (A ""(*,), *,> v>,e, - *, Fr

Lemma 3.2.

f*(V*V Fr) = <(V)K"tó), e,.><f>,e, - <2^rr, í^>*,$ - <*>«, Fr.     (3.2)

Proof. Using (2.5), (2.8) and (2.9), we obtain

*,(V*V VT) = </>,(Ve/V, VT) = *JJ4 r'ty - fe)

■^(Vrw + ̂ Wr^
= <i>,(<(V^)K"(e,.), <>>, - <5^, ^>, - Fr)
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Lemma 3.3.

-V*V^Kr = RBfce„ ^VT)^et + (2 - «)<*>, F]

-<(V) ""(*')• *,></>*<7 - <H, Byr^^ej

-2iBe¡ñ, P*> v>,$ + 2{Be¡tej, Be¡yr;^ej. (3.3)

Proof. In our case M c 5"" by using Gauss formula (2.7), we have

(RXYZ, W) = {X, Z><T, W) - (X, W)(Y, Z>

-(Bx¡w, BYZ} + iBxz, BYfV).

Hence

<Ric Y,W} = (Re¡Ye¡, W)

= (« - i)<y, wy - (B^m 5e¡iV> + (h, BY,wy.

Namely

Rie Y = (« - 1)y - <5e.;y, BM'»$ + (H, BYñyer (3.4)

By Weitzenböck's formula and (3.4)

- (V* V d<j>)VT = R*(+,e„ *, F%e/ - <¡>,(Ric Fr)

= A^(<í»^,.,^Kr)<í,^,. - (« - \)^VT

+ (BenVr, B^y^ej - (H, Byr^^ej. (3.5)

Thus from (3.1), (3.2) and (3.5), we have

-V*Vt,VT=-V^e¡d<¡>(VT)

= -ve¡((ved<i>)vT+d<t>(veyT))

= - (V« d4)vT - 2(ve¡ d4yieyT - d^y^^)

- -W< d*)vT - 2V.(v/r) + **(V,^

= R*(*.e„ ^VT)^et - (« - l)</>,Kr

+ <•#<.>kt, B^y^ej - <//, J^ >$„<?;

-2<(V^)K"(e,), e,><¡>,e, + 2{B^ej, B^*^

-2iBei¡ej,VNyVe¡^eJ + 2^VT

+ <(^eA)V\ei), efy^ej - (Be^r, B^+.ej - ^VT

= R*(+.e„ *.VT)*.e, + (2 - n)^VT - <(V,A)r\e,), e,><M,

-<#. ByrJ^ej - 2<Ä^, K">v>,e, + 2<2^, 2>,,Kr>*,e,.    Q.E.D.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



TOPOLOGY OF CERTAIN SUBMANIFOLDS 647

Using the second variation formula for harmonic maps, we have

= [ <-V*V<¡>.VT- R^.erWfae,,*^) * 1
JM

= f {(2-«)||<i»,Fr||2

- [<<yeA)V\e,), ef) + 2{Beh£j, B^y -{H, Byr^]

■<*.eJt*,VT> t2(^K'X^*.0)»1.   (3-6)

Now we choose an orthonormal basis (x, e¡, va} for RN+l, where e¡ are (paraUel

to) tangent vectors to M at the point x G M. This basis determines an orthonormal

basis {X, Ef, Fa} for 9 and a corresponding basis {XT, E,T, Fj} for 9T such that

X(x) = 0, E¿x) = é¡ and Fa(x) = va, namely £,r(x) = ¿„ E,N(x) = 0, /"/"(x) = 0

and F*(x) = va. Hence

trace i = (2 - «)£(<*>) + /j2<2^, B^e) - (H, *^>]<+.e„ <f>,e,> * 1

(3.7)

where E(<¡>) is the energy integral of the harmonic map <f>.

We have the following lemma whose proof is not difficult; we leave it to the

readers.

Lemma 3.4. If A and B are symmetric matrices and B is semipositive definite, then

trace AB < (trace A2)l/2trace B.

Therefore (3.7) becomes

trace /' < (2 - «)£(<£) + f  B(<b+ek, <t>+eky * 1, (3.8)
JM

where

B - ( 2 (2<JU 2^> - <H, Beitejyf

Thus we obtain the following:

Theorem 1. Let M be an n-dimensional compact submanifold with second funda-

mental form B and mean curvature H in the Euclidean sphere Sm. When n > 2 + B

there is no nonconstant stable harmonic map from M to any Riemannian manifold,

where

B"( i (2<^,,>V>-<^^>)2
W=i

Remark. If B = O, M is a sphere S" with the usual totally geodesic imbedding,

this theorem becomes Theorem 3.1 of our previous paper [5].

Using the above Theorem 1, we obtain a certain topological restriction on M.

i

1
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Theorem 2. Let M be an n-dimensional compact submanifold with second funda-

mental form B and mean curvature H in the Euclidean sphere Sm and let M be a

compact Riemannian manifold with nonpositive sectional curvature. If n > 2 + B,

then there is no nontrivial homomorphism from the fundamental group itx(M) into

■jtx(M), where

B-( 2  (2(Bek,ei,BekJ-(H,Bei,ejy)2
\ ij=\

Proof. Let «: irx(M) —» trx(M) be a homomorphism. Since M is compact and M

is K(ir, 1), there exists a smooth map /: M -» M, such that its induced map /„

between the fundamental groups is «. By Eells-Sampson's theorem [1] there exists a

harmonic map </> which is homotopic to/and has minimum energy in its homotopy

class. It follows both that <j>m = « and that <J> is a stable harmonic map. But

Theorem 1 tells us <i> is constant so that « is trivial. Q.E.D.
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