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Topology of Lattice Gauge Fields*
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Abstract. Non-Abelian gauge fields on a four-dimensional hypercubic lattice
with small action density [Tr{l-l/(p)}<0.03 for SU(2) gauge fields] are
shown to carry an integer topological charge Q, which is invariant under
continuous deformations of the field. A concrete expression for Q is given and
it is verified that Q reduces to the familiar Chern number in the classical
continuum limit.

1. Introduction

Differentiate SU(2)1 gauge fields Aμ= — A* on a four-dimensional torus T 4

(— finite volume with periodic boundary conditions) carry a topological number

[1] !

(1)
^ v J ' ** μv = ~2 £μvρσ^ ρσ '

which assumes integer values only. One expects that this structure gives rise to
interesting effects at the quantum level, in particular, the topological susceptibility

χί = <β2>/Volume (2)

enters the chiral Ward identities and may be responsible for the large mass of the ηf

meson (see [2] for a recent discussion).
On a lattice, continuity (in space) is lost and any lattice gauge field U{n, μ) [3]

can be continuously deformed to the trivial field U(n, μ) = 1: there is apparently no
topological structure. However, this argumentation overlooks the fact that
ultimately one is only interested in lattice gauge theories with small values of the
bare coupling constant g, i.e. in the region near the (quantum) continuum limit. In

* Work supported in part by Schweizerischer Nationalfonds

1 For clarity, the gauge group is taken to be SU(2) throughout the paper. The results can easily be
generalized to any compact gauge group
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this regime most of the fields contributing to the functional integral have a small
lattice action density, because

<Tr{l-ί7(p)}> = f0 2 + O(04), (3)

U(p): parallel transporter around the plaquette p.
Without affecting the continuum limit one could even restrict the domain of

integration in the functional integral to fields with

Tr{l-l/(p)}<ε, (4)

where ε is any small positive number independent of g and the size of the lattice.
This condition imposes some continuity (in space) on the fields in the sense that
parallel transporters [/(#) around closed loops <$ on the lattice are near 1 for small
loops. It is therefore not surprising (and will be proved in this article) that such
fields again fall into disconnected topological classes, provided ε is small enough,
i.e. ε^0.032. In this way, topology is recovered from lattice gauge theories in both
the classical and the quantum continuum limit.

In order to make topological quantities like χt calculable in lattice gauge
theories, a definition of a topological charge Q for lattice gauge fields will be
proposed (Sect. 3). Q has the following properties:

(i) Q is defined for all fields on a hypercubic lattice with periodic boundary
conditions except for a singular set of fields, which has zero measure in the
functional integral. Fields for which Q is not defined, are called exceptional.

(ii) Fields with Tr{l— U(p)} <0.03 for all plaquettes p are not exceptional.
(iii) Q assumes integer values only and does not change, when the field is

continuously deformed keeping away from the exceptional configurations.
(iv) Q has the form

Σ> (5)

where n runs over the vertices of the lattice and the charge density q(n) is a local
function of the lattice gauge field.

(v) In the classical continuum limit, the charge density q(n) approaches the
familiar form

4

^ )9 (6)

where a is the lattice spacing [cf. Eq. (1)].
The existence of the charge Q immediately implies that, as asserted above,

fields with Tr{l — U(p)} <0.03 cannot always be deformed into the "vacuum"
configuration U(n,μ)=l without passing through configurations with
Tr{l - U(p)} >0.03 for some p.

A lattice topological number with properties as listed above has already been
found for two-dimensional spin systems [4]. The construction given here is
similar, but rather less obvious geometrically. The reason is that the geometrical
object, which carries the topological charge in the gauge field case, really is the

2 This bound is not optimal
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principal bundle on which Aμ lives, and this is not easily visualized. In Sect. 2 the
notion and topology of a principal bundle on a torus is therefore first discussed.
Then, associating a principal bundle to any lattice gauge field, one obtains a
natural definition of Q by identifying it with the topological charge of the bundle
(Sect. 3). The stated properties of Q are verified in Sect. 4 and some concluding
remarks are made in the final Sect. 5.

2. Topology of SU(2) Principal Bundles on a Torus T4

It is convenient to think of a four-dimensional torus T 4 as being R 4, where any
two points x and y are identified, if

1

L
(xμ~yμ)eΈ for all μ=l ,2 ,3 ,4 .

The value of the period L is irrelevant for topological considerations. It is here
taken to be a natural number so that we can divide T 4 into unit cells c(n) (neΈ4):

OS(xμ~nμ)Sl for all μ}. (7)

If L ^ 2, these cells are contractible pieces of T 4 so that any bundle over T 4 is
trivial, when restricted to c(n) (for the definition of a principal bundle, see e.g. [5,
p. 5Off.]). The bundle is then characterized by the transition matrices υn>μ, which
tell how to go from c(n) to the neighboring cell c(n — μ)3. Thus, vn^μ is a function
defined on the face

f(n, μ) = {xec(n)\xμ = nμ} = c(n)nc(n- μ) (8)

and taking values in SU(2). Since the bundle is defined over T 4 , the transition
matrices must respect periodicity, i.e. for any m e Z 4

Furthermore, since the four cells c(n)9 c(n — μ\ c{n — v) and c(n — μ — v) overlap
along the plaquette

μ μ , (10)

the transition matrices must satisfy the cocycle condition

for all xep(n,μ,v). To sum up, an SU(2) principal bundle over T 4 is completely
characterized by a set of functions vn μ(x), xe/(n, μ), with values in SU(2), such that
Eqs. (9) and (11) hold.

SU(2) principal bundles over T 4 fall into topological classes labelled by an
integer topological charge Q. An explicit expression for Q in terms of the transition

3 μ denotes the unit vector in the positive μ-direction
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matrices vn>μ is

f(n,μ) ' ' ' j

where A denotes the lattice

Λ = {neZ4-\l^nμSL for all μ}. (13)

It is not difficult to prove that the above Q is an integer, which assumes
different values for topologically inequivalent bundles. Namely, using the identity4

sμvQσ Tr {(w~ 1v)dv(υ~ 1w)(w~ 1v)dρ(v~ 1w)(w~ 1v)dσ(v~ι w)}

= εμvQσTv{(w~1dvw)(w~1dQw)(w~ίdσw)

' 1dσv) + 3dv[(vd v~^(wd^'x)]}, (14)

one first verifies that Q is invariant under the gauge transformation

for any choice of differentiate SU(2)-valued functions un(x) (xec(n)). One can then
arrange the un's in such a way that all transition matrices v'n μ are equal to one,
except possibly those with μ = l and n 1 =0(modL). Because of the cocycle
condition (11), the remaining non-trivial transition matrices match along the
plaquettes, thus making up a continuous, piecewise differentiable transition matrix
υ(x) defined on the hyperplanes xί=m L(rneZ). Due to periodicity, v(x)\Xl=L really
is a mapping from S1 x S1 x S1 into SU(2). Its winding number is characteristic for
the topological class of the bundle and is in fact easily seen to be identical with Q.

3. Definition of a Topological Charge Q for Lattice Gauge Fields

We here consider periodic SU(2) lattice gauge fields, i.e. for each bond with
endpoints n, n + μ on a hypercubic lattice Z 4 we are given a parallel transporter
C/(n,μ)eSU(2) subject to

U(n + mL, μ) = U(n, μ) for all meZ4. (16)

The lattice Z4 is thought to be imbedded in R4. Cells c{n\ faces f(n,μ) and
plaquettes p(n, μ, v) are then defined as in Sect. 2. The topological charge Q of the
gauge field U(n, μ) will now be defined by first constructing a principal bundle (i.e.
a set of transition matrices υnμ) and then identifying Q with the topological charge
(12) of the bundle.

4 A sum over repeated indices is implied
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so=n

Fig. 1. Standard labelling of the corners of a face f{n,μ)

The construction of the vn>μ's is not really difficult, but notationally volu-
minous. First, for each corner

4

x = n+ X zμμ, zμe{0,l},

of the cell c(ή), one defines a standard parallel transporter from x to n5:
wn(x) = U{n, ί)Z l U(n + zx ϊ, 2)Z2

• I7(n + zx ί + z22,3)Z3 U(n + zx ί + z22

For any two neighboring corners x, y of c(τι) we furthermore set

μ)wn(y)-\ if y = x + μ,

if y = x-/i .

(17)

(18)

These matrices are parallel transporters along closed loops in c{ή) starting and
ending at n. In particular, the trace of any product of such matrices is gauge
invariant. One may interpret the un

xys as the field variables in c(n) in a complete
axial gauge. Along the face f(n,μ) the gauges in c(n) and c(n — μ) are related by
transition matrices vn^{x):

vn)μ{x)d=wn~β{x)wn{xyx. (20)

The transition matrices are periodic [Eq. (9)] and satisfy the cocycle relation (11),
but so far they are only defined at the corners of the faces f(n, μ).

We now look for a smooth interpolation of vn>μ(x) to all xef(n,μ). To this end,
we first label the corners of f(n,μ) as follows (cf. Fig. 1). Let α,β,ye{l,2,3,4}\{μ}
be the three indices complementary to μ such that oc<β<γ. Define s0, ...,s7 by

sί=

= n-\-β;
(21)

5 U(ιn, μ)° = ί; U(m, μ)1 = U(m, μ)
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For m = n or m — n — μ and xef(n9μ), we furthermore define the following set of
functions:

( 2 2 d )

KJχy)WJχJYf > ( 2 2 e )

s ^ , χβ, xγ)=(uZJv ικjXy)γβ iζjχβ, χy)Ύ" • (220

Here, yλ = xλ — nλ (λ = α, β, y) varies between 0 and 1 and powers uy of matrices
weSU(2) are defined as follows. If M+ - 1 there is a unique way to write

u = expίt σ σ : Pauli-Matrices, (23)

where t is real and |t| <π. We then set6

. (24)

lίu= — ί,uy is not defined. The matrices (22) are therefore not defined for a set of
exceptional lattice gauge fields U(n,μ). This is the origin of the exceptional
configurations announced in the introduction. As can be seen from the above, they
only make up a lower dimensional submanifold in the space of all lattice gauge
fields.

We are now in a position to define a smooth interpolation of vn^(x) to all
xef(n9μ):

VnJxpSl/ixΓ1 tUn)S!U(x) (25)

For non-exceptional fields, vntfl(x) is a differentiable and periodic [Eq. (9)] function
of xef(n,μ) with values in SU(2). It is also not difficult to verify that vn (sf)
(z = 0, ...,7) as computed from Eq. (25) is equal to the corresponding transition
matrix defined earlier [Eq. (20)]. The non-trivial feature of Eq. (25) is, however,
that

Lemma. vn>μ(x) is a cocycle, i.e. Eq. (11) holds.

6 In what follows, we only use that (i) M° = 1, M1 =U. (ii) ( i Γ ψ ^ φ T 1 . (m)(vuυ-1)y = υuyυ~1. Other
definitions of uy would therefore be possible, e.g. uy = (l — y + yu)dQt(l — y + yu)~112
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L
1 *> x . P 0 = n p 1

Fig. 2. Standard labelling of the corners of a plaquette p(n, μ, v)

Proof. We have to evaluate vntfl along the plaquettes p bounding /(«, μ). As for the
faces, it is convenient to introduce a standard parametrization of the corners of the
plaquettes p(n9 μ, v) (see Fig. 2): choose α < β to be the indices complementary to μ,
v and set

(26)

For m = n, n — μ, n — v or n — μ — v define furthermore

um Vβ(um um um um Yβum (um

\UP2Po' \UP0P2UP2P3UP3PιUPiP0> UPopΛUP
(27)

By explicit computation, starting from Eq. (22f), one then obtains (λ = a,β or γ)

Slμ{x) = Plμλ{χ) for xep(W,/U), (28a)

5 ; . W ^ : ) M W C i ( μ W for xep(n + iμ,λ), (28b)

where
m (x x) = 3Us3s7

U's7s2

Us2s0)
 Us0s2

um um um YΎum υm

um (υm um um υm

U U U U U

τ>m ( \ — (nm um um um \yyum

^ μ βyXv Xy) — yUs0S3Us3s7

Us7S2Us2s0)
 Us

Rn,μ;y\Xa> Xβ) = Usos3 '

Using this, Eq. (19) and

{υuυ~ι)y =

one verifies that

For xep(n,μ, v) we thus have

vnJx) = P"n7μ^r

and for xep(n + λ,μ,λ)

um um um

U U U

(29b)

(29c)

(30)

(31a)

(31b)
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It follows that along p(n, μ, v)

By Eq. (20), the cocycle condition (11) holds for x = n so that, by the above, it is
satisfied for all xep(n,μ9v). •

Summarizing, we have associated an SU(2) principal bundle to any non-
exceptional lattice gauge field. The topological charge Q of the field is defined to be
equal to the charge (12) of the bundle. This is a rather complicated expression, but
it is explicit enough to establish the properties (i)-(v) announced in Sect. 1.

4. Properties of the Topological Charge Q

Number (i) and (iii) of the list of properties of Q discussed in Sect. 1 are obvious
from the definition of Q. Number (ii) is due to the fact that if all ί/(p)'s are near one,
so are the matrices u™y and consequently all the products in Eqs. (22a)-(22f). The
powers uy involved are then well-defined, i.e. the configuration is not exceptional.
To verify the remaining properties (iv) and (v) we first derive an expression for the
charge density q(n). Namely, inserting Eq. (25) into Eq. (12) and using the identities
(14), (28a) and (28b) gives

1 Σ w
μ,v,ρ,σ

3 J . '
p(n + μ + v,μ,v)

- 3 { ί
p(n + v,μ,v)

f /73 v TV Γ O λ ί Fl (<\n \— 1 en p, /on \ — 1 CT ^ /on Λ 1 ~l
J α A 11 L"« + μ,μ^vW« + μ,μ/ °/i + μ,μuρK^n + β,μ' n + μ,μuσ\°n + μ,μ' J

f(n,μ) n, n, n, , , j

q(ή) thus depends on the variables uxy alone, i.e. it is a gauge invariant combination
of the parallel transporters U(m9 μ) in the cell c(ή).

In the classical continuum limit

1

•t)aμ), α-^0, (33)

where Aμ(z) is a differentiable gauge field an T indicates ί-ordering. From the
definition (18) of un

xy9 one finds

«ί,= l - y Σ (x + y-2n)μ(x-3;)vFμ vM + O(α3). (34)
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It follows to leading order as α->0, that only the plaquette terms contribute to the
charge density:

<?(«)= Λ Σ < W | [ d2xΎτldeP
n

n^μvdσR"n,μ;v']
° π μ,v,ρ,σ [p(n + v,μ,v)

j _ sn+{ι + ̂ a l ί i t μ (35)
p(n + μ + v,μ,v) J

From this, Eq. (34) and the definitions of the P-and ^-matrices, one immediately
infers that

q(n) = a* £ τμvρσΎr{Fμv(an)Fρσ(an)} + O(a5), (36)
μ;v,ρ,σ

where τμvρσ is some tensor independent of n and a. The actual computation of τμVQσ

is tedious but presents no difficulty and is therefore omitted here. As asserted in
Sect. 1, the outcome is Eq. (6). Thus, for small lattice spacings (relative to the wave
lengths of the classical field), the lattice topological charge is equal to the
continuum topological charge (1).

5. Concluding Remarks

Almost all fields contributing to the functional integral of any (continuum)
quantum field theory in d^2 space-time dimensions are rather discontinuous (e.g.
[6]). It is surprising, therefore, that topological structures, which assume con-
tinuous or even differentiable fields, are sometimes not totally washed out in the
functional integral. In the case of the non-Abelian gauge theories with a lattice
cutoff, the reason is that due to asymptotic freedom (i.e. g-*0 in the continuum
limit), the dominant fields acquire some continuity at scales of the cutoff, which is
already sufficient to divide the field space into disconnected pieces.

An interesting question not addressed in this paper is whether or not the
sectors Q Φ 0 are statistically relevant (this is the infrared aspect of the problem). It
can be answered, for example, by studying the topological susceptibility χt

[Eq. (2)]. In the continuum limit gr—>0, χt should obey the renormalization group
formula

Xt = kA*{l + O(g2)}, (37)

where k is a numerical constant and

--^- 12π2

A = a'\g2) i2i e x p - ^ (38)

is the standard of mass at g = 0. If feφO, topological effects (e.g. 6>-vacua) will show
up, and if k = 0, they will be absent (there is also the more complicated possibility
that the scaling law (37) fails: see [4] for a detailed discussion). For a straightfor-
ward Monte Carlo evaluation of k, the expression (32) for the topological charge
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density is probably too complicated, unless a parallel computing facility is
available. As one is only interested in the total charge, however, there may be more
efficient combinatorial methods to compute Q for any given lattice gauge field.
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