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Abstract

We study how the topology of a data setM = Ma∪Mb ⊆ R
d, representing two classes a and

b in a binary classification problem, changes as it passes through the layers of a well-trained
neural network, i.e., one with perfect accuracy on training set and near-zero generalization
error (≈ 0.01%). The goal is to shed light on two mysteries in deep neural networks: (i) a
nonsmooth activation function like ReLU outperforms a smooth one like hyperbolic tangent;
(ii) successful neural network architectures rely on having many layers, even though a
shallow network can approximate any function arbitrarily well. We performed extensive
experiments on the persistent homology of a wide range of point cloud data sets, both
real and simulated. The results consistently demonstrate the following: ➀ Neural networks
operate by changing topology, transforming a topologically complicated data set into a
topologically simple one as it passes through the layers. No matter how complicated the
topology of M we begin with, when passed through a well-trained neural network f : Rd →
R

p, there is a vast reduction in the Betti numbers of both components Ma and Mb; in fact
they nearly always reduce to their lowest possible values: βk

(

f(Mi)
)

= 0 for k ≥ 1 and

β0

(

f(Mi)
)

= 1, i = a, b. ➁ The reduction in Betti numbers is significantly faster for ReLU
activation than for hyperbolic tangent activation as the former defines nonhomeomorphic
maps that change topology, whereas the latter defines homeomorphic maps that preserve
topology. ➂ Shallow and deep networks transform data sets differently — a shallow network
operates mainly through changing geometry and changes topology only in its final layers,
a deep one spreads topological changes more evenly across all layers.

Keywords: neural networks, topology change, Betti numbers, topological complexity,
persistent homology

1. Overview

A key insight of topological data analysis is that “data has shape” (Carlsson, 2013, 2014).
That data sets often have nontrivial topologies, which may be exploited in their analysis, is
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now a widely accepted tenet with abundant examples across multiple disciplines: dynamical
systems (Khasawneh et al., 2018), medicine (Li et al., 2015; Nielson et al., 2015), genomics
(Perea et al., 2015), neuroscience (Giusti et al., 2015), time series (Perea and Harer, 2015),
etc. An early striking example came from computer vision, where Carlsson et al. (2008)
showed that naturally occurring image patches reside on an embedded three-dimensional
manifold that has the topology of a Klein bottle.

We will study how modern deep neural networks transform topologies of data sets, with
the goal of shedding light on their breathtaking yet somewhat mysterious effectiveness.
Indeed, we seek to show that neural networks operate by changing the topology (i.e., shape)
of data. The relative efficacy of ReLU activation over traditional sigmoidal activations can
be explained by the different speeds with which they change topology — a ReLU-activated
neural network (which is not a homeomorphism) is able to sharply reduce Betti numbers but
not a sigmoidal-activated one (which is a homeomorphism). Also, the higher the topological
complexity of the data, the greater the depth of the network required to reduce it, explaining
the need to have an adequate number of layers.

We would like to point out that the idea of changing the topology of a space to facilitate
a machine learning goal is not as esoteric as one might imagine. For example, it is implicit in
kernel methods (Schölkopf and Smola, 2002) — a data set with two components inseparable
by a hyperplane is embedded in a higher-dimensional space where the embedded images
of the components are separable by a hyperplane. Dimension is a topological invariant,
changing dimension is changing topology. We will see that a ReLU-activated neural network
with many layers effects topological changes primarily through changing Betti numbers,
another topological invariant.

Our study differs from current approaches in two important ways. Many existing studies
either (i) analyze neural networks in an asymptotic regime, where the number of neurons
in each layer or the number of layers becomes unbounded or infinite, leading to conclusions
that pertain to neural networks of somewhat unrealistic architectures; or (ii) they focus on
what a neural network does to a single object, e.g., an image of a cat, and examine how that
object changes as it passes through the layers. While we do not dispute the value of such
approaches, we would like to contrast them with ours: We study what a neural network with
a realistic architecture does to an entire class of objects. It is common to find expositions
(especially in the mass media) of deep neural networks that purport to show their workings
by showing how a cat image is transformed as it passes through the layers. We think this is
misguided — one should be looking at the entire manifold of cat images, not a single point
on that manifold (i.e., a single cat image). This is the approach we undertake in our article.

Figure 1 illustrates what we mean by ‘changing topology’. The two subfigures are car-
icatures of real results (see Figures 2, 11, 12, 13, for the true versions obtained via actual
Betti numbers computations and projections to principal components.) In both subfigures,
we begin with a three-dimensional manifold M = Ma∪Mb, comprising two disjoint embed-
ded submanifolds Ma (green) and Mb (red) entangled in a topologically nontrivial manner,
and track its progressive transformation into a topologically simple manifold comprising a
green ball and a red ball. In the left box, M is initially the union of the two green solid tori
Ma, interlocked with the red solid figure-eight Mb. In the right box, M is initially a union
of Ma, a green solid ball with three voids, and Mb, three red balls each placed within one of
the three voids. The topological simplification in both boxes are achieved via a reduction

2



Topology of Deep Neural Networks

Figure 1: Progression of Betti numbers β(X) = (β0(X), β1(X), β2(X)). Left : β(red):
(1, 2, 0) → (1, 2, 0) → (2, 1, 0) → (2, 0, 0) → (1, 0, 0) → (1, 0, 0); β(green): (2, 2, 0) →
(2, 2, 0) → (2, 1, 0) → (2, 0, 0) → (2, 0, 0) → (1, 0, 0). Right : β(red): (3, 0, 0) → (2, 0, 0) →
(1, 0, 0) → (1, 0, 0); β(green): (1, 0, 3) → (1, 0, 2) → (1, 0, 1) → (1, 0, 0).

in the Betti numbers of both Ma and Mb so that eventually we have βk(Mi) = 0 for k ≥ 1
and β0(Mi) = 1, i = a, b. Our goal is to provide (what we hope is) incontrovertible evidence
that this picture captures the actual workings of a well-trained1 neural network in a binary
classification problem where Ma and Mb represent the two classes.

In reality, the manifold M = Ma ∪ Mb would have to be replaced by a point cloud
data set, i.e., a finite set of points sampled with noise from M . The notion of persistent
homology allows us to give meaning to the topology of point cloud data and estimate the
Betti numbers of its underlying manifold.

Key findings: This work is primarily an empirical study — we have performed more
than 10,000 experiments on real and simulated data sets of varying topological complex-
ities and have made our codes available for the reader’s further experimentations.2 We
summarize our most salient observations and discuss their implications:

(i) For a fixed data set and architecture, topological changes effected by a well-trained
network are robust across different training instances and follow a similar profile.

(ii) Using smooth activations like hyperbolic tangent results in a slow down of topological
simplification compared to nonsmooth activations like ReLU or Leaky ReLU.

(iii) The initial layers mostly induce only geometric changes, it is in the deeper layers
that topological changes take place. As network depth is reduced, the burden of
producing topological simplification is not spread uniformly across layers but remains
concentrated in the last layers.

Observation (ii) provides a plausible answer to a widely asked question (Nair and Hinton,
2010; Maas et al., 2013; Glorot et al., 2011): What makes rectified activations such as ReLU
and its variants perform better than smooth sigmoidal activations? We posit that it is not
a matter of smooth versus nonsmooth but that a neural network with sigmoid activation
is a homeomorphic map that preserves topology whereas one with ReLU activation is a
nonhomeomorphic map that can change topology. It is much harder to change topology
with homeomorphisms — in fact, mathematically it is impossible — but maps like the
hyperbolic tangent achieve it in practice via rounding errors. Note that in IEEE finite-

1. One with near-zero generalization error.
2. https://github.com/topnn/topnn_framework.
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precision arithmetic, the hyperbolic tangent is effectively a piecewise linear step function:

tanhδ(x) =











+1 if fl(tanh(x)) > 1− δ,

fl(tanh(x)) if − 1 + δ ≤ fl(tanh(x)) ≤ 1− δ,

−1 if fl(tanh(x)) < −1 + δ,

where fl(x) denotes floating point representation of x ∈ R, and δ > 0 is the unit roundoff, i.e.,
δ = ǫ/2 with ǫ = inf{x > 0 : fl(1 + x) 6= 1} the machine epsilon (Overton, 2001). Applied
coordinatewise to a vector, tanh : Rn → (−1, 1)n is a homeomorphism of Rn to (−1, 1)n and
necessarily preserves topology; but tanhδ : R

n → [−1, 1]n is not a homeomorphism and thus
has the ability to change topology. We also observe that lowering the floating point precision
increases the value of δ (e.g., for double precision δ = 2−54, for half precision3 δ = 2−9),
which has the effect of coarsening tanhδ, making it even further from a homeomorphism
and thus more effective at changing topology. We suspect that this may account for the
paradoxical superior performance of lower precision arithmetic in deep neural networks
(Courbariaux et al., 2014; Gupta et al., 2015; Hubara et al., 2017).

The ReLU activation, on the other hand, is far from a homeomorphism (for starters,
it is not injective) even in exact arithmetic. Indeed, if changing topology is the goal, then
a composition of an affine map with ReLU activation, ν : Rn → R

n, x 7→ max(Ax + b, 0),
is a quintessential tool for achieving it — any topologically complicated part of M ⊆ R

n

can be affinely moved outside the nonnegative orthant and collapsed to a single point by
the rectifier. We see this in action in Figure 2, which unlike Figure 1, is a genuine example
of a ReLU neural network trained to perfect accuracy on a two-dimensional manifold data
set, where Ma comprises five red disks in a square M and Mb = M \Ma is the remaining
green portion with the five disks removed. The ‘folding’ transformations in Figure 2 clearly
require many-to-one maps and can never be achieved by any homeomorphism.

Figure 2: We see how the data set is transformed after passing through layers 2, 3, . . . , 8
of a ReLU network with three neurons in each layer, well-trained to detect five disks in a
square. β(red): (5, 0) → (4, 0) → (4, 0) → (4, 0) → (2, 0) → (1, 0) → (1, 0).

The effectiveness of ReLU over sigmoidal activations is often attributed to the former’s
avoidance of vanishing/exploding gradient. Our results in Section 7 indicate that this does
not give the full explanation. Leaky ReLU and ReLU both avoid vanishing/exploding
gradients, yet they transform data sets in markedly different manners — for one, ReLU
reduces topology faster than Leaky ReLU. The sharpness of the gradients is clearly not
what matters most; on the other hand, the topological perspective perfectly explains why.

3. We assume the BFloat16 floating-point format used in TensorFlow.
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Observation (iii) addresses another perennial paradox (Krizhevsky et al., 2017; Eigen
et al., 2014; Yu et al., 2012): Why does a neural network with more layers work better,
despite the well-known universal approximation property that any function can be approx-
imated arbitrarily well by a two-layer one? We posit that the traditional approximation-
theoretic view of neural networks is insufficient here; instead, the proper perspective is that
of a topologically complicated input getting progressively simplified as it passes through the
layers of a neural network. Observation (iii) accounts for the role of the additional layers
— topological changes are minor in the first few layers and occur mainly in the later layers,
thus a complicated data set requires many more layers to simplify.

We emphasize that our goal is to explain the mechanics of what happens from one layer
to the next, and to see what role each attribute of the network’s architecture — depth,
width, activation — serves in changing topology. Note that we are not merely stating that
a neural network is a blackbox that collapses each class to a component but how that is
achieved, i.e., what goes on inside the blackbox.

Relations with and departures from prior works: As in topological data anal-
ysis, we make use of persistent homology and quantify topological complexity in terms of
Betti numbers; we track how these numbers change as a point cloud data set passes through
the layers of a neural network. But that is the full extent of any similarity with topological
data analysis. In fact, from our perspective, topological data analysis and neural networks
have opposite goals — the former is largely concerned with reading the shape of data,
whereas the latter is about writing the shape of data; not unlike the relation between com-
puter vision and computer graphics, wherein one is interested the inverse problems of the
other. Incidentally, this shows that a well-trained neural network applied in reverse can be
used as a tool for labeling components of a complex data set and their interrelation, serving
a role similar to mapper (Singh et al., 2007) in topological data analysis. This idea has
been explored in Pearson 2013; Naitzat et al. 2018.

To the best of our knowledge, our approach towards elucidating the inner workings of a
neural network by studying how the topology, as quantified by persistent Betti numbers, of
a point cloud data set changes as it passes through the layers, has never been done before.
The key conclusion of these studies, namely, that the role of a neural network is primarily
as a topology-changing map, is also novel as far as we know. Nevertheless, we would like to
acknowledge a Google Brain blog post (Olah, 2014) that inspired our work — it speculated
on how neural networks may act as homeomorphisms that distort geometry, but stopped
short of making the leap to topology-changing maps.

There are other works that employ Betti numbers in the analysis of neural networks.
Bianchini and Scarselli (2014) did a purely theoretical study of upper bounds on the topo-
logical complexity (i.e., sum of Betti numbers) of the decision boundaries of neural networks
with smooth sigmoidal activations; Ramamurthy et al. (2019) did a similar study with a
different measure of topological complexity. Guss and Salakhutdinov (2018) studied the em-
pirical relation between the topological complexity of a data set and the minimal network
capacity required to classify it. Rieck et al. (2019) used persistent homology to monitor
changes in the weights of neural network during training and proposed an early stopping
criteria based on persistent homology.

Outline: In Section 2 we introduce, in an informal way, the main topological concepts
used throughout this article. This is supplemented by a more careful treatment in Section 3,
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which provides a self-contained exposition of simplicial homology and persistent homology
tailored to our needs. Section 4 contains a precise formulation of the problem we study,
specifies what is tracked empirically, and addresses some caveats. Section 6 introduces our
methodology for tracking topological changes and implementation details. We present the
results from our empirical studies with discussions in Section 7, verified our findings on
real-world data in Section 8, and conclude with some speculative discussions in Section 9.

2. Quantifying Topology

In this article, we rely entirely on Betti numbers βk(M) to quantify topology as they are
the simplest topological invariants that capture the shape of a space M ⊆ R

d, have intuitive
interpretations, and are readily computable within the framework of persistent homology
for a point cloud data set sampled from M . The zeroth Betti number, β0(M), counts the
number of connected components in M ; the kth Betti number, βk(M), k ≥ 1, is informally
the number of k-dimensional holes in M . In particular, βk(M) = 0 when k ≥ d as there
are no holes of dimension d or higher in d-dimensional space. So for M ⊆ R

d, we write
β(M) := (β0(M), β1(M), . . . , βd−1(M)) — these numbers capture the shape or topology of
M , as one can surmise from Figure 3. So whenever we refer to ‘topology’ in this article, we
implicitly mean β(M).

(a) (b) (c) (d)

(e) (f) (g)

Manifold M ⊆ R
3 β(M)

(a) Single contractible manifold (1, 0, 0)
(b) Five contractible manifolds (5, 0, 0)
(c) Sphere (1, 0, 1)
(d) Solid torus (filled) (1, 1, 0)
(e) Surface of torus (hollow) (1, 2, 1)
(f) Genus two surface (hollow) (1, 4, 1)
(g) Torso surface (hollow) (1, 3, 0)

Figure 3: Manifolds in R
3 and their Betti numbers.

If M has no holes and can be continuously (i.e., without tearing) deformed to a point,
then β0(M) = 1 and βk(M) = 0 for all k ≥ 1; such a space is called contractible. The
simplest noncontractible connected space is a circle S1 ⊆ R

2, which has a single connected
component and a single one-dimensional hole, so β0(S

1) = 1 = β1(S
1) and βk(S

1) = 0 for
all k ≥ 2. Figure 3 contains a few more examples.

Intuitively, the more holes a space has, the more complex its topology. In other words,
the larger the numbers in β(M), the more complicated the topology of M . As such, we
define its topological complexity by

ω(M) := β0(M) + β1(M) + · · ·+ βd−1(M). (2.1)

While not as well-known as the Euler characteristic (which is an alternating signed sum
of the Betti numbers), the topological complexity is also a classical notion in topology,
appearing notably in Morse theory (Milnor, 1963); one of its best known result is that
the topological complexity of M gives a lower bound for the number of critical points
of a function f : M → R with nondegenerate Hessians. Gromov’s Betti Number Theorem
(Gromov, 1981), another celebrated result in differential geometry, bounds ω(M) in terms of

6



Topology of Deep Neural Networks

the dimension and sectional curvature of a Riemannian manifoldM . Topological complexity
also appears in many other contexts (Milnor, 1964; Basu and Rizzie, 2018), including neural
networks. We highlight the work of Bianchini and Scarselli (2014) that we mentioned earlier,
which studies the topological complexity of the decision boundary of neural networks with
activations that are Pfaffian functions (Zell, 2003; Gabrielov et al., 2004). These include
sigmoidal activations but not the ReLU nor leaky ReLU activations studied in this article.

For piecewise linear activations like ReLU and leaky ReLU, the most appropriate theo-
retical upper bounds for topological complexity of decision boundaries are likely the number
of linear regions (Montúfar et al., 2014; Zhang et al., 2018). The goal of our article is dif-
ferent, we are interested not in the shape of the decision boundary of an l-layer neural
network νl : R

d → R
p but in the shapes of the input M ⊆ R

d, output νl(M) ⊆ R
q, and

all intermediate νk(M), k = 1, . . . , l − 1. By so doing, we may observe how the shape of
M is transformed as it passes through the layers of a well-trained neural network, thereby
elucidating the inner workings. In other words, we would like to track the Betti numbers

β(M) → β(ν1(M)) → β(ν2(M)) → · · · → β(νl−1(M)) → β(νl(M)).

To do this in reality, we will have to estimate β(M) from a point cloud data set, i.e., a finite
set of points T ⊆ M sampled fromM , possibly with noise. The next section will describe the
procedure to do this via persistent homology, which is by now a standard tool in topological
data analysis. Readers who do not want to be bothered with the details just need to know
that one may reliably estimate β(M) by sampling points from M . The main idea is that
the Betti numbers of M may be estimated by constructing a simplicial complex from T
in one of several ways that depend on a ‘persistent parameter,’ and then using simplicial
homology to compute the Betti numbers of this simplicial complex. Roughly speaking, the
‘persistent parameter’ allows one to pick the right scale at which the point cloud T should
be sampled so as to give a faithful estimation of β(M). Henceforth whenever we speak of
β(M), we mean the Betti numbers estimated in this fashion.

For simplicity of the preceding discussion, we have used M as a placeholder for any
manifold. Take say a handwritten digits classification problem (see Section 8), then M =
M0 ∪M1 ∪ · · · ∪M9 has ten components, with Mi the manifold of all possible handwritten
digits i ∈ {0, 1, . . . , 9}. Here we are not interested in β(M) per se but in β(νk(Mi)) for all
k = 0, 1, . . . , l and i = 0, 1, . . . , 9 — so that we may see how each component is transformed
as M passes through the layers, i.e., we will need to sample points from each of νk(Mi) to
estimate its Betti numbers, for each component i and at each layer k.

3. Algebraic Topology and Persistent Homology Background

This section may be skipped by readers who are already familiar with persistent homology or
are willing to take on faith what we wrote in the last two paragraphs of the previous section.
Here we will introduce background knowledge in algebraic topology — simplicial complex,
homology, simplicial homology — and provide a brief exposition on selected aspects of
topological data analysis — Vietoris–Rips complex, persistent homology, practical homology
computations — that we need for our purposes.
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3.1. Simplicial Complexes

A k-dimensional simplex, or k-simplex, σ in R
d, is the convex hull of k + 1 affinely inde-

pendent points v0, . . . , vk ∈ R
d. A 0-simplex is a point, a 1-simplex is a line segment, a

2-simplex is a triangle, and a 3-simplex is a tetrahedron. A k-simplex is represented by
listing the set of its k+1 vertices and denoted σ = [v0, . . . , vk]. The faces of a k-simplex are
simplices of dimensions 0 to k− 1 formed by convex hulls of proper subsets of its vertex set
{v0, . . . , vk}. For example, the faces of a line segment/1-simplex are its end points, which
are 0-simplices; the faces of a triangle/2-simplex are its three sides, which are 1-simplices,
and its three vertices, which are 0-simplices.

An m-dimensional geometrical simplicial complex K in R
d is a finite collection of sim-

plices in R
d of dimensions at most m that (i) are glued together along faces, i.e., any

intersection between two simplices in K is necessary a face of both of them; and (ii) include
all faces of all its simplices, e.g., if the simplex σ1 = [v0, v1, v2] is in K, then the simplices
[v0, v1], [v1, v2], [v0, v2], [v0], [v1], [v2] must all also belong to K. Behind each geometrical sim-
plicial complex is an abstract simplicial complex — a list of simplices K = {σ1, σ2, . . . , σn}
with the property that if τ ⊆ σ ∈ K, then τ ∈ K. This combinatorial description of an ab-
stract simplicial complex is exactly how we describe a graph, i.e., a 1-dimensional simplicial
complex, as an abstract collection of edges, i.e., 1-simplices, comprising pairs of vertices.
Conversely, any abstract simplicial complex can be realized as a geometrical simplicial com-
plex in R

d like in Figure 4, an example of a 3-dimensional simplicial complex in R
3. The

abstract description of a simplicial complex allows us to treat its simplices as elements in a
vector space, a key to defining simplicial homology, as we will see in Section 3.3.

e

f

g

h

a
ℓ

b

c

d

i

j
k

a
ℓ

b

c

d

i

j
k

Figure 4: A geometrical simplicial complex in R
3 that is a geometrical realization of an

abstract simplicial complex K = {[a, b, c, d], [e, f, g], . . . , [e, b], . . . , [a], [b], . . . , [ℓ]} comprising
32 simplices: a single 3-simplex [a, b, c, d], five 2-simplices such as [a, c, d] and [e, f, g], four-
teen 1-simplices such as [e, b] and [g, h], twelve 0-simplices [a], [b], . . . , [ℓ]. Note that in the
geometrical simplicial complex, the simplices intersect along faces.

3.2. Homology and Betti Numbers

Homology is an abstract way to encode the topology of a space by means of a chain of
vector spaces and linear maps. We refer readers to Lim (2020) for an elementary treat-
ment requiring nothing more than linear algebra and graph theory. Here we will give an
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even simpler treatment restricted to F2 = {0, 1}, the field of two elements with arithmetic
performed modulo 2, which is enough for this article.

Let C0, C1, . . . , Cd be vector spaces over F2. Let ∂k : Ck → Ck−1 be linear maps called
boundary operators that satisfy the condition that “a boundary of a boundary is trivial,”
i.e.,

∂k ◦ ∂k+1 = 0 (3.1)

for all k = 0, . . . , d. A chain complex refers to the sequence

0
∂d+1
−−−→ Cd

∂d−→ Cd−1
∂d−1
−−−→ · · ·

∂k+1
−−−→ Ck

∂k−→ Ck−1
∂k−1
−−−→ · · ·

∂2−→ C1
∂1−→ C0

∂0−→ 0,

where we set Cd+1 = C−1 = 0, the trivial subspace. The elements in the image of ∂k are
called boundaries and elements in the kernel of ∂k−1 are called cycles. Clearly ker(∂k) and
im(∂k+1) are both subspaces of Ck and by (3.1),

Bk := im(∂k+1) ⊆ ker(∂k) =: Zk.

We may form the quotient vector space

Hk := Zk/Bk = ker(∂k)/ im(∂k+1), k = 0, 1, . . . , d,

and we will call it the kth homology group — the ‘group’ here refers to the structure of Hk

as an abelian group under addition. The elements of Hk are called homology classes; note
that these are cosets or equivalence classes of the form

JzK = z +Bk = {z + b ∈ Zk : b ∈ Bk}. (3.2)

In particular Jz+bK = JzK for any b ∈ Bk. The dimension of Hk as a vector space is denoted

βk := dim(Hk), k = 0, 1, . . . , d.

This has special topological significance when Hk is the homology group of a topological
space like a simplicial complex K and is called the kth Betti number of K. Intuitively βk
counts the number of k-dimensional holes in K. Note that by definition, Hk has a basis
comprising homology classes Jz1K, . . . , Jzβk

K for some z1, . . . , zβk
∈ Zk ⊆ Ck.

3.3. Simplicial Homology

We present a very simple exposition of simplicial homology tailored to our purposes. The
simplification stems partly from our working over a field of two elements F2 := {0, 1}. In
particular −1 = +1 and we do not need to be concerned with signs.

Given an abstract simplicial complex K, we define an F2-vector space Ck(K) in the
following way: Let K(k) = {σ1, . . . , σm} be the set of all k-dimensional simplices in K.
Then an element of Ck(K) is a formal linear combination:

m
∑

j=1

njσj , nj = 0 or 1.

In other words, Ck(K) is a vector space over F2 with K(k) as a basis.
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The boundary operators ∂k : Ck(K) → Ck−1(K) are defined on a k-simplex σ =
[v0, . . . , vk] by

∂kσ :=

k
∑

j=0

[v0, . . . , v̂j , . . . , vk], (3.3)

where v̂j indicates that vj is omitted, and extended linearly to all of Ck(K), i.e.,

∂k

( m
∑

j=1

njσj

)

:=
m
∑

j=1

nj∂kσj .

For example, ∂1[a, b] = a + b, ∂2[a, b, c] = [a, b] + [b, c] + [c, a], ∂2([a, b, c] + [d, e, f ]) =
∂2[a, b, c] + ∂2[d, e, f ].

Working over F2 simplifies calculations enormously. In particular, it is easy to check that
∂k ◦∂k+1 = 0 for all k = 0, . . . , d, as each (k− 2)-simplex appears twice in the resulting sum
and 2 = 0 in F2. Thus (3.1) holds and ∂k : Ck(K) → Ck−1(K), k = 0, . . . , d+1 form a chain
complex. The kth homology of the simplicial complexK is thenHk(K) = ker(∂k)/ im(∂k+1)

with ∂k as defined in (3.3). Working over F2 also guarantees that Hk(K) ∼= F
βk

2 where βk
is the kth Betti number, i.e.,

βk(K) = dim
(

Hk(K)
)

= nullity(∂k)− rank(∂k+1), k = 0, 1, . . . , d. (3.4)

Let mk := |K(k)|, the number of k-simplices in K. To compute βk(K), note that with
the k-simplices in K(k) as basis, ∂k is an mk−1 × mk matrix with entries in F2 and the
problem in (3.4) reduces to linear algebra over {0, 1} with modulo 2 arithmetic. While this
seems innocuous, the cost of computing Betti numbers becomes prohibitive when the size
of the simplicial complex |K| = m0 +m1 + · · ·+md is large. The number of simplices in a
d-dimensional simplicial complex K is bounded above by

|K| ≤
d

∑

i=0

(

m0

i+ 1

)

(3.5)

where m0 is the size of the vertex set, and the bound is obtained by summing over the
maximal number of simplices of each dimension. The cost of computing β(K) is about
O(|K|2.38) (Storjohann, 1996).

We conclude with a discussion of simplicial maps, which we will need in persistent
homology. Let K1 and K2 be two abstract simplicial complexes. A simplicial map is a map

defined on their vertex sets f : K
(0)
1 → K

(0)
2 so that for each simplex σ = [v0, . . . , vk] ∈ K1,

we have that [f(v0), . . . , f(vk)] is a simplex in K2. Such a map induces a map between chain
complexes that we will also denote by f , slightly abusing notation, defined by

f : Ck(K1) → Ck(K2),

m
∑

j=1

njσj 7→

m
∑

j=1

njf(σj),

that in turn induces a map between homologies

Hk(f) : Hk(K1) → Hk(K2),

s m
∑

j=1

njσj

{
7→

s m
∑

j=1

njf(σj)

{
(3.6)

10
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for all k = 0, 1, . . . , d+ 1. Recall that JzK ∈ Hk is a shorthand for homology class (3.2).

The composition of two simplicial maps f : K
(0)
1 → K

(0)
2 and g : K

(0)
2 → K

(0)
3 is

again a simplicial map g ◦ f : K
(0)
1 → K

(0)
3 and thus induces a map between homologies

Hk(g ◦ f) : Hk(K1) → Hk(K3) for any k = 0, 1, . . . , d + 1. For simplicial complexes and
simplicial maps, we have that Hk(g ◦ f) = Hk(g) ◦Hk(f), a property known as functoriality.

3.4. Vietoris–Rips Complex

There are several ways to obtain a simplicial complex from a point cloud data set but one
stands out for its simplicity and widespread adoption in topological data analysis. Note
that a point cloud data set is simply a finite set of n points X ⊆ R

d. We will build an
abstract simplicial complex K with vertex set K(0) = X.

Let δ be a metric on R
d. The Vietoris–Rips complex at scale ε ≥ 0 on X is denoted

by VRε(X) and defined to be the simplicial complex whose vertex set is X and whose
k-simplices comprise all [x0, . . . , xk] satisfying δ(xi, xj) ≤ 2ε, i, j = 0, 1, . . . , k. In other
words,

VRε(X) :=
{

[x0, . . . , xk] : δ(xi, xj) ≤ 2ε, x0, . . . , xk ∈ X, k = 0, 1, . . . , n
}

.

It follows immediately from definition that VRε(X) is an abstract simplicial complex. Note
that it depends on two things — the scale ε and the choice of metric δ. Figure 5 shows an
example of Vietoris–Rips complex constructed from a point cloud data set of ten points in
R
2 at three different scales ε = 0.15, 0.4, 0.6 and with δ given by the Euclidean norm.
For a point cloud X ⊆ M ⊆ R

d sampled from a manifold M embedded in R
d, the most

appropriate metric δ is the geodesic distance on M and not the Euclidean norm on R
d. This

is usually estimated from X using the graph geodesic distance as we will see in Section 6.3.
When X is sampled from a manifold M ⊆ R

d, then for a dense enough sample, and
at sufficiently small scale, the topology of VRε(X) recovers the true topology M in an
appropriate sense, made precise in the following result, proved for the Čech complex in
Niyogi et al. (2008) and extended to the Vietoris–Rips complex in Attali et al. (2013);
Latschev (2001):

Proposition 3.1 Let X = {x1, . . . , xn} ⊆ R
d be (ε/2)-dense in a compact Riemannian

manifold M ⊆ R
d, i.e., for every p ∈ M , there exists x ∈ X such that ‖p− x‖ < ε/2. Let τ

be the condition number of M . Then for any ε <
√

3τ/5, the union of balls V =
⋃n

i=1Bε(xi)
deformation retracts to M . In particular, the homology of V equals the homology of M .

Roughly speaking the condition number of a manifold embedded in R
d encodes its local

and global curvature properties but the details are too technical for us to go into here.

3.5. Persistent Homology

The Vietoris–Rips complex VRε(X) of a point cloud data set involves a parameter ε. Here
we will discuss how this may be determined.

Homology classes can be very sensitive to small changes. For example, punching even a
very small hole in a sphere kills the H2 homology class, turning a sphere into a topological
disk. This affects the estimation of Betti numbers of a manifold from a subset of sampled
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Figure 5: Left : Vietoris–Rips complex on ten points in R
2 at scales ε = 0.15, 0.4, 0.6.

Right : Persistence barcodes obtained from filtration of the Vietoris–Rips complex with
scale ε varying from 0 to 0.6. Barcodes show two most prominent topological features
of the point cloud, the long black line at the bottom and the long red line near the top,
revealing the topology of a circle, i.e., β0 = β1 = 1. A 0-homology class dies at times
ε = 0.3, 0.31, and 0.39; a 1-homology class is simultaneously born at time ε = 0.39.

point cloud data: there are many scenarios where moving a single point can significantly
change the homology estimates. Persistent homology (Edelsbrunner et al., 2000) addresses
this problem by blending geometry and topology. It allows one to reliably estimate the
Betti numbers of a manifold from a point cloud data set, and to a large extent avoids the
problem of extreme sensitivity to perturbations. In machine learning lingo, Betti numbers
are features associated with the point cloud, and persistent homology enables one to identify
features that are robust to noise.

Informally, the idea of persistent homology is to incorporate the scale ε, which varies
from 0 to ∞, into homology calculations. At a scale of zero, VR0(X) = {[x] : x ∈ X}
is a collection of 0-dimensional simplices with β0 = |X| and all other Betti numbers zero.
In machine learning lingo the simplicial VR0(X) ‘overfits’ the data X, giving us a discrete
topological space. As ε increases, more and more distant points come together to form
higher and higher dimensional simplices in VRε(X) and its topology becomes richer. But
as ε → ∞, eventually all points in X become vertices of a single |X|-dimensional simplex,
giving us a contractible topological space. So at the extreme ends ε = 0 and ε → ∞, we
have trivial (discrete and indiscrete) topologies and the true answer we seek lies somewhere
in between — to obtain a ‘right’ scale ε∗, we use the so-called persistence barcodes. Figure 5
shows an example of a persistence barcode. This is the standard output of persistent
homology calculations and it provides a summary of the evolution of topology across all
scales.

Generally speaking, a persistence barcode is an interval [ε, ε′) where its left-end point ε
is the scale at which the new feature appears or born, and its right-end point ε′ is the scale
at which that feature disappears or die. The length of the interval ε′ − ε is the persistence
of that feature. Features that are non-robust to perturbations will produce short intervals;
conversely, features that persist long enough, i.e., produce long intervals, are thought to be
prominent features of the underlying manifold. For our purpose, the feature in question
will always be a homology class in the kth homology group.

12
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If we sample a point cloud satisfying Proposition 3.1 from a sphere with a small punc-
tured hole, we expect to see a single prominent interval corresponding to β2 = 1, and a short
interval corresponding to the small hole. The persistence barcode would allow us to identify
a scale ε∗ at which all prominent topological features of M are represented, assuming that
such a scale exists. In the following we will assume that we are interested in selecting ε∗
from a list of finitely many scales ε0 < ε1 < · · · < εm but that they could go as fine as we
want. For our purposes, the simplicial complexes below are taken to be Kj = VR(X, εj),
j = 0, 1, . . . ,m, but the following discussion holds more generally.

We provide the details for computing persistence barcodes for homology groups, or
persistent homology in short. This essentially tracks the evolution of homology in a filtration
of simplicial complexes, which is chain of a nested simplicial complexes

K0 ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Km. (3.7)

We let fj : Kj →֒ Kj+1, j = 0, 1, . . . ,m − 1 denote the inclusion maps where each simplex
of Kj is sent to the same simplex in Kj ⊆ Kj+1 and regarded as a simplex in Kj+1. As
fj is obviously a simplicial map and induces a linear map Hk(fj) between the homologies
of Hk(Kj) and Hk(Kj+1) as discussed in Section 3.3, composing inclusions fj+p−1 ◦ · · · ◦ fj
gives us a linear map between any two complexes in a filtration Hk(Kj) and Hk(Kj+p),
j = 0, 1, . . . ,m − 1, p = 0, 1, . . . ,m − j − 1. The index j is often referred to as ‘time’ in
this context. As such, for any i < j, one can tell whether two simplices belonging to two
different homology classes in Hk(Ki) are mapped to the same homology class in Hk(Kj) —
if this happens, one of the homology class is said to have died while the other has persisted
from time i to j. If a homology class in Hk(Kj+1) is not in the image of Hk(fj), we say
that its homology class is born at time j + 1. The persistence barcodes simply keep track
of the birth and death times of the homology classes.

To be completely formal, we have the two-dimensional complex called a persistent com-
plex shown in Figure 6 with horizontal maps given by boundary maps ∂k : Ck(Kj) →
Ck−1(Kj) and vertical maps given by simplicial maps fj : Ck(Kj) → Ck(Kj+1). Thanks
to a celebrated structure theorem (Zomorodian and Carlsson, 2005) which guarantees that
a persistent barcode completely describes the structure of a persistent complex in an ap-
propriate sense, we may avoid persistent complexes like Figure 6 and work entirely with
persistence barcodes like the one on the right of Figure 5.

Henceforth we let Kj = VR(X, εj), j = 0, 1, . . . ,m, be the Vietoris–Rips complex of our
point cloud data at scales ε0 < ε1 < · · · < εm. An important fact to note is that persistence
barcodes may be computed without having to compute homology at every scale εj , or,
equivalently, at every time j. To identify the homology classes in Hk(Kj) that persist from
time j to time j + p, there is no need to compute Hk(Kj+1), . . . , Hk(Kj+p) individually as
one might think. Rather, one considers the p-persistent kth homology group

Hj,p
k = Zj

k/(B
j+p
k ∩ Zj

k),

where p = 1, 2 . . . ,m− j. This captures the cycles in Ck(Kj) that contribute to homology

in Ck(Kj+p). One may consistently choose a basis for each Hj,p
k so that the basis elements

are compatible for homologies across Hk(Kj+1), . . . , Hk(Kj+p) for all possible values of k
and p. This allows one to track the persistence of each homology class throughout the
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0 Cd(K1) Cd−1(K1) · · · Ck(K1) Ck−1(K1) · · · C1(K1) C0(K1) 0

0 Cd(K2) Cd−1(K2) · · · Ck(K2) Ck−1(K2) · · · C1(K2) C0(K2) 0

0 Cd(K3) Cd−1(K3) · · · Ck(K3) Ck−1(K3) · · · C1(K3) C0(K3) 0

...
...

...
...

...
...

...
...

...
...

0 Cd(Km) Cd−1(Km) · · · Ck(Km) Ck−1(Km) · · · C1(Km) C0(Km) 0

∂d+1 ∂d ∂d−1 ∂k+1 ∂k ∂k−1 ∂2 ∂1 ∂0

∂d+1 ∂d ∂d−1 ∂k+1 ∂k ∂k−1 ∂2 ∂1 ∂0

∂d+1 ∂d ∂d−1 ∂k+1 ∂k ∂k−1 ∂2 ∂1 ∂0

∂d+1 ∂d ∂d−1 ∂k+1 ∂k ∂k−1 ∂2 ∂1 ∂0

f1 f1 f1 f1 f1f1

f2 f2 f2 f2 f2f2

f3 f3 f3 f3 f3 f3

fm−1 fm−1 fm−1 fm−1 fm−1 fm−1

Figure 6: Persistence complex of the filtration K0 ⊆ K1 ⊆ · · · ⊆ Km.

filtration (3.7) and thus obtain the persistence barcodes: roughly speaking, with the right
basis, we may simultaneously represent the boundary maps on Ck(Kj) as matrices in a

column-echelon form and read off the dimension of Hj,p
k , known as the p-persistent kth

Betti number βj,p
k , from the pivot entries in these matrices. For details we refer readers to

Edelsbrunner et al. 2000; Zomorodian and Carlsson 2005.

3.6. Homology Computations in Practice

Actual computation of homology from a point cloud data set is more involved than what
one might surmise from the description in the last few sections. We will briefly discuss some
of the issues involved.

Before we even begin to compute the homology of the point cloud data X ⊆ M ⊆ R
d,

we will need to perform a few preprocessing steps, as depicted in Figure 7. These steps are
standard practice in topological data analysis: (i) We smooth out X and discard outliers to
reduce noise. (ii) We then select the scale ε and construct the corresponding Vietoris–Rips
complex VRε(X). (iii) We simplify VRε(X) in a way that reduces its size but leaves its
topology unchanged. All preprocessing operations that can have an effect on the homology
are in steps (i) and (ii), the simplification in step (iii) is done to accelerate computations
without altering homology. The homology of the preprocessed simplicial complex VRε(X)
is assumed to closely approximate that of the underlying manifold M .

Note that the size of the final simplicial complex on which we perform homology calcu-
lations is the most important factor in computational cost. While increasing the number
of points sampled from a manifold, i.e., the size of X, up to the point in Proposition 3.1
improves the accuracy of our homology estimates, it also results in a simplicial complex
VRε(X) that is prohibitively large for carrying out computations, as we saw from (3.5).
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Figure 7: Pipeline for computation of homology from a point cloud data.

But since we are not concerned with the geometry of the underlaying manifold, only its
topology, it is desirable to construct a small simplicial complex with minimal topology dis-
tortion. A well-known simplification is the Witness complex (De Silva and Carlsson, 2004),
which gives results of nearly the same quality with a simplicial complex of smaller size
constructed from so-called landmark points. Another cost-saving strategy is to stop com-
putations early at a smaller ε as VRε(X) grows exponentially with ε. Many other tactics
have been proposed (Boissonnat et al., 2018; Dlotko and Wagner, 2014; Mischaikow and
Nanda, 2013) and we take advantage of them in our calculations implicitly.

The takeaway is that persistence barcodes are considerably more expensive to compute
than homology at a single fixed scale ε. Therefore, running full persistent homology in the
context of deep neural network poses some steep challenges: modern deep neural networks
operate on very high-dimensional and very large data sets, a setting in which persistent
homology cannot be used directly due to the overwhelming computational and memory
costs. This situation is exacerbated by the fact that neural networks are randomly trained,
with potentially big variation in the learned decision boundaries, and one needs to repeat
the same computations many times to ensure reliability. As such, a direct analysis of the
persistent homology of the best known deep learning data sets, e.g., SVHN of Netzer et al.
2011, CIFAR-10 of Krizhevsky et al. 2009, ImageNet of Deng et al. 2009, is largely beyond
the reach of current technology. We will return to this point later when we introduce our
methodology for monitoring topology transformations in a neural network. In particular,
we will see in Section 6.3 that our experiments are designed in such a way that although we
will compute homology at every layer, we only need to compute persistence barcodes once,
before the data set is passed through the layers.

4. Overview of Problem and Methodology

We will use binary classification, the most basic and fundamental problem in supervised
learning, as our platform for studying how neural networks change topology. More precisely,
we seek to classify two different probability distributions supported on two disjoint manifolds
Ma,Mb ⊆ R

d. We assume that the distance inf{‖x−y‖ : x ∈ Ma, y ∈ Mb} can be arbitrarily
small but not zero. So there exists an ideal classifier with zero prediction error. Here and
henceforth, ‖ · ‖ will denote the Euclidean norm.
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We sample a large but finite set of points T ⊆ Ma ∪Mb uniformly and densely, so that
the Betti numbers of Ma and Mb can be faithfully obtained from the point cloud data sets
T ∩Ma and T ∩Mb as described in Section 3. Our training set is a labeled point cloud data
set, i.e., x ∈ T is labeled to indicate whether x ∈ Ma or Mb. We will use Ta := T ∩Ma and
Tb := T ∩Mb, or rather, their Vietoris–Rips complexes as described in Section 3.4, as finite
proxies for Ma and Mb.

Our feedforward neural network ν : Rd → [0, 1] is given by the usual composition

ν = s ◦ fl ◦ fl−1 ◦ · · · ◦ f2 ◦ f1, (4.1)

where each layer of the network fj : Rnj → R
nj+1 , j = 1, . . . , l, is the composition of an

affine map ρj : R
nj → R

nj+1 , x 7→ Ajx+ bj , with an activation function σ : Rnj+1 → R
nj+1 ;

and s : Rnl+1 → [0, 1] is the score function. The width nj is the number of nodes in the jth
layer and we set n1 = d and nl+1 = p. For j = 1, . . . , l, the composition of the first through
jth layers is denoted

νj := fj ◦ · · · ◦ f2 ◦ f1 and ν = s ◦ νl.

We assume that s is a linear classifier and thus the decision boundary of s is a hyperplane
in R

p. For notational convenience later, we define the ‘(l + 1)th layer’ νl+1 := s to be
the score function and the ‘0th layer’ ν0 to be the identity function on R

d; in particular,
β(M) = β

(

ν0(M)
)

.

We train an l-layer neural network ν : Rd → [0, 1] on a training set T ⊆ Ma ∪ Mb to
classify samples into class a or b. As usual, the network’s output for a sample x ∈ T is
interpreted to be the probability of the event ‘x ∈ Ma.’ In all our experiments, we train ν
until it correctly classifies all x ∈ T — we will call such a network ν well-trained. In fact,
we sampled T so densely that in reality ν also has near zero misclassification error on any
test set S ⊆ (Ma ∪Mb) \ T ; and we trained ν so thoroughly that its output is concentrated
near 0 and 1. For all intents and purposes, we may treat ν as an ideal classifier.

We deliberately choose Ma ∪Mb to have doubly complicated topologies in the following
sense:

(i) For each i = a, b, the component Mi itself will have complicated topologies, with
multiple components, i.e., large β0(Mi), as well as multiple k-dimensional holes, i.e.,
large βk(Mi).

(ii) In addition, Ma and Mb will be entangled in a topologically complicated manner. See
Figures 8 and 9 for example. They not only cannot be separated by a hyperplane but
any decision boundary D ⊆ R

d that separates them will necessarily have complicated
topology itself.

In terms of the topological complexity in (2.1), ω(Ma), ω(Mb), ω(D) are all large.

Our experiments are intended to reveal how the topologies of νj(Ma) and νj(Mb) evolve
as j runs from 1 through l, for different manifolds Ma,Mb entangled in different ways,
for different number of layers l and choices of widths n1, . . . , nl, and different activations
σ. Getting ahead of ourselves, the results will show that a well-trained neural network
ν : Rd → [0, 1] reduces the topological complexity of Ma and Mb on a layer-by-layer basis
until, at the output, we see a simple disentangled arrangement where the point cloud T
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gets mapped into two clusters of points ν(Ta) and ν(Tb) on opposite ends of [0, 1]. This
indicates that an initial decision boundary D ⊆ R

d of complicated topology ultimately gets
transformed into a hyperplane in R

p by the time it reaches the final layer. We measure and
track the topologies of νj(Ma) and νj(Mb) directly, but our approach only permits us to
indirectly observe the topology of the decision boundary separating them.

5. Real Versus Simulated Data

We perform our experiments on a range of both real-world and simulated data sets to
validate our premise that a neural network operates by simplifying topology. We explain
why each is indispensable to our goal.

Unlike real-world data, simulated data may be generated in a controlled manner with
well-defined topological features that are known in advance (crucial for finding a single scale
for all homology computations). Moreover, with simulated data we have clean samples and
may skip the denoising step mentioned in the previous section. We can generate samples
that are uniformly distributed on the underlaying manifold, and ensure that the assumptions
of Section 4 are satisfied. In addition, we may always simulate a data set with a perfect
classifier, whereas such a classifier for a real-wold data set may not exist. For convincing
results, we train our neural network to perfect accuracy on training set and near-zero
generalization error — this is often impossible for real-world data. Evidently, if there is no
complete separation of one category Ma from the other Mb, i.e., Ma∩Mb 6= ∅, the manifold
M = Ma∪Mb will be impossible to disentangle. Such is often the case with real-world data
sets, which means that they may not fit our required setup in Section 4.

Nevertheless, the biggest issue with real-world data sets is that they have vastly more
complicated topologies that are nearly impossible to determine. Even for the Mumford data
set (Lee et al., 2003), a mere collection of 3 × 3-pixels of high contrast patches of natural
images, it took many years to discover its topology (Carlsson et al., 2008), and whether the
conclusion (that it has the topology type of a Klein bottle) is correct is still a matter of
some debate. Figuring out, say, the topology of the manifold of cat images within the space
of all possible images is well-beyond our capabilities for the foreseeable future.

Since our experiments on simulated data allow us to pick the right scale to compute
homology, we only need to compute homology at one single scale. On the other hand, for
real data we will need to find the persistence barcodes, i.e., determine homology over a
full range of scales. Consequently, our experiments on simulated data are extensive — we
repeat our experiments for each simulated data set over a large number of neural networks
of different architectures to examine their effects on topology changes. In all we ran more
than 10,000 homology computations on our simulated data sets since these computations are
cheap and reliable. In comparison, our experiments on real-world data are more limited in
scope as it is significantly more expensive to compute persistence barcodes then to compute
homology at a single scale.

As such, we use simulated data to fully explore and investigate the effects of depth,
width, shapes, activation functions, and various combinations of these factors on the topology-
changing power of neural networks. Thereafter we use real-world data to validate the find-
ings we draw from the simulated data sets.
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6. Methodology

In this section, we describe the full details of our methodology for (i) simulating topologically
nontrivial data sets in a binary classification problem; (ii) training a variety of neural
networks to near-perfect accuracy for such a problem; (iii) determining the homology of the
data set as it passes through the layers of such a neural network. For real data sets, step
(i) is of course irrelevant, but steps (ii) and (iii) will apply with minor modifications; these
discussions will be deferred to Section 8.

The key underlying reason for designing our experiments in the way we did is relative
computational costs:

• multiparameter persistent homology is much more costly than persistent homology;

• persistent homology is much more costly than homology;

• homology is much more costly than training neural networks.

As such, we train tens of thousands of neural networks to near zero generalization error;
for each neural network, we compute homology at every layer but we compute persistent
homology only once; and we avoid multiparameter persistent homology altogether.

6.1. Generating Data Sets

We generate three point cloud data sets D-I, D-II, D-III in a controlled manner to have
complicated but manageable topologies that we know in advance.

Figure 8: The manifolds underlying data sets D-I, D-II, D-III (left to right). The green Ma

represents category a; the red Mb represents category b.

D-I is sampled from a two-dimensional manifold comprising Ma, nine green disks, po-
sitioned in Mb, a larger disk with nine holes, as on the left of Figure 8. We clearly have
β(Ma) = (9, 0) and β(Mb) = (1, 9) (one connected component, nine holes). D-II is sampled
from a three-dimensional manifold comprising nine disjoint pairs of a red solid torus linked
with a green solid torus (a single pair is shown in Figure 9). Ma (resp. Mb) is the union
of all nine green (resp. red) solid tori. So β(Ma) = β(Mb) = (9, 9, 0). D-III is sampled
from a three-dimensional manifold comprising nine disjoint units of the following — a large
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Figure 9: Left : D-II comprises nine pairs of such linked rings. Right : D-III comprises nine
units of such doubly concentric spherical shells.

red spherical shell enclosing a smaller green spherical shell enclosing a red ball; the green
spherical shell is trapped between the red spherical shell and the red ball. Ma is the union
of all nine green spherical shells and Mb is the union of the nine red spherical shells and
the nine red balls. So we have β(Ma) = (9, 0, 9) and β(Mb) = (18, 0, 9) (see Figures 8 and 9
for more details; in Figure 9 the spherical shells are shown with portions omitted to reveal
the objects enclosed within). In all cases, Ma and Mb are entangled in such a way that any
decision boundary separating them necessarily has highly complex topology.

The point cloud data sets D-I and D-III are sampled on a grid whereas D-II is sampled
uniformly from the solid tori. The difference in sampling schemes is inconsequential, as we
sample so densely that there is no difference in training and testing behaviors.

6.2. Training Neural Networks

Our goal is to examine the topology changing effects of (i) different activations: tanh, leaky
ReLU set to be max(x, 0.2x), and ReLU; (ii) different depths of four to ten layers; and (iii)
different widths of six to fifty neurons. So for any given data set (D-I, D-II, D-III) and
any given architecture (depth, width, activation), we tracked the Betti numbers through all
layers for at least 30 well-trained neural networks. The repetition is necessary — given that
neural network training involves a fair amount of randomization in initialization, batching,
optimization, etc — to ensure that what we observe is not a fluke.

To train these neural networks to our requirements — recall that this means zero training
error and a near-zero (≈ 0.01%) generalization error — we relied on TensorFlow (version
1.12.0 on Ubuntu 16.04.1). Training is done on cross-entropy categorical loss with standard
Adam optimizer (Kingma and Ba, 2015) for up to 18,000 training epochs. Learning rate is
set to 0.02–0.04 with an exponential decay, i.e., ηt/d where t is the training epoch normalized
by d = 2500. For the ‘bottleneck architectures’ where the widths narrow down in the middle
layers (see Table 1), the decay is set to 4000 and η = 0.5. We use the softmax function as
the score function in all of our networks, i.e., s : Rp → R

p whose ith coordinate is

si(x) = exi/(ex1 + · · ·+ exp), i = 1, . . . , p,

where p is the number of categories. In our case, p = 2 and i = a, b; the image of s is then a
1-simplex, i.e., isomorphic to the unit interval [0, 1], and we may regard the score function
as s : Rp → [0, 1], consistent with our choice in Section 4.
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Table 1 summarizes our experiments: the data set used, the activation type, the width
of each layer, and the number of successfully trained neural networks of that architecture
obtained. The first number in the sequence of the third column gives the dimension of
the input, which is two for the two-dimensional D-I and three for the three-dimensional
D-II and D-III. The last number in that sequence is always two since they are all binary
classification problems. To give readers an idea, training any one of these neural networks
to near zero generalization error takes at most 10 minutes, often much less.

data set activation neurons in each layer #
D-I tanh 2-15-15-15-15-15-15-15-15-15-2 30
D-I leaky ReLU 2-15-15-15-15-15-15-15-15-15-2 30
D-I leaky ReLU 2-05-05-05-05-03-05-05-05-05-2 30
D-I leaky ReLU 2-15-15-15-03-15-15-15-15-2 30
D-I leaky ReLU 2-50-50-50-50-50-50-50-50-50-2 30
D-I ReLU 2-15-15-15-15-15-15-15-15-15-2 30
D-II tanh 3-15-15-15-15-15-15-15-15-15-2 32
D-II leaky ReLU 3-15-15-15-15-15-15-15-15-15-2 36
D-II ReLU 3-15-15-15-15-15-15-15-15-15-2 31
D-II tanh 3-25-25-25-25-25-25-25-25-25-2 30
D-II leaky ReLU 3-25-25-25-25-25-25-25-25-25-2 30
D-II ReLU 3-25-25-25-25-25-25-25-25-25-2 30
D-III tanh 3-15-15-15-15-15-15-15-15-15-2 30
D-III leaky ReLU 3-15-15-15-15-15-15-15-15-15-2 46
D-III ReLU 3-15-15-15-15-15-15-15-15-15-2 30
D-III tanh 3-50-50-50-50-50-50-50-50-50-2 30
D-III leaky ReLU 3-50-50-50-50-50-50-50-50-50-2 30
D-III ReLU 3-50-50-50-50-50-50-50-50-50-2 34
D-I tanh 2-15-15-15-15-2 30
D-I tanh 2-15-15-15-15-15-15-15-2 30
D-I leaky ReLU 2-15-15-15-2 30
D-I leaky ReLU 2-15-15-15-15-15-15-15-2 30
D-I ReLU 2-15-15-15-2 30
D-I ReLU 2-15-15-15-15-15-15-15-2 30
D-II tanh 3-15-15-15-2 31
D-II tanh 3-15-15-15-15-2 31
D-II tanh 3-15-15-15-15-15-15-2 30
D-II leaky ReLU 3-15-15-15-2 31
D-II leaky ReLU 3-15-15-15-15-2 30
D-II leaky ReLU 3-15-15-15-15-15-2 30
D-II leaky ReLU 3-15-15-15-15-15-15-2 31
D-II leaky ReLU 3-15-15-15-15-15-15-15-2 42
D-II ReLU 3-15-15-15-2 32
D-II ReLU 3-15-15-15-15-2 32
D-II ReLU 3-15-15-15-15-15-15-15-2 31
D-III tanh 3-15-15-15-15-15-2 30
D-III tanh 3-15-15-15-15-15-15-15-2 31
D-III leaky ReLU 3-15-15-15-15-15-2 30
D-III leaky ReLU 3-15-15-15-15-15-15-15-2 30
D-III ReLU 3-15-15-15-15-15-2 33
D-III ReLU 3-15-15-15-15-15-15-15-2 32

Table 1: First column specifies the data set on which we train the networks. Next two
columns give the activation used and a sequence giving the number of neurons in each
layer. Last column gives the number of well-trained networks obtained.
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6.3. Computing Homology

For each of the neural networks obtained in Section 6.2, we track the topology of the re-
spective point cloud data set as it passes through the layers. This represents the bulk of
the computational effort, way beyond that required for training neural networks in Sec-
tion 6.2. With simulated data, we are essentially assured of a perfectly clean data set and
the preprocessing step in Figure 7 may be omitted. We describe the rest of the work below.

The metric δ used to form our Vietoris–Rips complex is given by the graph geodesic
distance on the k-nearest neighbors graph determined by the point cloud X ⊆ R

d. As
this depends on k, a positive integer specifying the number of neighbors used in the graph
construction, we denote the metric by δk. In other words, the Euclidean distance on R

d is
used only to form the k-nearest neighbors graph and do not play a role thereafter. For any
xi, xj ∈ X, the distance δk(xi, xj) is given by the minimal number of edges between them in
the k-nearest neighbors graph. Each edge, regardless of its Euclidean length, has the same
length of one when measured in δk.

The metric δk has the effect of normalizing distances across layers of a neural network
while preserving connectivity of nearest neighbors. This is important for us as the local
densities of a point cloud can vary enormously as it passes through a layer of a well-trained
neural network — each layer stretches and shrinks different regions, dramatically altering
geometry as one can see in the bottom halves of Figures 11, 12, and 13. Using an intrinsic
metric like δk ameliorates this variation in densities; it is robust to geometric changes and
yet reveals topological ones. Furthermore, our choice of δk allows for comparison across
layers with different numbers of neurons. Note that if d 6= p, the Euclidean norms on R

d

and R
p are two different metrics on two different spaces with no basis for comparison. Had

we used Euclidean norms, two Vietoris–Rips complexes of the same scale ε in two different
layers cannot be directly compared — the scale needs to be calibrated somehow to reflect
that they live in different spaces. Using δk avoids this problem.

This leaves us with two parameters to set: k, the number of neighbors in the nearest
neighbors graph and ε, the scale at which to build our Vietoris–Rips complex. This is where
persistent homology, described at length in Section 3.5, comes into play. Informed readers
may think that we should use multiparameter persistence since there are two parameters
but this is prohibitively expensive as the problem is EXPSPACE-complete (Carlsson et al.,
2010) and its results are not quite what we need; for one, there is no multiparameter
analogue of persistence barcodes (Carlsson and Zomorodian, 2009).

To choose an appropriate (k∗, ε∗) for a point cloud X ⊆ M ⊆ R
d, we construct a filtered

complex over the two parameters: Let VRk,ε(X) be the Vietoris–Rips complex of X with
respect to the metric δk at scale ε. In our case, we know the topology of the underlying
manifold M completely as we generated it in Section 6.1 as part of our data sets. Thus we
may ascertain whether our chosen value (k∗, ε∗) gives a Vietoris–Rips complex VRk∗,ε∗(X)
with the same homology as M . Set ε = 1. We determine a value of k∗ with persistent
homology on the k-filtered complex in the metric δk with correct zeroth homology, i.e., k∗
is chosen so that

β0
(

VRk∗,1(X)
)

= β0(M).
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Set k = k∗. We determine a value of ε∗ with persistent homology on the ε-filtered complex
in the metric δk∗ with correct first and second homologies, i.e., ε∗ is chosen so that

β1
(

VRk∗,ε∗(X)
)

= β1(M) and β2
(

VRk∗,ε∗(X)
)

= β2(M).

If there is a range of parameters that all recover the correct homology we pick our (k∗, ε∗)
closest to the middle of the range. Once these parameters are set, we keep them fixed for
our homology computations across all layers of the network.

The parameters chosen via the aforementioned procedure for our data sets are as follows.
For D-I, we have k∗ = 14 neighbors, and scale is set at ε∗ = 2.5; recall that this means that
x0, x1, . . . , xn ∈ X form an n-simplex in VR14,2.5(X) whenever δ14(xi, xj) ≤ 2.5 for all i, j.
For both D-II and D-III, we have k∗ = 35 and ε∗ = 2.5. Figure 10 shows some (not all) of
the Betti numbers for these three data sets over a range of values of (k, ε): green (resp. red)
dots indicate integral points on the (k, ε)-plane with correct (resp. incorrect) Betti numbers
and the blue dot marks the (k∗, ε∗) selected in each case.

Our homology and persistent homology computations are all performed using the Eirene
package in Julia 0.6.4 (Henselman and Ghrist, 2016). To give readers an idea, the time
required to compute a single Betti number from a point cloud X ranges from a few tens
of seconds, if X ⊆ R

5 is the output of a five-neuron-wide layer, to about 30 minutes, if
X ⊆ R

50 is the output of a 50-neuron wide layer. On the other hand, the time taken for
the persistent homology computations to obtain a single (k∗, ε∗) is in excess of 80 minutes.
These computations are run in parallel over 12 cores of an Intel i7-8750H-2.20GHz processor
with 9,216KB cache and 32GB DDR4-2666MHz RAM. The jobs are fed in a queue, with
each core limited to 9GB of memory.

6.4. Overview of Our Experiments

All our experiments on simulated data may be described at a high level as follows: (i)
generate a manifold M = Ma ∪ Mb ⊆ R

d with Ma ∩ Mb = ∅; (ii) densely sample a
point cloud X ⊆ M and let Xi := X ∩ Mi, i = a, b; (iii) train an l-layer neural network
ν : Rd → [0, 1] on the labeled training set Xa ∪ Xb to classify points on M ; (iv) compute
homology of the output at the jth layer νj(Xi), j = 0, 1, . . . , l + 1 and i = a, b. This
allows us to track the topology of Mi as it passes through the layers. Steps (i) and (ii) are
described in Section 6.1, step (iii) in Section 6.2, and step (iv) in Section 6.3. The neural
network notations are as in Section 4. Results will be described in Section 7. In reality,

data set training neural networks homology computations

D-I 7,800 2,600
D-II 45,000 11,250
D-III 37,800 9,450

Table 2: Comparison of sample sizes for computations in Sections 6.2 and 6.3.

the point cloud Xi used in step (iv) is not the same as the training set Xi used in step (iii)
as it is considerably more expensive to compute homology (see Section 6.3) than to train
a neural network to near zero generalization error (see Section 6.2). As such the size of a
point cloud used in homology computations is a fraction (about 1/4) of that used to train
a neural network.
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Figure 10: For each combination of parameters k and ε, we determine whether the homology
of VRk,ε(X) matches the homology of the manifoldM from whichX is sampled. We marked
those values of (k, ε) with correct homology in green and those with incorrect homology in
red. Our choice (k∗, ε∗) in each case is marked with a blue dot.
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7. Results and Discussions

We present the results from our experiments to analyze how a well-trained neural network
simplifies the topology of a data set, and discuss what one may surmise from these results.
We start with the three simulated data sets D-I, D-II, D-III in Section 6.1 since the results
are the most striking in this case. To validate that these observations indeed extend to real
data, we repeat our experiments on four real-world data sets in Section 8.

Topological simplification evident across training instances: Figure 11
shows the result for our simplest data set D-I, where Ma comprises nine contractible com-
ponents and so higher Betti numbers are irrelevant (all zero). Here we present every curve
corresponding to every neural network trained on D-I. Recall that we do at least 30 runs for
each experiment to account for the inherent randomness. They all show consistent profiles
— a clear decay in β0 across the layers although tanh activation (blue graph) shows larger
variance in this decay than leaky ReLU (red graph) and ReLU (green graph). The profiles
shown in Figure 11 are representative of other experiments on higher Betti numbers and on
other data sets. To avoid clutter, in the corresponding figures for D-II and D-III (Figures 12
and 13), we omit curves corresponding to the individual runs and show only the curve of
their means (dark curve in the middle) and the region of half standard deviation (shaded
region). The bottom diagrams in Figure 11 show how Ma changes from layer to layer by
projecting onto its first two principal components (note that the intervening layers are in
R
15 and so such a projection is necessary for visualization).
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Figure 11: Top: Faint curves show individual profiles, dark curves show averaged profiles of
β0
(

νj(Ma)
)

, j = 0, 1, . . . , 10, in data set D-I. Shaded region is the region of ± half standard
deviation about average curve. Networks have different activations — blue for tanh, red for
leaky ReLU, green for ReLU; but same architecture — two-dimensional input and output,
with fifteen neurons in each of the nine intervening layers. Bottom: Projections of νj(Ma),
j = 0, 1, . . . , 10, on the first two principal components, color-coded according to activations.
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Nonhomeomorphic activations induce rapid topology changes: As the faint
blue lines in Figure 11 reveal, tanh activation is less effective at reducing Betti numbers,
occasionally even increasing them over layers. In all data sets, across all our experiments, the
nonhomeomorphic activation ReLU exhibits the most rapid reductions in all Betti numbers.
The top halves of Figures 11, 12, and 13 show the results for a ten-layer network (see captions
for specifics). The different rates at which topological changes occur are also evident from
the principal components projections in the bottom half of these figures.
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Figure 12: Top: Profiles of β0
(

νj(Ma)
)

and β1
(

νj(Ma)
)

for data set D-II, j = 0, 1, . . . , 10.
Network’s architecture: three-dimensional input, two-dimensional output, and fifteen neu-
rons in each of the nine intervening layers, with different activations. Bottom: Projections
of νj(Ma), j = 0, 1, . . . , 10, on the first two principal components.

Efforts depend on topological features: Some topological features evidently
require more layers to simplify than others. The hardest one is the linked tori in the
data set D-II. The profile of β1

(

νl(Ma)
)

in the graph on the right of Figure 12 shows that
some loops survive across many layers. This phenomenon is especially pronounced when
the neural network is activated with tanh (blue): both the (blue) principal components
projections and the (blue) profile show that the loops persist considerably longer than any
other features in any of the three data sets.

Effects of width on topology change: For the data set D-I, we compare three
sets of ten-layer networks: (i) narrow networks with six neurons in each layer; (ii) ‘bottle-
neck’ networks with 15, 15, 15, 3, 15, 15, 15, 15, 2 neurons respectively in layers one through
nine — notice the three-neuron bottleneck layer; (iii) wide networks with fifty neurons in
each layer. The left graph in Figure 14 suggests that a bottleneck layer forces large topo-
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Figure 13: Top: Profiles of β0
(

νj(Ma)
)

and β2
(

νj(Ma)
)

for data set D-III, j = 0, 1, . . . , 10.
Network’s architecture: three-dimensional input, two-dimensional output, and fifteen neu-
rons in each of the nine intervening layers, with different activations. Bottom: Projections
of νj(Ma), j = 0, 1, . . . , 10, on first two principal components.

logical changes, and a narrow network changes topology faster than a wider one. The other
two graphs compare a 15-neuron wide network with a 50-neuron wide one, both with ten
layers, on data sets D-II and D-III respectively. However, for the same choice of activation,
the difference between them is negligible. Also, reducing the width below fifteen neurons
makes training to high accuracy increasingly difficult, i.e., the percentage of successfully
trained networks starts to drop.
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Figure 14: Mean values of topological complexity ω
(

νj(Ma)
)

, j = 0, 1, . . . , l, for ten-layer
networks of varying widths. Error bars indicate ± half standard deviation about the mean.
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Effects of depth on topology change: Reducing the depth of a constant-width
network beyond a certain threshold makes it increasingly difficult to train the network to
high accuracy— the percentage of successfully trained networks drops noticeably. Moreover,
as the depth is reduced, the burden of changing topology does not spread evenly across all
layers but becomes concentrated in the final layers. The initial layers do not appear to play
a big role in changing topology, reducing depth simply makes the final layers ‘work harder’
to produce larger reductions in Betti numbers. Figure 15 shows this effect.
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Figure 15: Mean values of topological complexity ω
(

νj(Ma)
)

, j = 0, 1, . . . , l, for fifteen-
neuron-wide networks of varying depths. Error bars indicate ± half standard deviation
about the mean.

8. Consistency with Real-World Data

The results in Section 7 are deduced from experiments on the simulated data sets D-I, D-II,
D-III generated in Section 6.1. It is natural to ask if these results remain valid on real
data. In this section, we will see that they do, with some mild caveats. The key difference
between real and simulated data is the amount of computational effort required to carry
out our experiments — they are much more expensive for real data sets.
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We will validate our results on four real-world data sets from (i) MNIST Handwritten
Digits (LeCun et al., 1998), (ii) HTRU2 High Time-Resolution Universe Survey (Lyon et al.,
2016), (iii) UCI Banknotes Authentication (Lohweg et al., 2013), (iv) UCI Sensorless Drive
Diagnostic (Bayer et al., 2013). These data sets are chosen on the basis that they are real-
valued and may be trained to high accuracy. The goal, as usual, is to observe how their
topology changes as they pass through the layers of well-trained neural networks. To this
end, our methodology in Section 6 applies to these data sets with some modifications:

• For real data, it is no longer possible to obtain the kind of near-perfectly trained
neural networks in Section 6.2 that we could readily obtain with simulated data. As
such, we adjust our expectations accordingly. By a well-trained neural network on a
real data set, we mean one whose test accuracy ranges between 95 to 98% (recall that
for simulated data, we require 99.99% or better).

• Unlike the simulated data sets in Section 6.1, we do not already know the topology of
our real data sets and this has to be determined with persistent homology. More im-
portantly, for real data, we cannot set a single scale for observing topological changes
across different layers, as described in Section 6.3 — we have to compute persistent
homology in every layer to track topological changes.

The complexity of real-world data and the need to calculate persistent homology at every
layer limits the number of experiments that we could run. As it is prohibitively expensive
to carry out extensive exploratory tests across a range of different architectures like what
we did on simulated data (see Table 1), we will keep both width (ten neurons) and depth
(ten layers) fixed in this section. In any case, our experiments on real data sets are not
intended to be exploratory but to corroborate the findings in Section 7 that we deduced
from simulated data. We seek confirmation on two findings in particular: the reduction in
topological complexity through the layers and the relative effectiveness of ReLU over tanh
activations in achieving this. Note that while we will only present the persistence barcodes
at the output of the first, middle, and final layer, we computed persistence homology in
every layer; interested readers may easily get the barcodes of other layers from our program.

MNIST Handwritten Digits (LeCun et al., 1998): Each of the 70,000 images
in the MNIST handwritten digits data set is a 28 × 28-pixel image and collectively they
form a point cloud on some manifold M ⊆ R

784. Computing persistent homology for a
784-dimensional point cloud is way beyond what our computing resource could handle and
we first reduce dimension by projecting onto its leading 50 principal components. Never-
theless, the dimension-reduced images remain to be of reasonably high-quality; we show
a comparison of a few original digits alongside their principal component projections onto
R
50 in Figure 16. We will take the dimension-reduced point cloud X as the starting point

for our experiments and will loosely refer to X ⊆ M ⊆ R
50 as the MNIST data set.

Since we would like to have a binary classification problem for consistency with all our
other experiments, instead of regarding the MNIST data as a classification problem with
ten classes, we reduce it to a problem of classifying a chosen (any) digit a versus all non-a
digits. So our manifold is M = Ma ∪ Mb, where Ma is the ‘manifold all handwritten a’
and Mb is the union of the ‘manifolds of all other non-a handwritten digits.’ Following our
methodology in Section 6, we train a neural network with ten layers and ten neuron in each

28



Topology of Deep Neural Networks

Figure 16: Left : Original MNIST handwritten digits. Right : MNIST handwritten digits
projected onto the first fifty principal components.

layer on a labelled point cloud Xa = X ∩ Ma and Xb = X ∩ Mb to classify points in Ma

and Mb; then with persistent homology we analyze how Ma is transformed after each layer
in the network. While we fix the depth and widths, we vary the activation among tanh,
leaky ReLU, and ReLU. We used 60,000 samples to train and the remaining 10,000 samples
to test our neural networks; we use one third of the test set for our persistent homology
calculations.

activation scale ε j = 0 1 2 3 4 5 6 7 8 9 10

ta
n
h

1.5 525 408 356 266 233 145 156 88 30 20 9

2.5 6 5 2 1 3 14 12 8 1 4 4

3.5 1 1 1 1 1 1 1 1 1 1 3

le
ak

y
R
eL

U

1.5 525 340 182 108 38 16 10 8 1 1 1

2.5 6 6 6 5 1 1 2 1 1 1 1

3.5 1 1 1 1 1 1 1 1 1 1 1

R
eL

U

1.5 525 199 106 27 13 6 1 1 1 1 1

2.5 6 2 6 6 2 1 1 1 1 1 1

3.5 1 1 1 1 1 1 1 1 1 1 1

Table 3: Topological complexity ω(Ma) = β0
(

νj(Ma)
)

+β1
(

νj(Ma)
)

+β2
(

νj(Ma)
)

at layers
j = 0, 1, . . . , 10 with Ma the ‘manifold of handwritten a’. Network has 50-dimensional
input, 2-dimensional output, and is 10-dimensional in the intermediate layers. For each of
the three activation types, we show the homology at three scales ε = 1.5, 2.5, 3.5.

The results of our experiments for the digit a = 0 are shown in Table 3. What we see
in the table corroborates our earlier findings on simulated data sets — an unmistakable
reduction in topological complexity through the layers, with ReLU activation reducing
topological complexity most rapidly when compared to the other two activations. With
tanh activation, reduction in topological complexity is not only much slower but the network
fails to reduce Ma to a topological disk, despite having ten layers. The persistence barcodes
for the MNIST data set are much larger than those for the next three data sets but they
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are not much more informative than our summary statistics in Table 3. As such we do not
show the barcodes here although they can just as readily be generated from our program.

HTRU2 High Time-Resolution Universe Survey (Lyon et al., 2016): This
data set consists of statistics of radio source signals from 17,898 stars, measured during the
High Time-Resolution Universe Survey (HTRU2) experiment to identify pulsars. For our
purpose, it suffices to know that pulsars are stars that produce radio emission measurable on
earth. In the HTRU2 data set, each recorded radio emission is described by eight continuous
variables: four are statistics of the radio signal called ‘integrated profile’ and the other four
are statistics of the ‘DM-SNR curve’ that tracks frequency components of the signal versus
its arrival time. The radio sources are labeled by a or b according to whether the source is
a pulsar or not. We show a small portion of this data set in Table 4.

Star # 1 2 3 4 5

Mean (integral profile) 140.5625 102.5078 103.0156 136.7500 99.3672

Standard Deviation (integral profile) 55.6838 45.5499 39.3416 57.1784 41.5722

Excess Kurtosis (integral profile) −0.2346 0.2829 0.3233 −0.0684 0.4653

Skewness (integral profile) −0.6996 0.4199 1.0511 −0.6362 4.1541

Mean (DM-SNR) 3.1998 1.3587 3.1212 3.6423 1.6773

Standard Deviation (DM-SNR) 19.1104 13.0790 21.7447 20.9593 61.7190

Excess Kurtosis (DM-SNR) 7.9755 13.3121 7.7358 6.8965 2.2088

Skewness (DM-SNR) 74.2422 212.5970 63.1720 53.5937 127.3930

Pulsar ‘a’ or not ‘b’ b a b b b

Table 4: Five entries from HTRU2. The first eight rows are statistics of the radio signal
from that star. The last row indicates whether the respective star is a pulsar ‘a’ or not ‘b’.

We take a 3,278 subsample of the HTRU2 data set so that we have an equal number of
pulsars and non-pulsars. This is a point cloud X ⊆ M ⊆ R

8 with M = Ma ∪Mb a union of
the ‘pulsar manifold’ Ma and ‘non-pulsar manifold’ Mb; the point clouds Xa = X ∩Ma and
Xb = X ∩Mb each have 1,639 points. We use 80% of this balanced data X for training the
neural networks and the remaining 20% for testing. For persistent homology computations,
we use the test set but we first passed it through a local outlier removal algorithm of Breunig
et al. (2000) for denoising. Again, our neural networks have ten layers with ten neurons in
each layer and are activated with either ReLU or tanh.

In Figure 17, we show the persistence barcodes for νk(Xa) in the first, middle, and last
layer, i.e., k = 1, 5, 10. The scatter plots below the barcodes show, for k = 1, 5, 10, the
projections of νk(Xa) (red) and νk(Xb) (blue) onto the three leading principal components.
These persistent barcodes tell the same story for the HTRU2 data as Table 3 does for the
MNIST data and Figures 11, 12, 13 do for the simulated data D-I, D-II, D-III: Topology
is simplified as the data passes through the layers; and ReLU does a better job than tanh
activation at reducing topological complexity.

UCI Banknotes Authentication (Lohweg et al., 2013): This data set is derived
from 400×400-pixel gray scale images of 1,372 genuine and forged banknotes; small patches
ranging in sizes from 96×96 to 128×128-pixels are extracted from the images and wavelet-
transformed. Figure 18 shows three of these small extracted patches.
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Figure 17: Persistence barcodes for neural networks trained on HTRU2 show topology
changes in the ‘pulsar manifold’ Ma as it passes through the layers, activated with tanh
(top) and ReLU (bottom). Scatter plots show principal component projections of Ma (red)
and the ‘non-pulsar manifold’ Mb (blue) at the corresponding layers.
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Figure 18: Texture sample for genuine banknote (left), high-quality forgery (middle) and
low-quality forgery (right). The figures are taken from Lohweg et al. (2013).

The UCI Banknotes data set does not contain any images but is simply a list of four
statistics computed from the wavelet coefficients of the image patches, together with a label
indicating whether the patch is from a genuine ‘a’ or forged ‘b’ banknote. We show five of
these entries in Table 5; the full data set contains 1,372 entries like these.

Banknote # 1 2 3 4 5 6

Variance (wavelet coef.) −1.3971 4.5459 3.8660 3.4566 0.3292 0.3901

Skewness (wavelet coef.) 3.3191 8.1674 −2.6383 9.5228 −4.4552 −0.1428

Kurtosis (wavelet coef.) −1.3927 −2.4586 1.9242 −4.0112 4.5718 −0.0319

Entropy (wavelet coef.) −1.9948 −1.4621 0.1065 −3.5944 −0.9888 0.3508

Genuine ‘a’ or forged ‘b’ a b b b b a

Table 5: Five entries from the UCI Banknotes data set. The first four rows are statistics
of the wavelet coefficients of the banknotes image patches. The last row indicates whether
the respective banknote is genuine ‘a’ or forged ‘b’.

As with the HTRU2 data set, we subsample 1,200 entries from the UCI Banknotes data
set so that we have an equal number of genuine and forged samples; we use 80% of this
data set for training and 20% for testing; and for persistent homology computations, we
preprocess the data with the outliers removal algorithm in Breunig et al. (2000). For our
purpose, the UCI Banknotes data set is a point cloud X ⊆ M ⊆ R

4 with M = Ma ∪ Mb

a union of the ‘manifold of genuine banknotes’ Ma and the ‘manifold of forged banknotes’
Mb; the point clouds Xa = X ∩Ma and Xb = X ∩Mb each has 600 points.

When Xa and Xb are passed through well-trained neural networks (ten layers, ten neu-
rons in each layer, ReLU or tanh-activated), we obtained results consistent with all earlier
experiments. The persistence barcodes in Figure 19 show that Betti numbers β1 and β2 are
reduced to zero for both activations, β0 successfully reduces to one when ReLU-activated
but is stuck at two when tanh-activated. Also, the reduction of Betti numbers happens
more rapidly with ReLU-activation. These observations are also reflected in the respective
principal components scatter plot below each persistence barcode.

UCI Sensorless Drive Diagnostic (Bayer et al., 2013): This data set concerns
a printed circuit board that operates a specific type of drive motor. The goal is to classify
twelve types of common defects in the drive motor based on 49 measurements of electric
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Figure 19: Persistence barcodes for neural networks trained on the UCI Banknotes data
show topology changes in the ‘manifold of genuine banknotes’ Ma as it passes through layers
activated with tanh (top) and ReLU (bottom). Scatter plots show principal component pro-
jections of Ma (red) and the ‘manifold of forged banknotes’ Mb (blue) at the corresponding
layers.
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currents at various locations on the printed circuit board. Table 6 shows five entries in this
data set, which has a total of 58,509 such entries.

sample # 1 2 3 4 5

Elect. curr. 1 −3.015× 10−7 −2.952× 10−6 −2.952× 10−6 −4.961× 10−6 −6.501× 10−6

Elect. curr. 2 8.260× 10−6 −5.248× 10−6 −3.184× 10−6 −2.088× 10−6 −6.208× 10−6

Elect. curr. 3 −1.152× 10−5 3.342× 10−6 −1.592× 10−5 −1.366× 10−5 4.644× 10−6

Elect. curr. 4 −2.310× 10−6 −6.056× 10−6 −1.208× 10−6 4.661× 10−7 −2.749× 10−6

...
...

...
...

...
...

...
...

...
...

...
...

Elect. curr. 49 −1.500× 100 −1.501× 100 −1.496× 100 −1.497× 100 −1.500× 100

Failure types a a a b b

Table 6: A few entries from the UCI Drive data set. Last row indicates whether the failure
is of type ‘a’ or one of the other eleven types, all of which are indicated as ‘b’.

As in the case of the MNIST data set, instead of regarding the UCI Drive data as a
classification problem with twelve classes, we reduce it to a binary classification problem
of classifying a type a defect versus all other eleven types of defects. So our manifold is
M = Ma ∪ Mb where Ma is the ‘manifold of type a defects’ and Mb is the union of the
‘manifolds of all other types of defects.’ Of the 58,509 entries in the UCI Drive data, we
choose a random subset of 10,600 as our point cloud X ⊆ M ⊆ R

49, divided equally into
5,300 points in Xa = X ∩ Ma and Xb = X ∩ Mb each. The rest of the experiment is as
in the previous two cases (HTRU2 and UCI Banknotes data). The results are shown in
Figure 20 and they are fully consistent with the results in Figures 17 and 19, supporting
the same conclusions we drew from all previously examined data sets.
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Figure 20: Persistence barcodes for neural networks trained on UCI Drive data show topol-
ogy changes in the ‘manifold of type a defects’ Ma as it passes through layers activated with
tanh (previous page) and ReLU (above). Scatter plots show principal component projections
of Ma (red) and the ‘manifold of non-type a defects’ Mb (blue) at various layers.

9. Concluding Discussions

Our findings support the view that deep neural networks operate by transforming topol-
ogy, gradually simplifying topologically entangled data in the input space until it becomes
linearly separable in the output space. We proffered some insights on the roles of the deep
layers and of rectified activations, namely, that they are mechanisms that aid topological
changes. As this is an empirical study intended to provide evidence, we did not investi-
gate the actual mechanics of how a ReLU-activated neural network carries out topological
changes. We conclude our article with a few speculative words about the ‘topology changing
mechanism’ of neural networks, mainly to serve as pointers for future work.

Consider the concentric red and blue circles on the left of Figure 21, two one-dimensional
manifolds embedded in R

2. By the Jordan Curve Theorem, there is no homeomorphism
R
2 → R

2 that will transform the two circles into two sets separable by a hyperplane in R
2.

Nevertheless it is easy to achieve this with a many-to-one map like (x, y) 7→ (|x|, |y|) that
allows one to ‘fold’ a set, as shown on the left of Figure 21. An alternative way to achieve
this is with an embedding into higher dimensional space like on the right of Figure 21 where
a sequence of maps R2 → R

3 → R
3 → R

3 → R
3 → R

2 disentangles the red and blue circles
in R

3. We speculate that in a neural network, (i) the ReLU activation is a many-to-one map
that can ‘fold’ a space; (ii) the excess width, i.e., width in excess of input dimension, of the
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intermediate layers provides a higher dimensional space in which to transform the data; (iii)
the depth plays the role of time, every additional layer affords additional time to transform
the data. To elaborate on (iii), note that since we are limited to affine transformations
and ReLU activation, a substantial change to the topology of a space may require a longer
sequence of these operations, and by ‘time’, we simply mean the length of this sequence.

x 7→ |x|, y 7→ |y|.
x 7→ x, y 7→ y,

x 7→ z. z 7→ max(z, 0)
+max(−x, 0).

x 7→ x, y 7→ y, x 7→ y, y 7→ y,

z 7→ z. y 7→ max(x, 0)
+max(−x, 0).

x 7→ x, z 7→ z,

y 7→ 0.5(y + z)
x 7→ 0.5(x + z)

Figure 21: Left : Topology change with many-to-one maps: two neurons activated with the
absolute value function can disentangle two concentric circles in a single step, transform-
ing them into linearly separable sets. Right : Topology change by embedding into higher
dimensions and performing the disentangling operations therein.

Adding to the first point (i), by singular value decomposition, an affine map takes the
form x 7→ UΣV x+ b, it provides the capability to translate (by the vector b), rotate/reflect
(by the orthogonal matrices U and V ), and stretch/shrink (by the nonnegative diagonal
matrix Σ); ReLU-activation adds folding to the arsenal — an important capability. For
example, to transform the surface of a donut (torus) into the surface of a croissant (sphere)
as in Figure 22, the first two operations may be achieved with appropriate affine maps but
the last one requires that we fold the doubly-pinched torus into a croissant surface.

Figure 22: Donut to croissant: torus → pinched torus → doubly-pinched torus → sphere.
Betti numbers: (1, 2, 1) → (1, 1, 1) → (1, 1, 2) → (1, 0, 1).
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