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Abstract We study the Linial–Meshulam model of random two-dimensional simpli-
cial complexes. One of our main results states that for p � n−1 a random 2-complex
Y collapses simplicially to a graph and, in particular, the fundamental group π1(Y )

is free and H2(Y ) = 0, asymptotically almost surely. Our other main result gives
a precise threshold for collapsibility of a random 2-complex to a graph in a pre-
scribed number of steps. We also prove that, if the probability parameter p satisfies
p � n−1/2+ε , where ε > 0, then an arbitrary finite two-dimensional simplicial com-
plex admits a topological embedding into a random 2-complex, with probability tend-
ing to one as n → ∞. We also establish several related results; for example, we show
that for p < c/n with c < 3 the fundamental group of a random 2-complex contains
a non-abelian free subgroup. Our method is based on exploiting explicit thresholds
(established in the paper) for the existence of simplicial embeddings and immersions
of 2-complexes into a random 2-complex.
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1 Introduction

The modeling of large systems in applications motivates the development of uncon-
ventional geometric and topological notions. Among them are mixed probabilistic-
topological concepts, such as the Erdős and Rényi random graphs of [6], which are
currently used in many applications in engineering and computer science.

More recently, higher dimensional analogs of the Erdős–Rényi model were sug-
gested and studied by Linial–Meshulam in [16] and Meshulam–Wallach in [17].
In these models one generates a random d-dimensional complex Y by consider-
ing the full d-dimensional skeleton of the simplex Δn on vertices {1, . . . , n} and
retaining d-dimensional faces independently with probability p. The work of Linial–
Meshulam and Meshulam–Wallach provides threshold functions for the vanishing of
the (d − 1)-st homology groups of random complexes with coefficients in a finite
abelian group. Threshold functions for the vanishing of the d-th homology groups
were subsequently studied by Kozlov [15].

An interesting class of closed smooth manifolds depending on a large number of
random parameters arises as configuration spaces of mechanical linkages with bars
of random lengths; see [7, 8]. Although the number of homeomorphism types of
these manifolds grows extremely fast, their topological characteristics can be pre-
dicted with high probability when the number of links tends to infinity.

In this paper, we study the topology of random two-dimensional complexes. The
probability space G(Δ

(2)
n ,p) of the Linial–Meshulam model of random 2-complexes

is defined as follows. Let Δn denote the (n − 1)-dimensional simplex with vertices
{1,2, . . . , n}. Then G(Δ

(2)
n ,p) denotes the set of all two-dimensional subcomplexes

Δ(1)
n ⊂ Y ⊂ Δ(2)

n ,

containing the one-dimensional skeleton Δ
(1)
n . The probability function P :

G(Δ
(2)
n ,p) → R is given by the formula

P(Y ) = pf (Y )(1 − p)(
n
3)−f (Y ), Y ∈ G

(
Δ(2)

n ,p
)
,

where f (Y ) denotes the number of faces in Y . In other words, each of the two-
dimensional simplexes of Δ

(2)
n is included in a random 2-complex Y with prob-

ability p, independently of the other 2-simplexes. As in the case of random
graphs, 0 < p < 1 is a probability parameter which may depend on n. The model
G(Δ

(2)
n ,p) includes all finite two-dimensional simplicial complexes containing the

full 1-skeleton Δ
(1)
n ; however, the likelihood of various topological phenomena is

dependent on the value of p. The theory of deterministic 2-complexes itself is a rich
and active field of current research with many challenging open questions; see [12].

The fundamental group of a random 2-complex Y ∈ G(Δ
(2)
n ,p) was investigated

by Babson, Hoffman, and Kahle [2]. They showed that for1

p � n−1/2 · (3 logn)1/2

1Recall that the symbol an � bn means that an > 0 and an/bn → 0 as n → ∞.
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the group π1(Y ) vanishes asymptotically almost surely (a.a.s).2 These authors use no-
tions of negative curvature due to Gromov to study the nontriviality and hyperbolicity
of π1(Y ) for

p � n−1/2−ε .

In this paper we prove the following theorem.

Theorem 1 If the probability parameter p satisfies

p � n−1

then a random 2-complex Y ∈ G(Δ
(2)
n ,p) collapses simplicially to a graph, a.a.s. In

particular, the fundamental group π1(Y ) is free, and for any coefficient group G one
has H2(Y ;G) = 0, a.a.s.

Loosely speaking, Theorem 1 combines with previously known results to suggest
that a random 2-complex with vanishing two-dimensional homology is homotopically
one dimensional.

We also prove a modification of the above theorem having a slightly stronger con-
clusion under more restrictive assumptions.

Theorem 2 (a) If for some k ≥ 1 the probability parameter p satisfies

p � n−1− 2
k+1 ,

then a random 2-complex Y ∈ G(Δ
(2)
n ,p) is collapsible to a graph in at most k steps,

asymptotically almost surely (a.a.s). (b) If for some k ≥ 1 the probability parameter
p satisfies

p � n
−1− 1

3·2k−1−1 ,

then Y is not collapsible to a graph in k or fewer steps, a.a.s.

We conjecture that similar results hold for d-dimensional random complexes in the
Meshulam–Wallach model [17]; i.e., for p � n−1 a random d-dimensional complex
collapses simplicially to a (d − 1)-dimensional subcomplex. This would strengthen a
theorem of D. Kozlov [15].

Another major result of this paper that is proven in Sect. 8 states the following.

Theorem 3 Assume that for some ε > 0 the probability parameter p satisfies
p � n−1/2+ε . Let S be an arbitrary simplicial finite 2-complex. Then S admits a
topological embedding into a random 2-complex Y ∈ G(Δ

(2)
n ,p), a.a.s.

By a topological embedding S → Y we mean a simplicial embedding of a subdi-
vision of S into Y .

2We use the abbreviation a.a.s. for the phrase “asymptotically almost surely.”
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The method of this paper is based on studying simplicial embeddings and im-
mersions of polyhedra into random 2-complexes. We analyze in detail the numerical
invariants μ(S) and μ̃(S), defined in Sect. 3, which play a crucial role in the ques-
tions about the existence of embeddings and immersions. We also discuss the notion
of balanced triangulations, a generalization of the notion of a balanced graph in the
random graph theory. We prove that any triangulation of a closed surface is balanced,
although surfaces with boundary (even disks) admit unbalanced triangulations.

Among some other results presented in this paper we may mention the statement
that for p < c/n, where c < 3, the fundamental group of a random 2-complex con-
tains a non-abelian free subgroup, a.a.s. We also prove that for p > c/n with c > 3 the
second homology group of a random 2-complex is nontrivial a.a.s; this strengthens a
result of D. Kozlov [15].

The proof of Theorem 1 is given in Sect. 5, while Theorem 2 is proved at the very
end of the paper. A key role in the proof of the latter is played by Theorem 46, which
roughly states that there is a finite list of forbidden 2-complexes so that an arbitrary
2-complex is collapsible to a graph in k steps if and only if it does not contain any of
the 2-complexes from this list. This enables us to reduce the collapsibility problem
addressed in Theorem 2 to the containment problem for random complexes.

The results presented in this paper were originally announced in two preprints [3]
and [4].

After this paper was submitted for publication an interesting preprint of Aronsh-
tam, Linial, Łuczak, and Meshulam [1] appeared. This preprint improves the thresh-
old of Kozlov [15] on the vanishing of the top-dimensional homology of a random
complex. The result of [1] gives more information on the constant c which appears in
Theorem 6 below.

2 Preliminaries

2.1 Basic Definitions

For the convenience of the reader we collect in this section the definitions of basic
combinatorial notions related to two-dimensional complexes which will be used in
this paper.

Let Y be a finite two-dimensional simplicial complex. An edge of Y is called free
if it is included in exactly one 2-simplex.

The boundary ∂Y is defined as the union of free edges. We say that a 2-complex
Y is closed if ∂Y = ∅.

A 2-complex Y is called pure if every maximal simplex is two dimensional. By
the pure part of a 2-complex we mean the maximal pure subcomplex, i.e., the union
of all 2-simplexes.

Let Y be a simplicial 2-complex and let σ and τ be two 2-simplexes of Y . We
say that σ and τ are adjacent if they intersect in an edge. The distance between
σ and τ , dY (σ, τ ), is the minimal integer k such that there exists a sequence of
2-simplexes σ = σ0, σ1, . . . , σk = τ with the property that σi is adjacent to σi+1
for every 0 ≤ i < k. (If no such sequence exists, then dY (σ, τ ) = ∞.) The diameter
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diam(Y ) is defined as the maximal value of dY (σ, τ ) taken over pairs of 2-simplexes
of Y .

A simplicial 2-complex is strongly connected if it has a finite diameter.
A simplicial 2-complex has degree ≤ r if every edge is incident to at most r

2-simplexes.
A pseudo-surface is a finite, pure, strongly connected two-dimensional simplicial

complex of degree at most 2 (i.e., every edge is included in at most two 2-simplexes).
More generally, for an integer r > 0, an r-pseudo-surface is a finite, pure, strongly

connected two-dimensional simplicial complex of degree at most r .

Simplicial Collapse

Let Y be a 2-complex. A 2-simplex of Y is called free if at least one of its edges is
free. Let σ1, . . . , σk be all free 2-simplexes in Y , and let e1, . . . , ek be free edges with
ei ⊂ σi . We say that the complex

Y ′ = Y −
k⋃

i=1

int(σi) −
k⋃

i=1

int(ei)

is obtained from Y by collapsing all free 2-simplexes. Clearly Y ′ ⊂ Y is a deformation
retract. The operation Y ↘ Y ′ is called a simplicial collapse. Note that Y ′ is not
uniquely determined if one of the free simplexes of Y has two free edges; however,
the pure part of Y ′ (i.e., the union of 2-simplexes of Y ′) is uniquely determined.

This process can be iterated Y ′ ↘ Y ′′, Y ′′ ↘ Y ′′′, etc. We denote Y = Y (0),
Y ′ = Y (1), Y ′′ = Y (2) etc. The sequence of subcomplexes Y (0) ⊃ Y (1) ⊃ Y (2) ⊃ · · ·
is decreasing, and there are two possibilities: either (a) for some k, the complex Y (k)

is one dimensional (a graph), or (b) for some k, the complex Y (k) is two dimensional
and closed, i.e., ∂Y (k) = ∅.

Definition 4 We say that Y is collapsible to a graph in at most k steps if Y (k) is
a graph. We say that Y is collapsible to a graph in k steps if Y (k) is a graph and
dimY (k−1) = 2.

Observe that if Y is collapsible to a graph in at most k steps, then any simplicial
subcomplex S ⊂ Y is also collapsible to a graph in at most k steps. At each step one
removes the free triangles in Y (i) which belong to S.

3 The Fundamental Group and the Second Betti Number

In this section we analyze the fundamental group and the second Betti number of
a random 2-complex using mainly information provided by the Euler characteristic.
The results of this section are specific for two-dimensional random complexes.
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Theorem 5 Suppose that p < cn−1, where c < 3. Then the fundamental group π1(Y )

of a random 2-complex Y ∈ G(Δ
(2)
n ,p) contains a non-abelian free subgroup with

probability at least 1 − λn2
, for all large enough n, where

λ = exp

(
−1

8

(
1 − c

3

)2)
,

0 < λ < 1. In particular, π1(Y ) contains a free subgroup on two generators, a.a.s.

Proof The Euler characteristic of Y ∈ G(Δ
(2)
n ,p) can be written as

χ(Y ) = n −
(

n

2

)
+ f2(Y ) = f2(Y ) + 1 −

(
n − 1

2

)
(1)

where f2(Y ) denotes the number of 2-simplexes in Y . Clearly, the function f2 :
G(Δ

(2)
n ,p) → Z coincides with the sum of random variables

f2 =
∑

σ

Iσ

where σ runs over 2-simplexes (i, j, k) (with 1 ≤ i < j < k ≤ n) and Iσ (Y ) = 1 iff σ

is included in Y ; otherwise Iσ (Y ) = 0. Each Iσ is a Bernoulli random variable with
parameter p and f2 has binomial distribution

P(f2(Y ) = k) =
((

n
3

)

k

)
pk(1 − p)(

n
3)−k,

where k = 0,1,2, . . . ,
(
n
3

)
. The expectation E(f2) equals p

(
n
3

)
. Using inequality (2.5)

from [13] we find that for any t ≥ 0

P

(
f2 ≥ p

(
n

3

)
+ t

)
≤ exp

(
− t2

2(p
(
n
3

) + t/3)

)
. (2)

Consider inequality (2) with

t =
(

1 − pn

3

)(
n − 1

2

)
− 1. (3)

We observe that: (i) the assumption pn < c < 3 implies that t > 0 for large n, and
(ii) the inequality f2(Y ) ≥ p

(
n
3

)+ t is equivalent to the inequality χ(Y ) ≥ 0. We thus
obtain from (2)

P
(
χ(Y ) ≥ 0

) ≤ exp

(
− t2

2(p
(
n
3

) + t/3)

)

and from (3), for n ≥ 3,

p

(
n

3

)
+ t

3
≤ 1

3

(
2c

3
+ 1

)(
n − 1

2

)
− 1

3
≤

(
n − 1

2

)
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as c < 3. Thus one gets for n sufficiently large

t2

2(p
(
n
3

) + t/3)
≥ 1

2

[(1 − pn
3 )

(
n−1

2

) − 1]2

(
n−1

2

)

≥ 1

3

(
1 − c

3

)2

·
(

n − 1

2

)

≥ 1

8

(
1 − c

3

)2

· n2.

Therefore, by the definition of λ,

P
(
χ(Y ) ≥ 0

) ≤ exp

(
−1

8

(
1 − c

3

)2

n2
)

= λn2

and thus

P
(
χ(Y ) < 0

) ≥ 1 − λn2
.

Theorem 5 now follows from a theorem proven in [9] which states: If the Eu-
ler characteristic of a finite connected two-dimensional polyhedron Y is negative,
χ(Y ) < 0, then π1(Y ) contains a non-abelian free subgroup.

This completes the proof. �

Theorem 6 Suppose that p > cn−1, where now c > 3. Then for a random two-
dimensional complex Y ∈ G(Δ

(2)
n ,p) one has H2(Y ;Z) �= 0 with probability at least

1 − μn2
, for all large enough n, where

μ = exp

(
−1

8

(
c

3
− 1

))
,

0 < μ < 1. In particular,3 H2(Y ;Z) �= 0, a.a.s.

Proof The proof is very similar to the one of Theorem 5 and also uses the Euler char-
acteristic. Clearly, χ(Y ) = 1−b1(Y )+b2(Y ) (where bi(Y ) denotes the i-dimensional
Betti number, bi(Y ) = rkHi(Y ;Z)). Thus χ(Y ) > 1 implies b2(Y ) > 0. We will esti-
mate from above the probability of the complementary event χ(Y ) ≤ 1.

Using inequality (2.6) from [13] one has for any t ≥ 0

P

(
f2 ≤ p

(
n

3

)
− t

)
≤ exp

(
− t2

2p
(
n
3

)
)

.

Now choose

t =
(

pn

3
− 1

)
·
(

n − 1

2

)
.

3Note that H2(Y ;Z) �= 0 implies that H2(Y ;G) �= 0 for any coefficient group G �= 0.
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Since pn > c > 3 we have

t >

(
c

3
− 1

)
·
(

n − 1

2

)
> 0.

The inequality f2(Y ) ≤ p
(
n
3

) − t is equivalent to χ(Y ) ≤ 1. Thus we obtain

P
(
χ(Y ) ≤ 1

) ≤ exp

(
− t2

2p
(
n
3

)
)

and, for n sufficiently large,

t2

2p
(
n
3

) ≥ (
pn
3 − 1)2 · (n−1

2

)

2pn
3

≥ 1

2

(
pn

3
− 1

)
·
(

n − 1

2

)

≥ 1

8

(
c

3
− 1

)
· n2.

Finally, by the definition of μ,

P
(
b2(Y ) = 0

) ≤ P
(
χ(Y ) ≤ 1

) ≤ μn2
.

This completes the proof. �

Next we consider the critical case p = 3/n.

Theorem 7 Assume that p = 3
n

. Then for any ε > 0 there exists N such that for all
n > N the probability of each of the following statements (a) and (b) concerning a
random 2-complex Y ∈ G(Δ

(2)
n ,p) is greater than 1

2 − ε:

(a) the fundamental group π1(Y ) contains a noncommutative free subgroup;
(b) H2(Y ;Z) �= 0.

It is not known if (a) and (b) exclude each other; one may ask about the probability
that, asymptotically, (a) and (b) hold simultaneously.

Proof In the case when p = 3/n one has E(f2) = (
n−1

2

)
and E(χ) = 1 where f2, χ :

G(Δ
(2)
n ,p) → Z are as above. From the de Moivre–Laplace integral theorem [20],

p. 62, it follows that

P

(
f2 >

(
n − 1

2

))
∼ 1√

2π

∫ ∞

0
e−x2/2 dx = 1

2

and

P

(
f2 ≤

(
n − 1

2

)
− 2

)
∼ 1√

2π

∫ b

−∞
e−x2/2 dx ∼ 1

2
,
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where b can be found from the equation b

√(
n
3

)
p(1 − p) = −2, i.e.,

b = − 2
√(

n−1
2

) · (1 − 3
n
)

∼ 0.

By (1), the inequality f2(Y ) >
(
n−1

2

)
is equivalent to χ(Y ) > 1 and the inequality

f2(Y ) <
(
n−1

2

) − 1 is equivalent to χ(Y ) < 0. Thus we see that

P
(
χ(Y ) > 1

) ∼ 1

2
, and P

(
χ(Y ) < 0

) ∼ 1

2

and thus, for any given ε > 0,

P
(
π1(Y ) ⊃ F2

) ≥ P
(
χ(Y ) < 0

) ≥ 1

2
− ε,

P
(
b2(Y ) > 0

) ≥ P
(
χ(Y ) > 1

) ≥ 1

2
− ε

for sufficiently large n. Here F2 denotes the free group with two generators. �

4 Simplicial Embeddings and Immersions

In this section we consider the containment problem for subcomplexes of random
two-dimensional complexes, which is similar to the containment problem for random
graphs; see [13], Chapt. 3. We also study simplicial immersions, which are more
general than simplicial embeddings.

Let S be a two-dimensional finite simplicial complex. We denote by v = vS and
f = fS the numbers of vertices and faces of S respectively. The set of vertices of S

is denoted by V (S). We assume that S is fixed, i.e., independent of n.

Definition 8 A simplicial embedding g : S ↪→ Y , where Y ∈ G(Δ
(2)
n ,p) is a random

2-complex, is defined as an injective map of the set of vertices V (S) of S into the set
of vertices {1, . . . , n} of Y satisfying the following condition: for any triple of dis-
tinct vertices u1, u2, u3 ∈ V (S) which span a simplex in S, the corresponding points
g(u1), g(u2), g(u3) ∈ {1, . . . , n} span a face of Y .

Next we define the following slightly more general notion.

Definition 9 A simplicial immersion g : S � Y into a random 2-complex Y ∈
G(Δ

(2)
n ,p) is defined as a map of the set of vertices V (S) of S into the set of vertices

{1, . . . , n} of Y satisfying the following two conditions:

(a) for any triple of distinct vertices u1, u2, u3 ∈ V (S) which span a 2-simplex in S,
the corresponding points g(u1), g(u2), g(u3) ∈ {1, . . . , n} are pairwise distinct
and span a face of Y ;

(b) for any pair of distinct 2-simplexes σ and σ ′ of S, the corresponding 2-simplexes
g(σ ) and g(σ ′) of Y are distinct.
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Note that a simplicial immersion g : S � Y is not necessarily injective on the set
of vertices V (S), but any pair of vertices u1, u2 ∈ V (S) with g(u1) = g(u2) cannot
lie in a 2-simplex of S. We also require that distinct 2-simplexes of S are mapped to
distinct 2-simplexes of Y .

If g : S � Y is a simplicial immersion, then for any subcomplex S′ ⊂ S the re-
striction g|S′ is also a simplicial immersion S′ � Y .

Lemma 10 The probability that a two-dimensional simplicial complex S with v

vertices and f faces admits a simplicial immersion into a random 2-complex Y ∈
G(Δ

(2)
n ,p) is less than or equal to nvpf , i.e.,

P(S � Y) ≤ nvpf . (4)

Proof For a map g : V (S) → {1, . . . , n} denote by Jg : G(Δ
(2)
n ,p) → {0,1} the ran-

dom variable such that Jg(Y ) = 1 if and only if g determines a simplicial immersion
S � Y , i.e., if the conditions of Definition 9 are satisfied. Clearly, the expectation
E(Jg) equals pf . The random variable XS = ∑

g Jg counts the number of simplicial
immersions S � Y , where g runs over all maps V (S) → {1, . . . , n}. Thus

E(XS) =
∑

g

E(Jg) ≤ nv · pf

and

P(S � Y) = P(XS > 0) ≤ E(XS) ≤ nvpf ,

by the first moment method. �

Next we define a useful numerical invariant which was also mentioned in [2].

Definition 11 For a simplicial 2-complex S let μ(S) denote

μ(S) = v

f
∈ Q,

where v = vS and f = fS are the numbers of vertices and faces in S.

Corollary 12 If the probability parameter p satisfies

p � n−μ(S)

then the 2-complex S admits no simplicial immersions into a random 2-complex Y ∈
G(Δ

(2)
n ,p), a.a.s.

Proof The assumption p � n−μ(S) means that pnμ(S) → 0 as n → ∞. Then
nvpf → 0 and the result now follows from Lemma 10. �

As an example consider a simplicial graph Γ and the cone over it S = C(Γ ). One
has vS = vΓ + 1 and fS = eΓ . Therefore

μ(S) = vΓ + 1

eΓ

.

Using Corollary 12 we obtain the following.
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Corollary 13 If a graph Γ satisfies χ(Γ ) < 0 then μ(S) ≤ 1 where S = C(Γ ) is the
cone over Γ . Therefore, if, p � n−1, then the cone S = C(Γ ) with χ(Γ ) < 0 admits
no simplicial immersions into a random 2-complex Y ∈ G(Δ

(2)
n ,p), a.a.s.

This result will be used later in this paper.

Definition 14 Let S be a finite two-dimensional simplicial complex. Define

μ̃(S) = min
S′⊂S

μ(S′), (5)

where the minimum is formed over all subcomplexes S′ ⊂ S or, equivalently, over all
pure subcomplexes S′ ⊂ S.

Note that the invariant μ̃ is monotone decreasing: if S is a subcomplex of T then

μ̃(S) ≥ μ̃(T ). (6)

The following result complements Corollary 12.

Theorem 15 Let S be a finite simplicial complex.

(A) If p � n−μ̃(S) then the probability that S admits a simplicial immersion into a
random 2-complex Y ⊂ G(n,p) tends to zero as n → ∞.

(B) If p � n−μ̃(S) then the probability that S admits a simplicial embedding into a
random 2-complex Y ⊂ G(n,p) tends to one as n → ∞.

Proof Let S′ ⊂ S be a subcomplex such that μ(S′) = μ̃(S) ≤ μ(S). Then

P(S � Y) ≤ P(S′ � Y)

and P(S′ � Y) tends to zero assuming that p � n−μ(S′) = n−μ̃(S) by Corollary 12.
This proves the statement (A).

The following arguments prove the statement (B). Let v denote the number
of vertices of S. A simplicial embedding of S into Y is defined by an injective
map g : V (S) → {1, . . . , n} where V (S) is the set of vertices of S. The function
XS = ∑

g Jg : G(Δ
(2)
n ,p) → Z counts the number of simplicial embeddings; here

g : V (S) → {1, . . . , n} runs over all injective maps and Jg denotes the random vari-
able defined as in the proof of Lemma 10.

For a pair of injective maps g,g′ : V (S) → {1, . . . , n} consider the pure subcom-
plex H = H(g,g′) ⊂ S which is defined as the union of all 2-simplexes σ ⊂ S with
the property g(σ ) ⊂ g′(S). Note that the product random variable JgJg′ has the ex-
pectation

E(JgJg′) = p2f −fH ,

where f = fS is the number of faces of S and fH is the number of 2-simplexes in H .
Now we fix a pure subcomplex H ⊂ S and consider all ordered pairs of injective

maps g,g′ : V (S) → {1, . . . , n} with H(g,g′) = H . The number N of such pairs
g,g′ satisfies

N ≤ CH n2v−vH
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for some constant CH > 0 depending on H .
The variance of XS can be estimated as follows:

Var(XS) = E
(
X2

S

) − E(XS)2

=
∑

g,g′

[
E(JgJg′) − E(Jg)E(Jg′)

]

≤
∑

H⊂S

CH n2v−vH
[
p2f −fH − p2f

]

=
∑

H⊂S

CH n2v−vH p2f −fH
[
1 − pfH

]
.

Since for n sufficiently large,

E(XS) =
(

n

v

)
v! · pf ≥ 1

2
· nvpf ,

it follows that

Var(XS)

E(XS)2
≤ 4 · (1 − p) ·

∑

H⊂S

(fH CH ) · (nvH pfH
)−1

.

Now, if p � n−μ̃(S) then nvH pfH → ∞ for any pure subcomplex H ⊂ S and
therefore each term in the sum above tends to zero. Thus, using the Chebyshev in-
equality

P(XS = 0) ≤ Var(XS)

E(XS)2
,

we see that P(XS = 0) → 0 as n → ∞. This implies statement (B). �

The above proof also gives the following quantitative statement.

Corollary 16 Let S be a fixed 2-complex. Then the probability P(S �⊂ Y) that S is
not embeddable into a random 2-complex Y can be estimated by

P(S �⊂ Y) ≤ C · (1 − p) ·
∑

H⊂S,fH >0

(
nvH pfH

)−1
, (7)

where C is a constant depending on S and H runs through all pure subcomplexes
of S.

5 Proof of Theorem 1

In this section we prove Theorem 1 stated in the Introduction.
Note that the assumptions and conclusions of Theorem 1 are stronger than those of

Theorem 5. One may also compare Theorem 1 with Theorem 2, which has stronger
assumptions and conclusions than Theorem 1.
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Fig. 1 Graphs Γx,y,z (left) and
Γ ′

x,y,z (right)

Proof For any triple of integers x, y, z (with x ≥ 3, y ≥ 3 and z ≥ 0) consider two
graphs Γx,y,z and Γ ′

x,y,z, drawn schematically on Fig. 1. The graph Γx,y,z is topo-
logically the union of two circles joined by an interval; the circle on the left consists
of x intervals, the circle on the right is subdivided into y intervals, and the interval
connecting them consists of z subintervals. The graph Γ ′

x,y,z, shown schematically
on the right of Fig. 1, is the union of three arcs consisting of x, y, and z intervals.
Clearly χ(Γx,y,z) = −1 = χ(Γ ′

x,y,z). In the case z = 0 the corresponding interval
degenerates to a point.

It is easy to see that any graph Γ with χ(Γ ) < 0 contains, as a subgraph, either
Γx,y,z or Γ ′

x,y,z for some x, y, z.
Consider the cones Sx,y,z = C(Γx,y,z) and S′

x,y,z = C(Γ ′
x,y,z). By the arguments

leading to Corollary 13 we have

μ(Sx,y,z) = μ(S′
x,y,z) = 1.

Applying Lemma 10 we find

P(Sx,y,z � Y) ≤ (pn)f

where f = x + y + z. Thus,
∑

x,y≥3, z≥0

P(Sx,y,z � Y) ≤
∑

f ≥6

f 2 · (pn)f

≤
∑

f ≥6

(2pn)f = (2pn)6

1 − 2pn
.

We see that if pn → 0, then the probability that there exist x, y, z such that the 2-
complex Sx,y,z admits a simplicial immersion into Y tends to zero as n → ∞.

Similarly, if pn → 0, then the probability that there exist x, y, z such that the
2-complex S′

x,y,z admits a simplicial immersion into Y tends to zero.
Consider a vertex v of the random 2-complex Y . The link Lv of v is a graph

and the cone C(Lv) embeds simplicially into Y . If for a connected component L′
v

of Lv one has χ(L′
v) < 0 then for some integers x, y, z the component L′

v contains
either Γx,y,z or Γ ′

x,y,z. Thus we see that χ(L′
v) < 0 implies that for some x, y, z the

complex Y contains either Sx,y,z or S′
x,y,z as a subcomplex. Using the arguments

given above, we obtain that for any vertex v of Y , the Euler characteristic of every
connected component L′

v of the link Lv of v satisfies

χ(L′
v) ≥ 0,

a.a.s. In other words, every connected component of the link of any vertex of Y is
either contractible or is homotopy equivalent to the circle.

Let S be a pure and closed simplicial subcomplex of Y . The preceding arguments
show that the link of any vertex of S is a disjoint union of circles. In other words, we
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Fig. 2 2-complex Lx,y

obtain that any pure closed subcomplex S ⊂ Y is a closed pseudo-surface; i.e., every
edge of S is incident to exactly two 2-simplexes of S, a.a.s.

For any two positive integers x, y ≥ 3 with max(x, y) ≥ 4, let Lx,y be a subdivi-
sion of the disk D2 shown on Fig. 2. The complex Lx,y has two internal vertices v, w

such that the degree of v is x and the degree of w is y. The total number of vertices
of Lx,y equals x + y − 2; the number of faces of Lx,y is also x + y − 2; therefore
μ(Lx,y) = 1.

In the special case x = 3 and y = 3 the complex L3,3 is defined to be the tetrahe-
dron with vertices v,w,a, b. The equality μ(L3,3) = 1 remains true.

By Lemma 10,

P(Lx,y � Y) ≤ (pn)f ,

where f = x + y − 2. Thus,
∑

x,y≥3

P(Lx,y � Y) ≤
∑

f ≥4

f · (pn)f

≤
∑

f ≥4

(2pn)f = (2pn)4

1 − (2pn)
.

This shows that, if pn → 0, then, with probability tending to one as n → ∞, none of
the complexes Lx,y can be immersed Lx,y � Y into Y .

Next we show that for any nonempty closed pseudo-surface S there exist positive
integers x, y ≥ 3 and an immersion Lx,y � S. Consider an edge e = vw of S and
two 2-simplexes σ1 and σ2 incident to it, as shown on Fig. 2. The link of v in S is a
disjoint union of circles. It contains the edges e1 and e2 shown on Fig. 2. Therefore
we may find a simple arc A in the link of v in S connecting the points a and b and
disjoint from the interior of the arc e1 ∪ e2. Similarly, we may find a simple arc B

connecting a and b in the link of w in S and disjoint from the interior of e′
1 ∪ e′

2.
Let x and y be such that the number of 2-simplexes in arc A (correspondingly, B) is
x − 2 (correspondingly y − 2). It is now obvious that we obtain an immersion of the
2-complex Lx,y into S. It may not be an embedding since the images of some points
of A may coincide with the images of some points of B .

Now we see that if a random 2-complex contains a closed pseudo-surface, then
there is an immersion Lx,y � Y .
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Hence, summarizing the statements made above, we conclude that in the case
pn → 0, a random 2-complex contains no nonempty closed two-dimensional sub-
complexes S ⊂ Y , a.a.s.

We will now use the notion of combinatorial collapse as reminded at the end of
the Introduction. Consider the sequence of collapses Y ↘ Y ′ ↘ Y ′′ ↘ · · · . There
are two possibilities: either (a) after a finite number of collapses we obtain a closed
two-dimensional complex Y (k); or (b) for some k the complex Y (k) is one dimen-
sional, i.e., a graph. Our discussion above implies that if pn → 0, then for a random
2-complex Y the possibility (a) happens with probability tending to 0. Therefore,
with probability tending to 1, a random 2-complex collapses to a graph, under the
assumption p � n−1.

This completes the proof. �

Remark 17 The main step of the preceding proof was to show that for p � n−1 a
random 2-complex Y contains no nonempty closed two-dimensional subcomplexes
S ⊂ Y . From Lemma 34 below we know that for any closed 2-complex S one has
μ̃(S) ≤ 1. Therefore, given a closed 2-complex S, we may apply Theorem 15 to con-
clude that the probability that this S embeds into a random 2-complex Y ∈ G(Δ

(2)
n ,p)

tends to zero as n → ∞. However, this would not be strong enough to prove Theo-
rem 1 since we need to know (as shown in the proof above) that the probability that
there exists a closed 2-complex S which embeds to a random 2-complex tends to
zero.

6 Surfaces in Random 2-Complexes

In this section we apply the results of Sect. 4 and study embeddings of triangulated
surfaces into random two-dimensional complexes.

Definition 18 A finite simplicial 2-complex S is called balanced if

μ(S) = μ̃(S),

i.e., if the quantities defined in Definitions 11 and 14 coincide. In other words, S is
balanced if

μ(S) ≤ μ(S′)

for any subcomplex S′ ⊂ S.

Definition 18 is similar to the corresponding notion for random graphs, see [13].
In this section we show that there exist many unbalanced triangulations of the disk;

however, all closed triangulated surfaces are balanced. We start with the following
observation.

Lemma 19 A connected simplicial 2-complex S is balanced if and only if μ(S) ≤
μ(S′) for all connected subcomplexes S′ ⊂ S.
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Proof Let S′ = S′
1 � S′

2 be a disjoint union of two subcomplexes. We show that

μ(S′) ≥ min
{
μ(S′

1),μ(S′
2)

}

and thus μ(S) ≤ μ(S′
i ), where i = 1,2, implies μ(S) ≤ μ(S′). Let vi and fi denote

the number of vertices and faces of S′
i , i = 1,2. Assume that v1/f1 ≤ v2/f2. Then

one easily checks that

μ(S′) = v1 + v2

f1 + f2
≥ v1

f1
= μ(S′

1).

The result now follows by induction on the number of connected components of S′. �

Example 20 Let S = Σg be a triangulated closed orientable surface of genus g ≥ 0.
Then χ(S) = 2 − 2g = v − e + f where v, e, f denote the numbers of vertices,
edges, and faces in S correspondingly. Each edge is contained in two faces which
gives 3f = 2e, and therefore

μ(Σg) = 1

2
+ 2 − 2g

f
. (8)

Similarly, if S = Ng is a triangulated closed nonorientable surface of genus g ≥ 1
then χ(Ng) = 2 − g and

μ(Ng) = 1

2
+ 2 − g

f
. (9)

Formulae (8) and (9) give the following.

Corollary 21 The invariants μ(Σg) of orientable triangulated surfaces satisfy:

1. 1/2 < μ(Σg) ≤ 1 for g = 0 (since f ≥ 4);
2. μ(Σg) = 1/2 for g = 1 (the torus);
3. μ(Σg) < 1/2 for g > 1;
4. If f → ∞ (i.e., when the surface is subsequently subdivided) then μ(Σg) → 1/2.

Corollary 22 The invariants μ(Ng) of nonorientable triangulated surfaces satisfy:

1. 1/2 < μ(Ng) ≤ 3/5 for g = 1 (since f ≥ 10);
2. μ(Ng) = 1/2 for g = 2 (the Klein bottle);
3. μ(Ng) < 1/2 for g > 2;
4. If f → ∞ (i.e., when the surface is subsequently subdivided) then μ(Ng) → 1/2.

Here we used the well-known fact that any triangulation of the real projective
plane RP2 has f ≥ 10 faces; see [5, 11, 14, 19].

Example 23 Let S be a triangulated disk. Then χ(S) = v − e+f = 1 and 3f = 2e−
e0 where e0 is the number of edges in the boundary ∂S. Substituting e = (3f +e0)/2,
one obtains

μ(S) = 1

2
+ e0

2f
+ 1

f
. (10)
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Fig. 3 An n-gon S (left) and a
square with implanted n-gon T

(right)

As a specific example consider the regular n-gon S shown on Fig. 3 left. Then
v = n + 1, f = n, and

μ(S) = 1 + 1

n
.

On Fig. 3 on the right we have e0 = 4 and the number of faces f equals f =
2n + 4. Thus

μ(T ) = 1

2
+ 3

2n + 4

converges to 1
2 as n → ∞.

Corollary 24 For any triangulation S of the disk one has μ(S) > 1/2. There exist
triangulations S of D2 with μ(S) arbitrarily close to 1/2.

Example 25 Let S′ be such that μ(S′) < 1 and suppose that S is obtained from S′
by adding a triangle Δ such that S′ ∩ Δ is an edge. Then S is not balanced. Indeed,
vS = vS′ + 1, and fS = fS′ + 1, and

μ(S) = vS′ + 1

fS′ + 1
>

vS′

fS′
= μ(S′).

Corollary 26 There exist unbalanced triangulations of the disk.

Proof Start with a disk triangulation S′ with μ(S′) < 1 (for instance, S′ can be the
square with implanted n-gon, see Example 23) and add a triangle S = S′ ∪Δ such that
S′ ∩ Δ is an edge lying in the boundary ∂S′. Then μ(S) > μ(S′) (see Example 25)
and S is unbalanced. Clearly, S is homeomorphic to the two-dimensional disk. �

Theorem 27 Any closed connected triangulated surface S is balanced.

Proof Let S′ ⊂ S be a connected subcomplex, S′ �= S. We may assume that each edge
of S′ belongs to either one or two triangles of S′ (since any edge which is not incident
to a triangle can be simply removed without affecting μ(S′)). Then we have

χ(S′) = 1 − b1(S
′) = v′ − e′ + f ′, (11)
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where v′, e′, f ′ are the numbers of vertices, edges, and faces in S′. Here we use the
assumption that S′ is connected (i.e., b0(S

′) = 1) and S′ �= S (i.e., b2(S
′) = 0). One

may write

3f ′ = 2e′ − e0

where e0 is the number of edges incident to exactly one 2-simplex. Expressing e′
through f ′ and e0 and substituting into (11) we obtain

μ(S′) = 1

2
+ 1 − b1(S

′)
f ′ + e0

2f ′ . (12)

Assume first that S is orientable and has genus g, i.e., S = Σg . Then we have for-
mula (8) and the inequality μ(S′) ≥ μ(S) is equivalent to

1 − b1(S
′)

f ′ + e0

2f ′ ≥ 2 − 2g

f

or

f
[
2 − 2b1(S

′) + e0
] ≥ (4 − 4g)f ′,

where f denotes the number of 2-simplexes in S. Since f ≥ f ′ the above inequality
follows from

2 − 2b1(S
′) + e0 ≥ 4 − 4g.

Since b1(S) = 2g the latter inequality is equivalent to

b1(S
′) ≤ b1(S) + e0/2 − 1. (13)

The homological exact sequence of (S,S′) has the form

0 → H2(S;Q) → H2(S,S′;Q)
j∗→ H1(S

′;Q)

→ H1(S;Q) → H1(S,S′;Q) → 0.

Here H2(S;Q) = Q and by the Poincaré duality theorem (see [10], Proposition 3.46)

H2(S,S′;Q) � H 0(S − S′;Q) (14)

has dimension equal to the number k of path-connected components of the comple-
ment S − S′. Formally, we find a compact deformation retract K ⊂ S − S′ such that
S − K deformation retracts onto S′ and apply Proposition 3.46 from [10] to it; thus
we obtain (14).

It follows that the image of j∗ has dimension k − 1 and therefore the long exact
sequence implies

b1(S) ≥ b1(S
′) − k + 1. (15)

Each of the connected components of the complement S − S′ is bounded by a simple
polygonal curve having at least 3 edges. Therefore, we see that

e0 ≥ 3k (16)

and now (13) follows from (15).
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Consider now the case when the surface S is nonorientable, S = Ng . In this case
the arguments are similar, but we will consider the homology groups with coefficients
in Z2 and the Z2-Betti numbers, which we will denote

b′
i (X) = dimHi(X;Z2).

Comparing μ(S′) given by (12) and μ(S) given by (9) and taking into account the
equality

b′
1(S) = g,

we see that the inequality μ(S′) ≥ μ(S) is equivalent to

b′
1(S

′) ≤ b′
1(S) + e0/2 − 1, (17)

which is analogous to (13). The inequality (17) follows from arguments similar to the
ones given above with Z2 coefficients replacing the rationals Q, using the Poincaré
duality and the inequality (16). �

In the following statement we consider “small surfaces,” i.e., triangulated surfaces
which do not depend on n. Theorems 15 and 27 and Corollaries 21 and 22 imply the
following.

Corollary 28 One has:

1. If p � n−1 then a random 2-complex Y ∈ G(Δ
(2)
n ,p) contains4 no small5 closed

surfaces, a.a.s.
2. If n−1 � p � n−3/5 then a random 2-complex Y contains small spheres but no

small closed surfaces of other topological types, a.a.s.
3. If n−3/5 � p � n−1/2 then a random 2-complex Y contains small spheres and

projective planes but no small closed surfaces of higher genera, a.a.s.
4. If p � n−1/2 then a random 2-complex Y contains all small spheres, projective

planes, tori and Klein bottles, a.a.s.
5. If p � n−1/2+ε for some ε > 0 then, given a topological type of a closed surface,

there exists f0 = f0(ε), such that any triangulation of the surface having more
than f0 2-simplexes will be simplicially embeddable into a random 2-complex Y ,
a.a.s. In particular, if p � n−1/2+ε , a random 2-complex Y contains small closed
orientable and nonorientable surfaces of all possible topological types, a.a.s.

Proof These statements follow from Theorem 27 and formulae (8) and (9). �

Statement 5 of this corollary can be compared with Theorem 3, which deals with
topological embeddings.

Corollary 29 For a random 2-complex Y ∈ G(Δ
(2)
n ,p) with p � n−1 one has

π2(Y ) �= 0, and H2(Y ;Z) �= 0 (18)

a.a.s.

4In this corollary the word “contains” means “contains as a simplicial subcomplex.”
5In this statement one may remove the word “small” as follows from the proof of Theorem 1.
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Proof Indeed, by the previous corollary, for p � n−1 a random 2-complex Y con-
tains a tetrahedron as a simplicial subcomplex. The fundamental class of this tetra-
hedron gives a nontrivial element of H2(Y ). The tetrahedron can also be viewed as a
sphere in Y representing a nontrivial class in π2(Y ). �

The statement H2(Y ;Z) �= 0 also follows from Theorem 6 and from the result of
D. Kozlov [15].

7 Remarks Concerning the Invariant μ(S)

First we observe that μ(S) admits the following curious interpretation.
For each vertex ui ∈ V (S) its degree deg(ui) is defined as the number of edges

incident to ui . For an edge ei ∈ E(S) the degree deg(ei) is defined as the number of
two-dimensional simplexes incident to ei . Next we define the average vertex degree
and the average edge degree by the formulae

Dv(S) = v−1 ·
∑

ui∈V (S)

deg(ui), De(S) = e−1 ·
∑

ei∈E(S)

deg(ei).

Lemma 30 For any 2-complex S one has

μ(S) · Dv(S) · De(S) = 6.

Proof The statement follows from the definition

μ(S) = v/f = 6 · v

2e
· e

3f

using the following obvious formulae:

3f =
∑

ei∈E(S)

deg(ei), 2e =
∑

ui∈V (S)

deg(ui). �

Lemma 31 For any strongly connected 2-complex S one has

μ(S) ≤ 1 + 2

f
, (19)

where f = fS is the number of faces in S.

Proof Without loss of generality we may assume that S is pure; otherwise we apply
the arguments below to the pure part of S.

Given a pure strongly connected 2-complex S, there exists a sequence of subcom-
plexes T1 ⊂ T2 ⊂ · · · ⊂ Tf = S such that (a) each Ti has exactly i faces, i.e., fTi

= i,
and (b) the subcomplex Ti+1 is obtained from Ti by adding a single 2-simplex σi with
the property that the intersection σi ∩Ti contains an edge of σi . If vi denotes the num-
ber of vertices of Ti then vi+1 ≤ vi + 1. Since v1 = 3, it follows that v = vf ≤ f + 2,
implying (19). �
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Corollary 32 Suppose that a 2-complex S = S1 ∪ S2 is the union of two strongly
connected subcomplexes such that the intersection S1 ∩S2 is at most one dimensional.
(a) If S1 ∩S2 contains at least 4 vertices, then μ(S) ≤ 1. (b) If the intersection S1 ∩S2

contains ≥ 5 vertices, then μ(S) < 1.

Proof Denote vi = vSi
, fi = fSi

, where i = 1,2 and, as usual, v = vS , f = fS . By
the previous lemma, vi ≤ fi + 2, and thus we obtain

μ(S) = v1 + v2 − v0

f1 + f2
≤ f1 + 2 + f2 + 2 − v0

f1 + f2
(20)

= 1 + 4 − v0

f1 + f2
, (21)

where v0 is the number of vertices lying in the intersection S1 ∩ S2. Thus, μ(S) ≤ 1
if v0 ≥ 4 and μ(S) < 1 if v0 > 4. �

Lemma 33 Let S be a connected, pure, closed (i.e., ∂S = ∅) 2-complex with χ(S) =
1 having at least 3 edges of degree ≥ 3. Then

μ(S) ≤ 1

2
− 1

2f
, (22)

where f = fS is the number of faces.

Proof We have

v − e + f = 1 (23)

(since χ(S) = 1) and

3f ≥ 2e + 3. (24)

The last inequality follows from the formula

3f = 2e + e3 + e4 + · · · ,
where er denotes the number of edges of degree at least r in S with r = 3,4, . . . .
From (23) and (24) we obtain v ≤ f

2 − 1
2 , implying (22). �

An example of a 2-complex satisfying the condition of the previous lemma is the
house with two rooms; see [10], p. 4.

Lemma 34 Let S be a closed 2-complex, i.e., ∂S = ∅. Then

μ̃(S) ≤ 1.

Moreover, if we additionally assume that S does not contain the tetrahedron as a
subcomplex, then

μ̃(S) ≤ 5/6.
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Proof Without loss of generality, we may assume that S is connected, since otherwise
we can apply the following arguments to a connected component of S and use the
monotonicity property (6). Moreover, we may assume that S is pure, since otherwise
we may deal with the maximal pure subcomplex of S instead of S.

Suppose first that H2(S;Z2) = 0. Then by the Euler–Poincaré theorem, χ(S) ≤ 1,
and we have

v − e + f = χ(S) ≤ 1, and 3f ≥ 2e,

where v, e, f denote the numbers of vertices, edges, and faces in S. In the latter
inequality we used the assumptions that S is pure and closed. These inequalities imply
that

v − f/2 ≤ χ(S) ≤ 1, and μ(S) ≤ 1/2 + 1/f.

Since f ≥ 4 we obtain that μ̃(S) ≤ μ(S) ≤ 3/4 < 1.

Assume now that H2(S;Z2) �= 0. We will show that there is a subcomplex S′ ⊂ S

which is also closed, ∂S′ = ∅, and satisfies H2(S
′;Z2) = Z2. Indeed, consider a

nonzero two-dimensional cycle c = ∑
i∈I σi with Z2 coefficients, where the σi are

distinct 2-simplexes of S. Let I ′ ⊆ I be the minimal subset of the indexing set I

for which c′ = ∑
i∈I ′ σi is still a cycle, and let S′ = ⋃

i∈I ′ σi be the corresponding
subcomplex of S. Then clearly H2(S

′;Z2) = Z2 and S′ is closed and pure.
By the Euler–Poincaré theorem, χ(S′) ≤ 2, and we have

v′ − e′ + f ′ = χ(S′) ≤ 2, and 3f ′ ≥ 2e′,
where v′, e′, f ′ denote the numbers of vertices, edges, and faces in S′. This gives

v′ − f ′/2 ≤ χ(S′) ≤ 2,

and

μ(S′) ≤ 1

2
+ 2

f ′ . (25)

Since f ′ ≥ 4, the last inequality gives μ(S′) ≤ 1 and we have μ̃(S) ≤ μ(S′) ≤ 1. If
f ′ ≥ 6 then similarly we obtain μ(S′) ≤ 1/2 + 2/6 = 5/6 and μ̃(S) ≤ 5/6. In the
remaining case f ′ = 4 the complex S contains the tetrahedron as a subcomplex. Here
we use the observation that there are no closed 2-complexes having 5 faces, i.e., f ′
cannot be equal to 5. �

8 Topological Embeddings: Proof of Theorem 3

Proof We show that there exists a subdivision of S which simplicially embeds into
Y a.a.s.

We subdivide S by introducing a new vertex in the center of each 2-simplex and
connecting it to three vertices, as shown on Fig. 4. We denote by S′ the new trian-
gulation. Let v,f and v′, f ′ denote the numbers of vertices and faces of S and S′
respectively. Then clearly

v′ = v + f, f ′ = 3f.
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Fig. 4 A 2-simplex (left) and
its subdivision (right)

Therefore, we find that

μ(S′) − 1

2
= 1

3

(
μ(S) − 1

2

)
. (26)

We claim that a similar formula holds for μ̃, i.e.,

μ̃(S′) − 1

2
= 1

3

(
μ̃(S) − 1

2

)
. (27)

Indeed, let T ⊂ S be a subcomplex. Then its subdivision T ′ (defined as explained
above) is a subcomplex of S′, and the numbers μ(T ) and μ(T ′) are related by (26).
We show below that

μ̃(S′) = min
T ⊂S

μ(T ′). (28)

Clearly, (28) implies

μ̃(S′) = min
T ⊂S

[
1

3

(
μ(T ) − 1

2

)
+ 1

2

]
= 1

3

(
μ̃(S) − 1

2

)
+ 1

2

which is equivalent to (27).
To prove the formula (28) consider a subcomplex R ⊂ S′. Each 2-simplex σ of S

determines three 2-simplexes of S′ which we denote by σ1, σ2, σ3. We want to show
that we may replace R by a subcomplex R1 ⊂ S′ such that μ(R1) ≤ μ(R) and either
R1 contains all simplexes σ1, σ2, σ3 or it contains none of them.

Suppose that R contains σ1 and σ2 but does not contain σ3. Then R1 = R ∪σ3 has
the same number of vertices and a greater number of faces, i.e., μ(R1) < μ(R).

Suppose now that R contains only one simplex among the σi ’s; assume that, say,
σ1 ⊂ R and σ2 �⊂ R and σ3 �⊂ R. (A) If μ(R) ≥ 1/2, define R1 by R1 = R ∪ σ2 ∪ σ3.
Then μ(R1) ≤ μ(R). (B) If μ(R) ≤ 1 define R1 as R with σ1 removed; then μ(R1) ≤
μ(R). Clearly at least one of the cases (A) or (B) holds and we proceed by induction,
repeating this procedure with respect to all 2-simplexes σ ⊂ S. Thus we see that the
minimum in

μ̃(S′) = min
R⊂S′ μ(R)

is achieved on subcomplexes R ⊂ S′ which have the form R = T ′ for some T ⊂ S.
This completes the proof of (27).

For r = 0,1,2, . . . denote by Sr the simplicial 2-complex which is obtained from
S by r consecutive subdivisions as above. Then from (27) we obtain
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Fig. 5 Complex X (left) and its
subdivision Yk (right)

μ̃(Sr) − 1

2
= 1

3r

(
μ̃(S) − 1

2

)
. (29)

We see that this sequence approaches 1/2 as r → ∞. It follows that, given ε > 0, for
all sufficiently large r we have

μ̃(Sr) ≥ 1/2 − ε.

Thus, the assumption p � n−1/2+ε implies p � n−μ̃(Sr ), and now we may apply
Theorem 15 to conclude that the r-th subdivision Sr simplicially embeds into Y ,
a.a.s. Hence we see that S topologically embeds into Y , a.a.s. �

Remark 35 The result of Theorem 3 cannot be improved (without adding extra hy-
potheses) despite a special type of subdivision used in the proof. Indeed, one sees
from formulae (8) and (9) and Theorem 27 that for a closed orientable surface Σg of
genus g ≥ 1 one has μ̃(Σg) → 1/2 as the number of 2-simplexes f goes to infinity.
A similar conclusion is valid for nonorientable surfaces Ng with g ≥ 2.

Remark 36 Consider the following invariant sign(X) ∈ {+1,−1,0} of a simplicial
2-complex:

sign(X) = sign

(
μ̃(X) − 1

2

)
.

Formula (26) seems to suggest that it is topologically invariant. However in (26)
we used a special type of subdivision. The following example shows that in general
sign(X) is not topologically invariant. Consider the 2-complex X shown on Fig. 5
(left), which is the union of three triangles having a common edge. Let Yk be obtained
by adding k new vertices along the common edge and connecting them to the remain-
ing vertices; see Fig. 5 (right). One has μ̃(X) = 5/3 and therefore sign(X) = +1.
However,

μ̃(Yk) ≤ μ(Yk) = k + 5

3k + 3
.

Thus, for k > 7, one has μ̃(Yk) < 1/2 and sign(Yk) = −1.

9 Collapsibility in a Given Number of Steps

In this section we prove Theorem 46, which gives necessary and sufficient conditions
for a 2-complex to be collapsible to a graph in a prescribed number of steps.
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9.1 Preparation

Let Y be a 2-complex, and consider the sequence of collapses

Y (0) ↘ Y (1) ↘ Y (2) ↘ · · · ↘ Y (k) ↘ · · · .
For a 2-simplex σ ∈ Y define

DY (σ) = sup
{
i; σ ⊂ Y (i)

} ∈ {0,1, . . . ,∞}.
A 2-simplex σ is free if and only if DY (σ) = 0.

A 2-complex Y is collapsible to a graph in at most k + 1 steps if and only if
DY (σ) ≤ k for any 2-simplex σ . If after performing several collapses Y (0) ↘ Y (1) ↘
Y (2) ↘ · · · we obtain a subcomplex Y (r) ⊂ Y with empty boundary ∂Y (r) = ∅, then
Y (r) = Y (r+1) = Y (r+2) = · · · and DY (σ) = ∞ for any simplex σ in Y (r).

Lemma 37 Let σ be a 2-simplex with DY (σ) = k where 0 < k < ∞. Then one of the
edges e of σ has the following property: for any 2-simplex σ ′ of Y which is incident
to e and distinct from σ one has DY (σ ′) < k and there exists a 2-simplex σ ′ incident
to e and distinct from σ such that DY (σ ′) = k − 1.

Proof Since DY (σ) = k, we know that after k collapses an edge e of σ becomes
free. All other simplexes σ ′ of Y incident to e must have been eliminated in previous
steps, i.e., they satisfy DY (σ ′) < k. At least one of these simplexes σ ′ must have been
eliminated in step k − 1 since otherwise σ would have become free earlier. �

Lemma 38 If Z ⊂ Y is a subcomplex and σ ⊂ Z is a 2-simplex, then

DZ(σ) ≤ DY (σ).

Proof If a 2-simplex belongs to Z and is not free in Z, then it is not free in Y . This
implies that Z′ ⊂ Y ′ and therefore Z(i) ⊂ Y (i) for any i ≥ 1. Thus, the maximal i

such that σ is contained in Z(i) is less than or equal to the maximal i such that σ is
contained in Y , which implies the statement of the lemma. �

9.2 σ -Accessible Boundary

Definition 39 Let Y be a 2-complex and let σ, τ be two 2-simplexes of Y with
DY (τ) = 0 and DY (σ) = k ≥ 1. A collapsing path from τ to σ is a sequence of
2-simplexes τ = σ0, σ1, . . . , σk−1, σk = σ such that DY (σi) = i and each pair σi and
σi+1 has a common edge, where i = 0, . . . , k − 1.

In a collapsing path, the initial simplex σ0 = τ is a free simplex, and hence at least
one of its edges belongs to the boundary ∂Y .

Definition 40 Given a 2-simplex σ , we denote by AY (σ) ⊂ ∂Y the union of the
edges in σ0 ∩ ∂Y which can appear in a collapsing path σ0, σ1, . . . , σk ending at σ .
We call AY (σ) the σ -accessible part of the boundary.
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In Definition 40, clearly k = DY (σ). Note that AY (σ) �= ∅ if and only if
DY (σ) < ∞.

Definition 41 Let σ be a 2-simplex of Y with DY (σ) ≥ 1. For an edge e of σ define

AY (σ, e) ⊂ AY (σ)

as the set of all edges e′ of the boundary ∂Y with the property that there exists a
collapsing path σ0, σ1, . . . , σk = σ such that e′ is an edge of σ0 and e = σk−1 ∩ σk .

If e1, e2, e3 are the edges of σ , then AY (σ) = ⋃3
i=1 AY (σ, ei) and the sets

AY (σ, ei) need not be mutually disjoint.

Lemma 42 Let σ and σ ′ be adjacent 2-simplexes of Z with

DZ(σ) = DZ(σ ′) + 1.

Assume that any collapsing path in Z ending at σ passes through the edge e = σ ∩σ ′.
If Z is embedded as a subcomplex Z ⊂ Y and

DZ(σ ′) < DY (σ ′),
then

DZ(σ) < DY (σ).

Proof Let k = DZ(σ ′) = DZ(σ) − 1. We must show that DY (σ) ≥ k + 2. First we
claim that the edge e may become free only after at least k+2 collapses in Y . Assume
it is free in Y after k +1 collapses. By assumption, DY (σ ′) ≥ k +1. Hence the edge e

can only be free after k + 1 collapses in Y if σ has already been removed before, i.e.,
DY (σ) ≤ k. On the other hand, by Lemma 38, DY (σ) ≥ DZ(σ) = k +1, which leads
to a contradiction.

By assumption, the two edges of σ different from e are not free in Z(k+1) and
hence they are not free in Y (k+1). Thus DY (σ) ≥ k + 2 as claimed. �

Note that the assumption of Lemma 42 that any collapsing path in Z ending at σ

passes through the edge e is equivalent to AZ(σ, e′) = ∅ for the two remaining edges
e′ �= e of σ .

Lemma 43 Let Z ⊂ Y be a subcomplex. If DZ(σ) = DY (σ) for a 2-simplex σ of Z,
then there is an edge e of σ such that

∅ �= AZ(σ, e) ⊂ AY (σ, e) ⊂ ∂Y.

Proof Without loss of generality, we may assume that Y is obtained from Z by at-
taching a single 2-simplex.

The proof is by induction on k = DY (σ) = DZ(σ).
In the case k = 0, there is an edge e of σ that is free in both Z and Y . In particular,

e ⊂ ∂Y .
We include the case k = 1. Recall that Z′ = Z(1) denotes the result of the first

collapse of Z, Z ↘ Z′. Since DZ(σ) = DY (σ) = 1, there is an edge e of σ that is
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Fig. 6 Surfaces L1,2

free in Y ′ and hence in Z′. Then every collapsing path τ, σ in Z with e = τ ∩ σ is
also a collapsing path in Y . Hence AZ(σ, e) ⊂ AY (σ, e).

For the general case, assume that DY (σ) = DZ(σ) = k. After k collapses

Z ↘ Z(1) ↘ · · · ↘ Z(k), Y ↘ Y (1) ↘ · · · ↘ Y (k),

the 2-simplex σ is exposed in both Z(k) and Y (k). Thus, σ has a free edge e in Y (k)

(and hence in Z(k) as well). Writing Z′ = Z(1) and Y ′ = Y (1), by induction, we have
∅ �= AZ′(σ, e) ⊂ AY ′(σ, e) so that any collapsing path σ1, . . . , σk from σ1 = σ ′ ⊂
AZ′(σ, e) to σk = σ in Z′ is also a collapsing path in Y ′. Note in particular that every
edge of σ ′ that is free in Z′ is also free in Y ′. Consequently, for every free triangle τ

in Z which meets σ ′ in an edge free in Z′, the collapsing path τ = σ0, σ1, . . . , σk in
Z is a collapsing path in Y . The result follows. �

Corollary 44 Let Z ⊂ Y be 2-complexes such that for a 2-simplex σ of Z none of
the edges e ∈ AZ(σ) ⊂ ∂Z is free in Y . Then

DZ(σ) + 1 ≤ DY (σ).

Proof For a contradiction, assume that DY (σ) ≤ DZ(σ). Then DY (σ) = DZ(σ) by
Lemma 38. We may now apply Lemma 43, which claims that there is an edge e of
σ for which ∅ �= AZ(σ, e) ⊂ AY (σ, e) ⊂ ∂Y . This contradicts our assumption that no
edge in AZ(σ) lies on the boundary ∂Y . �

9.3 The List of Forbidden r-Pseudo-surfaces Lk,r

For a pair of integers k = 0,1, . . . , and r = 2,3, . . . we denote by Lk,r the set of all
isomorphism types of r-pseudo-surfaces S with the following properties:

(a) Each S ∈ Lk,r has a specified 2-simplex σ∗ (called the center).
(b) If ∂S �= ∅ then DS(σ∗) = k.
(c) dS(σ∗, σ ) ≤ k for any 2-simplex σ .

Note that L0,r = {S} consists of a single complex S = σ∗ (the triangle).
The set L1,2 consists of the three surfaces shown on Fig. 6. Each of the surfaces

a, b, c is a union of 4 triangles. The surface c is a tetrahedron, b is a tetrahedron with
one face open, and surface a is a fully flattened tetrahedron.

It is clear that Lk,r is finite and Lk,r ⊂ Lk,r+1.
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Fig. 7 Surfaces Sk ∈ Lk,2

Example 45 Consider the following important family of surfaces Sk ∈ Lk,2 where
k = 0,1,2, . . .. The first surface S0 is defined as a single triangle S0 = σ∗. The next
surface S1 is the one shown on Fig. 6a. Surfaces S2 and S3 are shown on Fig. 7. In
general, the surface Sk is obtained from Sk−1 by adding a triangle to every edge of the
boundary ∂Sk−1. It is clear that for the central triangle σ∗ of Sk , one has DSk

(σ∗) = k.
Thus Sk is not collapsible to a graph in k steps, but is collapsible in k + 1 steps.

It is interesting to note that the surfaces Sk are “extra-special” triangulations of
the disk in the sense of Papadima–Suciu [18], where they are studied for completely
different reasons.

The following pure topological theorem plays a key role in the rest of this paper.

Theorem 46 A 2-complex Y of degree at most r ≥ 2 is not collapsible to a graph in
k steps, where k = 0,1,2, . . . , if and only if there is a surface S ∈ Lk,r which admits
a simplicial embedding S → Y .

In the proof, we will use the following statement.

Lemma 47 Let Y be a finite two-dimensional simplicial complex of degree at most
r and let σ be a 2-simplex in Y with DY (σ) = k, where k = 0,1,2, . . . . Then there
exists a surface S ∈ Lk,r and a simplicial embedding S → Y such that the central
simplex σ∗ of S is mapped onto σ .

Proof of Lemma 47 We will use induction on k = DY (σ). For k = 0, the statement
is obvious. Assume that it is true for all cases with DY (σ) < k, and consider the
situation when DY (σ) = k > 0. If Y ↘ Y ′ is the first collapse, then σ ⊂ Y ′ and
clearly

DY ′(σ ) = k − 1

and Y ′ has degree at most r . By the inductive hypothesis, there exists S′ ∈ Lk−1,r and
a simplicial embedding S′ → Y ′, mapping the central simplex of S′ onto σ .

For each edge e lying in AS′(σ ) choose a 2-simplex σe ⊂ Y as follows. If e ⊂ ∂Y ′,
let σe be any free triangle in Y containing e. If e �⊂ ∂Y ′, let σe be any triangle in Y ′
containing e which is not in S′; such σe exists since e �⊂ ∂Y ′.

Next we define a subcomplex S ⊂ Y as the union

S = S′ ∪
⋃

e

σe ⊂ Y,
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where e runs over the edges in AS′(σ ). Note that S is finite, pure, and strongly con-
nected since S′ is an r-pseudo-surface. Moreover, the degree of S is at most r since it
is a subcomplex of Y . One has DS(σ) ≥ k by Corollary 44. More precisely, we obtain
that DS(σ) = k by Lemma 38. Finally, we observe that obviously dS(σ,σ ′) ≤ k for
any 2-simplex σ ′ of S. Thus, S ∈ Lk,r . �

Proof of Theorem 46 Consider the sequence of successive collapses

Y ↘ Y (1) ↘ Y (2) ↘ Y (3) ↘ · · · .
We assume that Y is not collapsible to a graph in k steps, which implies that there are
two possibilities: either (a) Y (i) �= Y (i+1) for any i < k; or (b) for some i < k, one has
∂Y (i) = ∅.

In case (a), the complex Y contains a 2-simplex with DY (σ) = k and Lemma 47
gives us an embedding of an r-pseudo-surface S ∈ Lk,r into Y .

In case (b), we have ∂Y (i) = ∅ for some i < k. Fix a 2-simplex σ∗ ∈ Y (i) and con-
sider distances dY (i) (σ∗, σ ) to various 2-simplexes σ of Y (i). If all these distances are
less than or equal to k, then Y (i) belongs to Lk,r and we are done. If there are sim-
plexes σ such that dY (i) (σ∗, σ ) > k, then consider the subcomplex Z ⊂ Y (i) defined
as the union of all σ with dY (i) (σ∗, σ ) ≤ k.

Clearly Z is not collapsible to a graph in k steps. Therefore, in the sequence of
collapses Z ↘ Z(1) ↘ Z(2) ↘ Z(3) ↘ · · ·, we again have either case (a) or (b) as
above. In case (a), we apply Lemma 47; and in case (b), we obtain a subcomplex
S ⊂ Z with ∂S = ∅ such that d(σ∗, σ ) ≤ k for any σ ⊂ S. We have S ∈ Lk,r in either
case, completing the proof. �

10 Collapsibility of a Random 2-Complex to a Graph in a Prescribed Number
of Steps

10.1 The Degree Sequence

Recall that the degree of an edge e in a 2-complex is defined as the number
of 2-simplexes which contain e. The degree of an edge in a random 2-complex
Y ∈ G(Δ

(2)
n ,p) is an integer in the set {0,1, . . . , n − 2}.

Let Xk : G(Δ
(2)
n ,p) → Z be the random variable counting the number of edges

of degree k in a random 2-complex, where k = 0,1,2, . . . , n − 2. A straightforward
calculation reveals that

E(Xk) =
(

n

2

)(
n − 2

k

)
pk(1 − p)n−2−k.

The expectation of the number of edges of degree at least r in a random 2-complex is

n−2∑

k=r

E(Xk) ≤ n2
n−2∑

k=r

(pn)k ≤ n2(pn)r

1 − pn
. (30)
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Corollary 48 The probability that a random 2-complex Y ∈ G(Δ
(2)
n ,p) has an edge

of degree at least r is less than or equal to

n2+rpr

1 − pn
.

Thus, if

p � n−1− 2
r ,

then a random 2-complex Y ∈ G(Δ
(2)
n ,p) has no edges of degree r or greater, a.a.s.

Proof This follows from inequality (30) by applying the first moment method; see,
for instance, [13]. �

Next, we examine the μ̃ invariants of 2-complexes S ∈ Lk,r .

10.2 The Threshold for k-Collapsibility

Definition 49 Let μ̃k,r denote the largest possible value of the invariant μ̃(S) for S

a forbidden r-pseudo-surface,

μ̃k,r = max
S∈Lk,r

μ̃(S) ∈ Q.

For instance, examining the surfaces shown on Fig. 6 reveals that μ̃1,2 = 3/2.

Theorem 50 Consider a random 2-complex Y ∈ G(Δ
(2)
n ,p).

(a) If for some r ≥ 2 and k ≥ 1, one has

p � n−1− 2
r+1 and p � n−μ̃k,r ,

then Y is collapsible to a graph in at most k steps, a.a.s.
(b) If for some r ≥ 2 and k ≥ 1, one has p � n−μ̃k,r , then Y is not collapsible to a

graph in k or fewer steps, a.a.s.

Proof By Corollary 48, if p � n−1− 2
r+1 , then a random 2-complex Y ∈ G(Δ

(2)
n ,p)

has degree at most r , a.a.s. Next, we apply Theorem 46 and examine the embeddabil-
ity of complexes S ∈ Lk,r into Y . By Theorem 15(A), if p � n−μ̃(S), then S does
not embed into Y , a.a.s. Since μ̃k,r ≥ μ̃(S), we see that the assumption p � n−μ̃k,r

implies that no S ∈ Lk,r can be embedded into Y , a.a.s. Thus, by Theorem 46, we see
that Y is collapsible to a graph in k or fewer steps. This proves part (a).

To prove part (b), we apply Theorem 15(B) to conclude that if p � n−μ̃k,r , then
there exists S ∈ Lk,r which is embeddable into Y , a.a.s. This implies that Y is not
collapsible to a graph in at most k steps, a.a.s. �

Lemma 51 If S ∈ Lk,r for some k ≥ 0, r ≥ 2 then one has

μ̃(S) ≤ 1 + 2

k + 1
. (31)
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Proof If S is closed the result follows from Lemma 34. Assume now that ∂S �= ∅.
Let σ∗ be the central simplex of S and let σ0, σ1, . . . , σk = σ∗ be a collapsing path
leading to σ∗. Here DS(σi) = i and σi ∩ σi+1 is an edge; see Definition 40. Then the
union S′ = ⋃k

i=0 σi is a subcomplex having exactly k + 1 faces and at most k + 3
vertices. Thus,

μ(S′) ≤ k + 3

k + 1
= 1 + 2

k + 1
,

establishing (31). �

Example 52 Consider the surface Sk ∈ Lk,2 introduced in Example 45. Note that
Sk ∈ Lk,r for any r ≥ 2. The numbers of vertices vk and faces fk of Sk satisfy the
recurrence relations

vk = 2 · vk−1 and fk = vk−1 + fk−1. (32)

Indeed, viewing Sk−1 as a subcomplex of Sk , we see that all vertices of Sk−1 lie on the
boundary, and each edge of the boundary of Sk−1 adds a vertex to Sk . This explains
the first equation. For the second, note that the number of new triangles in Sk is equal
to the number of edges on ∂Sk−1.

Since v0 = 3 and f0 = 1, solving the recurrence relations (32) yields

vk = 3 · 2k and fk = 3 · 2k − 2.

Consequently,

μ(Sk) = 1 + 1

3 · 2k−1 − 1
.

Lemma 53 The surface Sk is balanced, and hence

μ̃(Sk) = μ(Sk) = 1 + 1

3 · 2k−1 − 1
.

Proof Let S be a pure subcomplex of Sk with v = v(S) vertices and f = f (S) faces.
Write v = vk − m and f = fk − n, where vk and fk are as above and m and n

are the number of vertices and faces which are in Sk , but not in S. We claim that
m = vk − v ≤ fk − f = n. This assertion is established by induction.

The case k = 0 is trivial. So assume inductively that for any i < k and S′ ⊂ Si a
pure subcomplex, we have v(Si) − v(S′) ≤ f (Si) − f (S′).

For a pure subcomplex S ⊂ Sk as above, let S′ be the pure part of S ∩ Sk−1. Then,
m = m′ + m′′ and n = n′ + n′′, where v(S′) = vk−1 − m′, f (S′) = fk−1 − n′, m′′ is
the number of vertices in Sk �Sk−1 which are not in S, and n′′ is the number of faces
in Sk � Sk−1 which are not in S.

We have m′ ≤ n′ by induction. Observe that the vertices of Sk � Sk−1 are in one-
to-one correspondence with the faces of Sk � Sk−1. If such a vertex is not in S,
then the corresponding face cannot be in S either. Consequently, m′′ = n′′, and m =
m′ + m′′ ≤ n′ + n′′ = n, completing the proof of the claim.

It follows immediately that μ(S) ≥ μ(Sk) = μk . Indeed,

v

f
− vk

fk

= vk − m

fk − n
− vk

fk

= nvk − mfk

fk(fk − n)
= μkn − m

fk − n
≥ n − m

fk − n
≥ 0.
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Thus, Sk is balanced. �

From Lemmas 51 and 53 we obtain the following.

Corollary 54 For any r ≥ 2 and k ≥ 0, one has the following inequalities:

1 + 1

3 · 2k−1 − 1
≤ μ̃k,r ≤ 1 + 2

k + 1
.

Note that the obtained upper and lower bounds for μ̃k,r are independent of r .
We believe that μ̃k,r = 1 + 1/(3 · 2k−1 − 1).

Proof of Theorem 2 Theorem 2 stated in the Introduction is now an immediate con-
sequence of Theorem 50 and Corollary 54, as we explain below.

(a) Assume that p � n−1−2/(k+1) for some k ≥ 1. According to Corollary 54, μ̃k,r ≤
1 + 2/(k + 1). Choosing r = max(2, k), it then follows from Theorem 50(a) that
Y ∈ G(Δ

(2)
n ,p) is collapsible to a graph in at most k steps, a.a.s.

(b) Assume that p � n−1−1/(3·2k−1−1) for some k ≥ 1. Then by Theorem 15 and
Lemma 53 the surface Sk (see Example 45) embeds into Y , a.a.s. Since Sk cannot
be collapsed to a graph in k or fewer steps, we obtain that Y is not collapsible to
a graph in k or fewer steps.
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