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Abstract

Let M be either S2
× S2 or the one point blow-up CP 2# CP 2 of CP 2. In both

cases M carries a family of symplectic forms ωλ, where λ > −1 determines the co-
homology class [ωλ]. This paper calculates the rational (co)homology of the group
Gλ of symplectomorphisms of (M, ωλ) as well as the rational homotopy type of its
classifying space BGλ. It turns out that each group Gλ contains a finite collection
Kk, k = 0, . . . , ` = `(λ), of finite dimensional Lie subgroups that generate its homo-
topy. We show that these subgroups “asymptotically commute”, i.e. all the higher
Whitehead products that they generate vanish as λ → ∞. However, for each fixed λ

there is essentially one nonvanishing product that gives rise to a “jumping generator”
wλ in H∗(Gλ) and to a single relation in the rational cohomology ring H∗(BGλ). An
analog of this generator wλ was also seen by Kronheimer in his study of families of
symplectic forms on 4-manifolds using Seiberg–Witten theory. Our methods involve a
close study of the space of ωλ-compatible almost complex structures on M .

1 Introduction

Rational ruled surfaces occur as projectivizations P(Lk ⊕ C), where Lk is a complex line
bundle over S2 with first Chern class k. There are two cases to consider, firstly (k is even)
when the underlying manifold is diffeomorphic to the product S2×S2 and secondly (k odd)
when it is diffeomorphic to CP 2# CP 2, the one point blow up of CP 2. Work of Taubes,
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Liu–Li and Lalonde–McDuff (for detailed references see [10]) implies that every symplectic
form on one of these manifolds is “standard”, i.e. it belongs to one of the two following
families:

M0
λ = (S2 × S2, ω0

λ = (1 + λ)σ0 × σ0), 0 ≤ λ ∈ R,

where σ0 is an area form on S2 with total area 1, and

M1
λ = (CP 2# CP 2, ω1

λ), −1 < λ ∈ R,

where ω1
λ takes the value 2 + λ on the class of the line and 1 + λ on the exceptional divisor.

More explicitly, ω1
λ can be obtained by collapsing the bounding spheres of the annulus

{z ∈ C2 : λ+ 1 ≤ π|z2| ≤ λ+ 2}

along their null foliations by Hopf circles. We will denote the corresponding groups of
symplectomorphisms by Gi

λ, i = 0, 1.
As was first observed by Gromov [7], the topological type of Gi

λ changes as λ increases.
He showed that the identity component of the group

G0
0 = Symp(S2 × S2, σ0 × σ0)

deformation retracts to the Lie group SO(3)×SO(3), and that the full group is an extension
of this Lie group by {±1}, where −1 acts by permuting the factors. He also pointed out
that as soon as λ gets bigger than zero, G0

λ becomes connected and a new element of infinite
order appears in its fundamental group. The key idea in his proof was to look at the action
of G0

λ on the contractible space J 0
λ of ω0

λ-compatible almost complex structures.
By exploiting this idea further, the first author [1] calculated the rational cohomology

ring of G0
λ for λ in the range 0 < λ ≤ 1. The first main result of the present paper is

the completion of this calculation for arbitrary λ. Recall that the rational cohomology ring
H∗(G) of a topological group G is a free graded ring. We denote by Λ(x1, . . . , x`) the
exterior algebra over Q on generators xj of odd degree and by S(w1, . . . , w`) the polynomial
algebra on even generators wj .

Theorem 1.1 When λ > 0 the group G0
λ is path-connected, and has fundamental group

Z⊕ Z/2Z⊕ Z/2Z. Moreover if 0 ≤ `− 1 < λ ≤ ` for some ` ∈ N,

H∗(G0
λ; Q) = Λ(a, x, y)⊗ S(w`),

where deg a = 1, degx = deg y = 3 and degw` = 4`.

Thus the cohomology remains stable as λ varies within an interval of the form (`− 1, `]
but jumps as λ moves past the endpoint `. The proof is simply a more elaborate version of
the calculation in [1]. It is based on the fact that the space J 0

λ has a natural stratification
by sets U0

j , each of which is homotopy equivalent to a homogeneous space of the group

G0
λ. More precisely, the stratum U 0

k contains the Hirzebruch integrable complex structure
J2k with a holomorphic sphere of self-intersection −2k, and it is (weakly) homotopic to
the quotient G0

λ/Aut(J2k), where Aut(J2k) denotes the stabilizer of J2k: see §2. This
gives rise to a family of Mayer–Vietoris sequences which can be completely analyzed: see
Proposition 3.15.
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It is easiest to understand what is happening if we consider homotopy, rather than
cohomology. We define K0

k to be the identity component of Aut(J2k). Thus K0
0 is the

subgroup SO(3) × SO(3) mentioned above, while, for k > 0, we will see in §2 that K0
k is

isomorphic to S1 × SO(3). In this setting, the generators ξ, η ∈ π3(Gλ) dual to x, y come
from the inclusion of K0

0 into G0
λ. As λ increases above 0 a new 1-dimensional generator

α appears that lies in π1(K
0
1 ). It does not commute with ξ, and so a new auxiliary class

ζ1 also appears that is represented in homotopy by the Samelson product [α, ξ].1 As λ
increases past 1, one can find representatives of α and ξ that both lie in K0

2 . Since they
commute, the Samelson product [α, ξ] vanishes. Hence there is a 5-disk that bounds ζ1,
and the new 8-dimensional generator ζ2 is a higher product made from this new disk and ξ.
It is shown in [3] that such higher products in the group G are the desuspension of higher
Whitehead products in BG and hence give rise to relations in the rational cohomology ring
of the classifying space BG. By pursuing this argument, we prove the following result in §6.

Theorem 1.2 If 0 ≤ `− 1 < λ ≤ ` for some ` ∈ N, then

H∗(BG0
λ; Q) = S(A,X, Y )/{A(X − Y )(4X − Y ) . . . (`2X − Y ) = 0},

where degA = 2, degX = degY = 4.

A phenomenon similar to the existence of these “jumping” generators w` amd ζ` was also
discovered by Kronheimer [9] in the guise of some nontrivial families of symplectic forms,
detected using properties of Seiberg–Witten invariants. The relation of our work to his is
explained in §5. Kronheimer’s paper was in turn motivated by work of Seidel [17] showing
that “many” symplectic 4-manifolds admit symplectic diffeomorphisms which are differen-
tiably isotopic to the identity but not symplectically isotopic. Of course, Theorems 1.1
and 1.4 show that this type of phenomenon does not happen on S2 × S2 or CP 2# CP 2.

Another interesting question concerns the behavior of the groups G0
λ as λ → ∞. Since

there is no obvious map G0
λ → G0

µ when λ < µ it is not quite clear how to interpret this
limit. In §4 we show that it can be defined as a bundle of groups

G0
∞ =

⋃

λ>0

{(φ, λ) : φ ∈ G0
λ} ⊂ Diff(S2 × S2)× R+.

One can think of G0
∞ as a topological category (or groupoid) with R+ as space of objects

and where the set of morphisms from λ to µ is empty unless λ = µ, in which case it equals
G0

λ. We prove the following result.

Proposition 1.3 G0
∞ is homotopy equivalent to the group

SO(3)×Map(S2, SO(3)),

where Map denotes the space of unbased smooth maps.

1This is given by the map S4 = S1 × S3/S1 ∨ S3 → Gλ induced by the commutator

S1 × S3 → Gλ : (s, u) 7→ α(s)ξ(u)α(s)−1ξ(u)−1.

It is well known to be the desuspension of the Whitehead product on π∗(BG): see [18].
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Thus G0
∞ is homotopy equivalent to the group D of all diffeomorphisms of S2 ×S2 that

commute with the projection pr to the first (i.e. the larger) factor. In other words, in
the limit the only remaining structure is that of the fibration pr : S2 × S2 → S2. Note
that in this limit we allowed the size of the larger sphere to increase without bound, while
the smaller sphere has area fixed at 1. Sometimes it is convenient to reparametrize this,
fixing the area of the larger sphere at 1 and allowing the size of the smaller sphere to go to
zero. (This is the kind of adiabatic limit considered by Salamon in [16] for example.) In
this case it is natural to interpret D as the group of all diffeomorphisms of S2 × S2 that
preserve the limiting (degenerate) form pr∗(σ). Since the group of symplectomorphisms
does not change when the symplectic form is multiplied by a constant, these different ways
of taking the limit yield the same result. Observe also that an analogous result holds for
the symplectomorphism groups of any ruled surface: see Remark 4.7.

There is a completely analogous story for the groups G1
λ of symplectomorphisms of

CP 2# CP 2. In this case Gromov’s methods show that G1
λ deformation retracts onto the

unitary group U(2) when −1 < λ ≤ 0, and our arguments again show that its cohomology
jumps as λ passes each integer. This time, however, there already are generators a, x of
degrees 1 and 3 in the cohomology of U(2) and the new persistent generator y that appears
has degree 3, while the “jumping generator” has degree 6, 10, . . . and so on.

Theorem 1.4 For all λ > −1 the group G1
λ is path-connected, and has fundamental group

Z. Moreover if 0 ≤ `− 1 < λ ≤ ` for some ` ∈ N,

H∗(G1
λ; Q) = Λ(a, x, y)⊗ S(w`),

where deg a = 1, degx = deg y = 3 and degw` = 4`+ 2.

Theorem 1.5 If 0 ≤ `− 1 < λ ≤ ` for some ` ∈ N, then

H∗(BG1
λ; Q) = S(A,X, Y )/{(X − Y )(4X − Y ) . . . ((`+ 1)2X − Y ) = 0},

where degA = 2, degX = degY = 4.

Some of these results can be extended to ruled surfaces over arbitrary bases: see [13].
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2 The stratification of J i
λ and the groups K i

k

In this section we define the stratification of the space J i
λ of ωi

λ-compatible almost complex
structures and establish its basic properties. Each stratum is homotopy equivalent to a
homogeneous space Gi

λ/K
i
k, where the subgroups Ki

k are finite dimensional Lie groups. In
§2.5 we work out the relations between these groups K i

k.

2.1 Structure of J-holomorphic spheres on M i
λ

We first consider M0
λ = (S2×S2, ω0

λ). In this case we always take ` to be the positive integer
such that

`− 1 < λ ≤ `.

Further, E0 denotes the homology class of S2 × {pt}, F denotes the fiber class {pt} × S2,
and we define E2k = E0 − kF for k = 0, 1, 2, . . .. General background information about
J-holomorphic spheres can be found in [1, 10, 14, 15].

Let J0 = j0 ⊕ j0 ∈ J 0
λ be the standard split compatible complex structure. For J0,

the classes E0 and F are both represented by 2-parameter families of holomorphic spheres
given respectively by S2 × {s} and {s} × S2, for any s ∈ S2. Moreover, by positivity of
intersections no class E2k with k > 0 can be represented by a J0-holomorphic curve. More
generally, we have:

Proposition 2.1 (i) For any J ∈ J 0
λ , the fiber class F is represented by a 2-parameter

family of embedded J-holomorphic spheres that form the fibers of a fibration S2×S2 →
S2. If λ = 0 the same is true for E0.

(ii) For each k, 0 ≤ k ≤ `, the class E2k is represented by a J-holomorphic sphere for some
J ∈ J 0

λ .

(iii) Conversely, for each J ∈ J 0
λ , there is an integer 0 ≤ k ≤ ` such that the class E2k has

a J-holomorphic representative. When k > 0 this sphere is unique and no other class
E2j with 0 ≤ j, j 6= k, has such a representative.

Proof: The first statement is a well-known and standard result in the theory of J-
holomorphic curves: see e.g. [10]. To prove (ii), first note that if 0 ≤ k ≤ `, then

ω0
λ(E2k) = 1 + λ− k > 0,
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which is a necessary condition for E2k = E0 − kF to have a holomorphic representative for
some J ∈ J 0

λ . We show that it does in §2.3 by an explicit construction.
The third statement follows from the compactness theorem for J-holomorphic curves.

Since J 0
λ is connected there is a path Jt, t ∈ [0, 1] connecting the standard split structure J0

to any given J = J1. For a generic path, the class E0 will be represented for all Jt, t < 1, and
will degenerate at t = 1 into some cusp-curve that has to contain a component in some class
E2k. Next recall that the principle of positivity of intersections says that each intersection
point of two distinct J-holomorphic curves in a 4-manifold contributes positively to their
intersection number. This implies that the intersection number A · B of any two different
classes A,B with J-holomorphic representatives must be ≥ 0. Since

E2k · E2j = (E0 − kF ) · (E0 − jF ) = −k − j,

the uniqueness and nonexistence statements in (iii) follow immediately. QED

Consider now M1
λ = (CP 2# CP 2, ω1

λ), with −1 < λ ∈ R, described in §1. Recall that E1

denotes the exceptional divisor, with self-intersection −1, and F is used again to denote the
fiber of the fibration CP 2# CP 2 → S2, having self-intersection 0. Moreover, the symplectic
form ω1

λ is such that
ω1

λ(F ) = 1 and ω1
λ(E1) = λ+ 1 .

In this case also we define the integer ` by the condition

`− 1 < λ ≤ `.

We further define E2k+1 by E2k+1 = E1 − kF for k = 0, 1, 2, . . . . Thus, again, the self-
intersection number of E2k+1 is 2k + 1.

Let J1 ∈ J 1
λ be the standard compatible complex structure on CP 2# CP 2. For J1, the

class F is represented by a 2-parameter family of holomorphic spheres given by the fibers
of the holomorphic fibration CP 2# CP 2 → S2, and the class E1 is represented by a unique
holomorphic sphere given by the exceptional divisor. Here is the analog of Proposition 2.1.
The proof is similar and is left to the reader.

Proposition 2.2 (i) For any J ∈ J 1
λ , the fiber F is represented by a 2-parameter family

of embedded J-holomorphic spheres that fiber CP 2# CP 2. If ` = 0, E1 is represented
by a unique embedded J-holomorphic sphere for any J ∈ J 1

λ .

(ii) For each k, 0 ≤ k ≤ `, the class E2k+1 is represented by a J-holomorphic sphere for
some J ∈ J 1

λ .

(iii) Conversely, for each J ∈ J 1
λ , there is an integer k ≤ ` such that the class E2k+1 has

a J-holomorphic representative. This sphere is unique and no other class E2j+1 with
0 ≤ j, j 6= k, has such a representative.

2.2 The strata of J i
λ

As always we fix ` ∈ N and assume that ` − 1 < λ ≤ `. For each 0 ≤ k ≤ ` and i = 0, 1,
define U i

k ⊂ J i
λ as the set of all ωi

λ-compatible almost complex structures for which the
class Ei − kF = E2k+i is represented by a pseudo-holomorphic sphere. A consequence of
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Propositions 2.1 and 2.2 is that the U i
k’s are disjoint subsets of J i

λ for i = 0, 1. Throughout
we work with C∞-maps and almost complex structures, and so by manifold we mean a
Fréchet manifold.

Proposition 2.3 Let i = 0 or 1. Then U i
0 is an open dense subset of J i

λ, and each U i
k,

1 ≤ k ≤ `, is a non-empty submanifold of J i
λ of codimension 4k− 2 if i = 0 and 4k if i = 1.

Its closure is given by

U
i

k = U i
k ∪ U

i
k+1 ∪ · · · ∪ U

i
` .

In particular,

J i
λ = U

i

0 = U i
0 ∪ U

i
1 ∪ · · · ∪ U

i
` .

Proof: This is a relatively easy result whose proof is analogous to the proof of Theorem
1.8 in [1]. See also §4.1 in [12]. QED

For the algebraic computations in §3, we need more information regarding the way the
U i

k’s fit together to give the contractible space J i
λ. Define U i

01...k for 0 ≤ k ≤ ` by

U i
01...k = U i

0 ∪ U
i
1 ∪ · · · ∪ U

i
k.

The next result says that these spaces U are stratified. By this we mean that U is a
union of a finite number of disjoint manifolds that are called strata. Each stratum S has
a neighborhood NS that projects to S by a map NS → S. When NS is given the induced
stratification, this map is a locally trivial fiber bundle whose fiber has the form of a cone
C(L) over a finite dimensional stratified space L that is called the link of S in U . Moreover,
S sits inside NS as the set of vertices of all these cones.

Proposition 2.4 (i) For each 0 ≤ k ≤ `, the space U i
01...k is stratified with strata U i

j ,
0 ≤ j ≤ k.

(ii) The link of U i
k in U i

01...k is the sphere S4k−3 when i = 0 and S4k−1 when i = 1.
Moreover, if k > 1 the link Li

k of U i
k in U i

k−1 is a smooth 3-manifold (in fact a lens
space).

Proof: The first statement is the main result of [12] and is proved by showing that
for all J ∈ J i

λ the space of all J-holomorphic stable maps into M i
λ has a corresponding

stratification. The first statement in (ii) follows from the previous proposition, while the
second can be proved by looking at the gluing parameters necessary to glue in one fiber:
see [12]. We give a rough idea of its proof since this will be needed later.

Each element J ∈ Uk defines a fibration πJ : M i
λ → S2 together with a unique J-

holomorphic section CJ in the class E2k+i = Ei − kF . There is a corresponding family
τq , q ∈ S2, of J-holomorphic cusp-curves (or stable maps) in class Ei − (k − 1)F . Namely,
τq is the union of CJ with the fiber Fq = π−1

J (q). The gluing process allows one to build a
family of J(q,a)-holomorphic spheres S(q,a) from the pair of components in τq , one for each
sufficiently small “gluing parameter” a ∈ Cq . Here Cq can be identified with the tensor
product of the tangent spaces to the two components CJ and Fx of τq at their intersection
point, and so fit together to form a complex line bundle L over S2 with Chern class 2− 2k.
The permitted gluing parameters (q, a) fill out a neighborhood V of its zero section.
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Now observe that because S(q,a) lies in the class Ei− (k−1)F , the corresponding almost
complex structures J(q,a) lie in Uk−1. Further, except in the case i = 0, k = 1, there is a
unique J(q,a)-holomorphic curve in the class Ei − (k− 1)F , and one can show that the map

V → Uk−1 : (q, a) 7→ J(q,a)

is a homeomorphism onto a normal slice to Uk in Uk−1 at J . Thus the link Li
k is homeo-

morphic to ∂V which is the unit sphere bundle of L and so is a lens space. QED

2.3 The manifolds M i
λ as symplectic reductions of C4

In order to be able to identify the strata U i
k of J i

λ with quotients of Gi
λ by appropriate

compact subgroups, we now show how to describe M i
λ as a symplectic reduction of C4. A

good reference for this subsection is the article by M.Audin in [6]. For general expositions
on symplectic group actions and reduction see, for example, [5] and [14].

Consider the unitary action of T2 on C4 given by

(s, t) · (z1, z2, z3, z4) = (smtz1, tz2, sz3, sz4), |s| = |t| = 1,

and let φ : C4 → R2 be the corresponding moment map:

φ(z1, z2, z3, z4) =
1

2
(m|z1|

2 + |z3|
2 + |z4|

2, |z1|
2 + |z2|

2).

If µ > m one checks easily that ξ = (µ, 1) ∈ R2 is a regular value of φ and so we can consider
the symplectic reduction φ−1(µ, 1)/T2 which we denote by Rm

µ .
Since the reduction is performed with respect to a unitary action of T2, the complex

structure of C4 descends naturally to the quotient, giving Rm
µ the structure of a Kähler

manifold. By looking at the action of T2 on the level set φ−1(µ, 1), it is not hard to see that
Rm

µ can be identified with the space

Wm = {([u0, u1], [w0 : w1 : w2]) : um
0 w1 = um

1 w0} ⊂ CP 1 × CP 2

via the map
C4 →Wm : (z1, z2, z3, z4) 7→ ([z3 : z4], [z

m
3 z2 : zm

4 z2 : z1]).

(See also [6] page 61.) Hence Wm fibers over the copy of S2 with coordinates z3, z4, with
fiber the z1, z2-sphere. Standard arguments show that when m is even this fiber bundle is
trivial, and that when m is odd it is nontrivial.

Next observe that the submanifolds Ẽm ⊂ Rm
µ defined by

Ẽm = { reduction of {z2 = 0} ⊂ C4}

are holomorphic spheres with symplectic area given by µ−m. Thus, when m = 2k is even,
R2k

µ is diffeomorphic to S2×S2 and the submanifold Ẽ2k represents the class E2k = E0−kF

defined in §2.1. Moreover, if µ = 1 + λ+ k > 2k we have that R2k
1+λ+k is symplectomorphic

to M0
λ and, if we define J2k as the push-forward of the complex structure of R2k

1+λ+k under
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this symplectomorphism, the class E2k has a J2k-holomorphic representative given by the
image of Ẽ2k , i.e. J2k ∈ U0

k . Note that J0 defined in this way is the standard split complex
structure j0 ⊕ j0 considered in §2.1.

Similarly, when m = 2k+1 is odd, R2k+1
µ is diffeomorphic to CP 2#CP 2 and the subman-

ifold Ẽ2k+1 represents the classE2k+1 = E1−kF also defined in §2.1. If µ = 2+λ+k > 2k+1
we also have that R2k+1

2+λ+k is symplectomorphic to M1
λ and, if we define J2k+1 as the push-

forward of the complex structure of R2k+1
2+λ+k under this symplectomorphism, the class E2k+1

has a J2k+1-holomorphic representative given by the image of Ẽ2k+1, i.e. J2k+1 ∈ U1
k .

We now want to understand the isometries of the above Kähler structures on M 0
λ and

M1
λ . When m = 0, the subgroup SU(2)× SU(2) ⊂ U(4) given by matrices of the form

(
A 0
0 D

)
with A,D ∈ SU(2),

acts on C4 by matrix multiplication, preserving the moment map φ and commuting with
the T2 action defined above. Since the intersection of these two subgroups of U(4) is {±1}×
{±1}, we get an effective Kähler action of SO(3)× SO(3) ∼= SU(2)/{±1}× SU(2)/{±1} on
R0

µ, which is nothing else than the standard action of SO(3)× SO(3) on S2 × S2 (see [8]).
When m > 0, the above construction can still be done if we restrict ourselves to the

subgroup SU(2)× S1 ⊂ U(4) given by matrices of the form

(
A 0
0 D

)
with A =

(
α 0
0 α

)
, αα = 1, and D ∈ SU(2).

This subgroup also acts on C4 by matrix multiplication, preserving the moment map φ and
commuting with the above T2 action.

When m = 2k is even, the intersection of these two subgroups of U(4) is again {±1} ×
{±1} and we get an effective Kähler action of SO(3) × S1 ∼= SU(2)/{±1} × S1/{±1} on
R2k

µ . Moreover, the submanifold Ẽ2k ⊂ R2k
µ is a connected component of the fixed point

set of the S1 part of this action. Taking µ = 1 + λ + k and using the fact that R2k
1+λ+k is

symplectomorphic to M0
λ , we have constructed this way a SO(3)×S1 Kähler action on M0

λ ,
with complex structure J2k ∈ U0

k , such that each point of the J2k-holomorphic representative
for the class E2k is fixed by the S1 part of the action. Note that when k = 1 the SO(3) part
of this action is the same as the diagonal SO(3) action on S2 × S2 (see [1]).

When m = 2k+1 is odd, the intersection of the above SU(2)×S1 ⊂ U(4) and T2 ⊂ U(4)
is given by {(1,±1), (−1,±i)}, and so we get an effective Kähler action of U(2) ∼= SU(2)×
S1/{(1,±1), (−1,±i)} on R2k+1

µ . Moreover, the submanifold Ẽ2k+1 ⊂ R2k+1
µ is a connected

component of the fixed point set of the natural S1-subgroup that this description of U(2)
gives:

S1 ∼= S1/{±1} ↪→ {1} × S1/{±1} ↪→ SU(2)× S1/{(1,±1), (−1,±i)} .

Taking µ = 2 + λ+ k and using the fact that R2k+1
2+λ+k is symplectomorphic to M1

λ , we have
constructed this way a U(2) Kähler action on M 1

λ , with complex structure J2k+1 ∈ U1
k ,

such that the J2k+1-holomorphic representative for the class E2k+1 is fixed by a given S1

subgroup of U(2).
We have thus proved the following:
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Proposition 2.5 (i) For each 0 < k ≤ `, M 0
λ has a symplectic K0

k
∼= SO(3)×S1 action,

which is Kähler for a standard complex structure J2k ∈ U0
k and is such that the J2k-

holomorphic representative C2k for the class E2k is fixed by the S1 part of the action.

(ii) For each 0 ≤ k ≤ `, M 1
λ has a symplectic K1

k
∼= U(2) action, which is Kähler for a

standard complex structure J2k+1 ∈ U1
k and such that the J2k+1-holomorphic repre-

sentative C2k+1 for the class E2k+1 is fixed by a given S1 subgroup of U(2).

2.4 Geometric description of the strata

The next task is to identify the stratum U i
k of J i

λ with the quotient of Gi
λ by the isometry

group Ki
k.

Proposition 2.6 (i) If λ > 0, the stratum U 0
0 ⊂ J 0

λ is weakly homotopy equivalent to
G0

λ/SO(3)× SO(3).

(ii) Each stratum U0
k of J 0

λ , 1 ≤ k ≤ `, is weakly homotopy equivalent to G0
λ/K

0
k, where

K0
k
∼= SO(3) × S1 is the group of Kähler isometries of a standard complex structure

J2k ∈ U0
k .

(iii) Each stratum U1
k of J 1

λ , 0 ≤ k ≤ `, is weakly homotopy equivalent to G1
λ/K

1
k, where

K1
k
∼= U(2) is the group of Kähler isometries of a standard complex structure J2k+1 ∈

U1
k .

Proof: Part (i) was proved in [1]. When λ = 0 the corresponding statement was established
by Gromov in [7]. Here the group K0

0 = SO(3) × SO(3) is not the full isometry group of
J0: one has to add in the involution that interchanges the two sphere factors. Gromov
then showed that the quotient of G0

0 by this isometry group is U0
0 , which is this case is

contractible since it is the whole of J 0
0 .

The case k = 1 of part (ii) was proved in [1]. Since that proof generalizes directly to any
k, with 1 ≤ k ≤ `, we just recall its main steps adapted to this more general context.

One denotes by S0
k the space of embedded symplectic 2-spheres in M 0

λ representing the
homology class E2k. Associated to any J ∈ U0

k we have a well defined element of S0
k given

by the unique J-sphere representing E2k. Conversely, given any element in S0
k the space of

all J ∈ U0
k that make it J-holomorphic is non-empty and contractible. It follows that U 0

k is
weakly homotopy equivalent to S0

k .
The next step is to prove that G0

λ acts transitively on S0
k . Here is an outline of the

method. First of all, given two curves Cj , j = 1, 2, in S0
k , choose elements Jj in J 0

λ so
that Cj is Jj-holomorphic. Then Cj is a section of the fibration of M 0

λ formed by the Jj-
holomorphic spheres in class F . It follows that there is a diffeomorphism φ of M 0

λ that takes
C1 to C2. It is easy to adjust φ so that it is a symplectomorphism near C1, and it can be
adjusted to be a symplectomorphism everywhere because any two symplectic forms on the
complement M0

λ − C1 that are standard near infinity are symplectomorphic. The last step
can be justified by explicit geometric arguments as in [1] or by following the ideas in [11].

Denoting by H0
k the subgroup of G0

λ consisting of symplectomorphisms that preserve
the unique J2k-holomorphic sphere in the class E2k, we then have that G0

λ/H
0
λ
∼= S0

k . The
obvious map

G0
λ/K

0
k → G0

λ/H
0
k

10



is a fibration, with fiber over the identity given by H0
k/K

0
k . The last step of the proof of

(ii) is to show that H0
k/K

0
k is weakly contractible. As in the proof of Lemma 3.6 in [1] for

the case k = 1, one proves first that H0
k/K

0
k is homotopy equivalent to the subgroup of

G0
λ consisting of symplectomorphisms that restrict to the identity on a neighborhood of the

sphere C2k, and then shows that this last subgroup is weakly contractible.
Part (iii) of the theorem follows from the same steps as part (ii). QED

We are now in a position to calculate π0 and π1 of the groups Gi
λ. Since we already know

the homotopy types of G0
0 and G1

λ, −1 < λ ≤ 0 (namely, an extension of SO(3) × SO(3)
and U(2)), we will concentrate on the other cases.

Corollary 2.7 (i) The group Gi
λ is connected, except when i = λ = 0.

(ii) When λ > 0, π1(G
0
λ) = Z⊕ Z/2Z⊕ Z/2Z.

(iii) When λ > 0, π1(G
1
λ) = Z.

Proof: The previous proposition implies that for λ > 0 the sequence

Ki
k → Gi

λ → U i
k

is a homotopy fibration, in the sense that there is a corresponding long exact sequence of
homotopy groups. Further π0(K

i
0) = 0.

Since the strata U i
k, k > 0, have codimension at least 2 in J i

λ, the top stratum U i
0 is

always path connected. Hence π0(G
i
λ) = π0(K

i
0) = 0. Similarly, when i = 1, the fact that

the strata U1
k , k > 0, have codimension at least 4 in J 1

λ implies that U1
0 is 2-connected.

Hence
π1(G

1
λ) = π1(K

1
0 ) = π1(U(2)) = Z.

However, the stratum U0
1 has codimension 2 in J 0

λ which means that there is a potential
generator of π1(U

0
0 ) given by the loop which circles once around U 0

1 . The argument in [1]
which shows that this loop generates π1(U

0
0 ) when λ ≤ 1 goes through in the case λ > 1

without change. The rest of (ii) also follows as in [1]. QED

Corollary 2.8 Each stratum U i
k is connected.

Proof: This follows from Proposition 2.6 and the fact that the groups Gi
λ are connected

except when i = λ = 0. QED

The group Ki
k is defined to be the identity component of the stabilizer of the element

J2k+i of the stratum U i
k. We now show that it acts transitively on the link Li

k of U i
k in U i

k−1

at the point J2k+i. The case i = 0, k = 1 is special, since here the link is a circle. In all
other cases the link has dimension 3.

Proposition 2.9 When k + i > 1 the group K i
k acts transitively on the link Li

k of U i
k in

U i
k−1 at J = J2k+i.

Proof: This is immediate from the description of this link given in Proposition 2.4. The
group Ki

k acts transitively on the sphere CJ (where J = J2k+i) and on its unit tangent
bundle. It also acts transitively on the unit tangent bundle to the fibers of πJ at their point
of intersection with CJ . The bundle L of gluing parameters is the tensor product of these
two bundles, and it is not hard to see that the action there is transitive too. QED
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2.5 Relations between the K i
k

We now discuss the relations between the elements in π1(G
i
λ) and H∗(G

i
λ) represented by

the homotopy and homology of the different subgroups K i
k in Gi

λ, beginning as usual with
the case i = 0. Our arguments use some results from §3.1 and §4. However, the conclusions
will not be used until we calculate H∗(BGλ) in §6.

It will be convenient to use the fact, proved in §4, that the G0
λ have a limit at infinity

G0
∞ that is homotopy equivalent to the group D = D0 of orientation preserving fiberwise

diffeomorphisms of S2×S2. Since Diff+(S2) deformation retracts to SO(3), D is homotopy
equivalent to the product

D = SO(3)×Map(S2, SO(3)),

where Map(Y, Z) denotes the space of smooth maps from Y to Z. It is easy to see from
the explicit description given in §2.3 of the action of Kk on W2k that this action commutes
with the projection onto the z3, z4 coordinates, i.e with the projection of S2 × S2 onto its
first factor. Thus each K0

k is a subgroup of D.
The group K0

0 is simply SO(3) × SO(3) and we will denote the two obvious generators
of π1(K

0
0 ) by τ and τ ′. For k > 0 let αk be the element of π1(K

0
k) corresponding to the

S1 action that fixes the sphere C2k. Further, let ξ = ξ0 and η be the two obvious spherical
generators of H3(K

0
0 ,Z) and ξk, for k > 0, be the spherical generator of H3(K

0
k ,Z). Thus

these classes are represented by suitable images of SU(2) = S3 in the groups K0
k .

Lemma 2.10 For each k > 0,

(i) αk = kα1 + (k − 1)τ ′ ∈ π1(Gλ),

(ii) ξk = ξ0 + k2η ∈ H3(Gλ; Q).

Proof: (i) We saw in Corollary 2.7 that π1(G
0
λ) = Z ⊕ Z/2Z ⊕ Z/2Z, with generators

lying in π1(K
0
k) for k = 0, 1. We claim that π1(D) is also equal to Z ⊕ Z/2Z ⊕ Z/2Z and

has the same generators. To see this, note first that τ generates the copy of Z/2Z coming
from the base, i.e. from the fundamental group of the SO(3)-factor in D. Elements of
π1(Map(S2, SO(3))) correspond to homotopy classes of based maps

S1 ∨ S3 = S1 × S2/{0} × S2 −→ SO(3),

i.e. to elements of
π0(Map∗(S

1 ∨ S3, SO(3))) = Z/2Z⊕ Z,

where Map∗ is the based mapping space. This has generators

τ ′ ∈ π0(Map∗(S
1, SO(3))) = Z/2Z, α0 ∈ π0(Map∗(S

3, SO(3))) = Z.

Thus π1(D) ∼= Z⊕ Z/2Z⊕ Z/2Z. The two generators τ, τ ′ of order 2 lie in π1(K
0
0 ), and it

is not hard to check that α0 = α1 + τ ′, so that α0 ∈ π1(K
0
1 ) as claimed.

It follows that the composite

G0
λ −→ G0

∞
'
−→ D
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induces an isomorphism on π1. This means that we can work out the relations between
the αk in π1(D), i.e. we do not need to insist that all the diffeomorphisms we consider are
symplectic. In particular we can alter C2k by an isotopy so that it has the form

C2k = {(z, ρk(z)) : z ∈ S2},

where ρk : S2 → S2 is any convenient degree −k map. (This corresponds to conjugating
the original representative of αk by an element of D.) Since the loop αk is represented by
rotations of the fiber that fix C2k, we can represent αk by the loop

θ · (z, w) = (z,R(ρk(z),θ)w), θ ∈ S1 = R/Z,

where R(w,θ) is the rotation by θ about the axis through w. It is easy to see that the
corresponding element in π0(Map∗(S

1 ∨ S3, SO(3))) is τ ′ + kα0, since the induced map
S3 → SO(3) has degree k. This implies that αk = kα1 + (k − 1)τ ′ as claimed.

To prove (ii), we must first consider the effect of the map G0
λ → D on H3. Now H3(D) =

Q ⊕ Q with generators ξ0, η from H3(K
0
0 ). Since H2(U0) = H3(U0) = 0 by Corollary 3.5,

Proposition 3.1 implies that H3(G
0
λ) ∼= H3(K

0
0 ). Hence the map G0

λ → D induces an
isomorphism on H3. Thus, again, we can work out the relations between the ξk in D.

Since the SO(3)-factor in K0
k is a lifting to S2 × S2 of the usual action on S2, ξk is

represented by a map of the form

Ψ : SO(3) → Gλ : Ψ(g) · (z, w) = (g(z), hk,g,zw), g, hk,g,z ∈ SO(3).

Moreover, because all these diffeomorphisms map the section

C2k = {(z, ρk(z)) : z ∈ S2}

into itself,
hk,g,z(ρk(z)) = ρk(g(z)). (1)

By our earlier remarks, ρk can be any map of degree −k. In particular we may suppose that
it has a fixed point z0. Let e : SO(3) → S2 be the evaluation map at z0 and define Fk by

Fk : SO(3) → SO(3) : g 7→ hk,g,z0
.

Equation (1) implies that there is a commutative diagram

SO(3)
Fk−→ SO(3)

e ↓ e ↓

S2 ρk−→ S2

Thus Fk preserves the fibers of e and covers a map on the base of degree −k. Since it has
to commute with the boundary map of the homotopy long exact sequence of e, it must also
have degree −k on the fiber. Therefore Fk has degree k2.

Now recall that, for any topological group G, the sum of any two spherical cycles α, β
in Hk(G) is represented by the product map

Sk → G : g 7→ α(g)β(g).
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Hence, since the ξk are spherical, the class ξk − ξ0 is represented by the map

SO(3) → Gλ : g · (z, w) = (z, hk,g,z(w)), hk,g,z , g ∈ S
3,

and hence by the map

SO(3) → Map(S2, SO(3)) : g 7→ (z 7→ hk,g,z).

Similarly, y is represented by

SO(3) → Map(S2, SO(3)) : g 7→ (z 7→ g).

To check the identity ξk − ξ0 = k2η we just have to see that ξk − ξ0 and k2η induce the
same map on rational H3. Since the second loop space Ω2(SO(3)) has the same rational
homotopy type as S1, the evaluation map

Map(S2, SO(3)) → SO(3) : f 7→ f(z0)

induces an isomorphism on H3(·; Q). Thus the desired conclusion follows from the fact that
Fk has degree k2. QED

Next let us consider the analogous questions for the case i = 1. Here it is convenient to
identify CP 2# CP 2 with the set

{(z, w) ∈ D2 × S2 : (eiθ, w) ≡ (1, R−θw), eiθ ∈ ∂D2},

where Rθ denotes the rotation of S2 about its vertical axis by the angle θ ∈ R/2πZ, and
we identify D2/∂D2 with S2 so that the point ∂D2 corresponds to the south pole Ps. Then
one can check that the section D2×{Ps} has self-intersection −1 so that it can be identified
with C1.

In this case all groups K1
k are isomorphic to U(2). Further, the group D = D1 of

orientation preserving fiberwise diffeomorphisms of CP 2# CP 2 is homotopy equivalent to
the semi-direct product

SU(2)×Z/2Z Γ(S2; SO(3)),

where the SU(2) factor is identified with a subgroup of K1
0 , Γ(S2; SO(3)) denotes the

space of sections of the bundle over S2 with fiber SO(3) that is associated to the fibra-
tion CP 2# CP 2 → S2, and Z/2Z acts in a way that we now explain. If Rθ denotes the
rotation of S2 about its vertical axis by the angle θ ∈ R/2πZ, it is easy to see that

Γ(S2; SO(3)) = {α ∈ Map(D2, SO(3)) : α(eiθ) = Rθα(1)R−θ, e
iθ ∈ ∂D2}.

With this identification, the generator of Z/2Z acts by conjugation by Rπ in Γ(S2; SO(3))
and by multiplication by −Id in SU(2). To see this, compare the present description of Kk

with that given just before Proposition 2.5. To make the two descriptions more alike, think
of Γ(S2; SO(3)) as the quotient of Γ(S2; SU(2)) by the action of Z/2Z. Then the nontrivial
action of Z/2Z on both factors of SU(2)×Γ(S2; SO(3)) described above corresponds to the
fact that the intersection of SU(2) × S1 with T2 does not split, even after quotienting out
by the Z/2Z subgroup ±1 of S1.

Denote by αk, k ≥ 0, the generator of π1(K
1
k) corresponding to the S1 action that fixes

the sphere C2k+1, and by ξk the generator of H3(K
1
k ; Z) coming from the inclusion of SU(2)

into U(2). Further, set η = ξ1 − ξ0.
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Lemma 2.11 (i) αk = (k + 1)α0 ∈ π1(G
1
λ),

(ii) ξk = ξ0 + k2η ∈ H3(G
1
λ; Z).

Proof: The proof of (i) is left to the reader.
Note that there is a fibration

Ω2(SO(3)) −→ Γ(S2; SO(3))
ev
−→ SO(3).

where ev(α) = α(1). Hence ev induces an isomorphism on H3, and so H3(D) has again rank
2. The formula in (ii) now follows as in the previous lemma. Observe that the analog of the
set of elements hk,g,z0

, g ∈ SO(3), is a section of a nontrivial bundle. However, if we take
z0 to be the point 1 ∈ ∂D2 (which corresponds to the south pole Ps in S2) and assume as
before that the maps ρk fix z0, then the composites h−1

0,g,g(z0)
◦hk,g,z0

are elements of SU(2)

and the argument can proceed as before. QED

3 Algebraic Computations

This section is devoted to the algebraic computations necessary to prove the main theorems
of this paper. In §3.1 we analyse the case of M 0

λ = (S2 × S2, ω0
λ) in complete detail. The

case i = 1 is treated in §3.2. It is completely analogous to the case i = 0.

3.1 Computation of H∗(G0
λ)

As before, we assume ` − 1 < λ ≤ `. Since this whole subsection is devoted to M 0
λ =

(S2 × S2, ω0
λ), we will omit the superscript 0 to simplify notation. Unless noted otherwise,

we assume rational coefficients throughout.
Our strategy is first to show that there is a subalgebra ofH∗(Gλ) isomorphic to Λ(a, x, y)⊗

S(w`) and then to show that this subalgebra must be the whole cohomology ring. Thus the
first goal is to show how the new element w` appears. To do this we use the stratification
of the space Jλ to construct an interconnected family of modified Mayer-Vietoris sequences
(MVk) relating the cohomology groups of the different strata. This allows us to pinpoint
exactly where w` comes from: see Definition 3.10. The geometric significance of this gen-
erator is discussed further in §5. In order to show that Λ(a, x, y) ⊗ S(w`) is the whole of
H∗(Gλ), we calculate all the maps in the part of (MVk) generated by this subalgebra, and
then show that if d is the minimal degree in which H∗(Gλ) contains something else, there
must in fact be a new element in some degree < d.

Key to the whole process is the fact that each stratum Uk is (weakly homotopic to) a ho-
mogeneous space for Gλ. Our first proposition shows that the corresponding decompositions
for H∗(Gλ) are compatible with its multiplicative as well as its additive structure.

Proposition 3.1 (i) H∗(Gλ) is a free algebra. Moreover, for all 0 ≤ k ≤ `,

H∗(Gλ) ∼= H∗(Uk)⊗H∗(Kk), (2)

as graded algebras.
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(ii) For all k > 1, H∗(Uk) ∼= H∗(U1).

Proof: Since Gλ is a topological group, in particular an H-space, we have that H∗(Gλ)
is a Hopf algebra. The Leray Structure Theorem for Hopf algebras over a field of charac-
teristic 0 then says that H∗(Gλ) is the tensor product of exterior algebras with generators
of odd degree and polynomial algebras with generators of even degree (see [18] for relevant
definitions and a proof of this structure theorem). Hence H∗(Gλ) is a free algebra.

The algebra isomorphism (2) was proved in [1] for k = 0, and the proof for general k
is very similar. The first point is that the inclusion i : Kk → Gλ is injective in homology.
The result for H1(Kk) holds because, as in the proof of Lemma 2.10, the generator tk of
π1(Kk) ⊗Q does not vanish in the space of homotopy equivalences of S2 × S2. The result
for H3(Kk) is somewhat subtle, and uses the fact that Gλ maps onto the space of homotopy
equivalences of each sphere factor by maps of the form:

Gλ → Map(S2, S2) : g 7→ pr1 ◦ g|S2×{pt}.

For more details, see [1].
The Leray-Hirsch Theorem then implies that the Leray-Serre cohomology spectral se-

quence for the fibration

Kk −→ Gλ
p
−→ Gλ/Kk

collapses with
E∗,∗∞

∼= E∗,∗2
∼= H∗(Gλ/Kk)⊗H∗(Kk)

as bigraded algebras. This does not quite prove (2), since all it says is that the bigraded
algebra E∗,∗0 (H∗(Gλ), F ), associated to H∗(Gλ) with filtration F coming from the above
fibration, is isomorphic to H∗(Gλ/Kk)⊗H∗(Kk).

To finish the proof of (2) we can now do the following. H∗(Gλ) has a subalgebra
p∗(H∗(Gλ/Kk)) ∼= H∗(Gλ/Kk). Since

i∗ : H∗(Gλ) → H∗(Kk)

is surjective, we can choose a, b ∈ Hodd(Gλ) so that i∗(a) and i∗(b) generate the ringH∗(Kk).
The subalgebra of H∗(Gλ) generated by a and b is isomorphic to H∗(Kk) since the only
relations in this algebra hold universally on any cohomology algebra (skew-symmetry of the
cup product of elements of odd degree). Composing these inclusions of H∗(Gλ/Kk) and
H∗(Kk) as subalgebras of H∗(Gλ) with cup product multiplication in H∗(Gλ) we get a map

ν : H∗(Gλ/Kk)⊗H∗(Kk) → H∗(Gλ) .

Because H∗(Gλ) is (graded) commutative we have that ν is an algebra homomorphism.
Moreover, by construction, ν is compatible with filtrations (the obvious one onH∗(Gλ/Kk)⊗
H∗(Kk) and F on H∗(Gλ)). As was already remarked, the degeneration of the spectral
sequence at the E2 term implies that the associated bigraded version of ν is an algebra
isomorphism, which in turn shows that ν itself is an algebra isomorphism, concluding the
proof of (2).

Part (ii) of the proposition is a direct consequence of (i). QED
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Corollary 3.2 If 1 ≤ k ≤ `− 1 the link Lk+1 of Uk+1 in Uk represents a nonzero element
of H3(Uk).

Proof: By Proposition 2.9, Lk+1 is a homogeneous space for Kk+1. Hence, under the
map Gλ → Gλ/Kk = Uk, the generator of H3(Kk+1) is taken to the fundamental class of
H3(Lk+1). Since the inclusion map H3(Kk+1) → H3(Gλ) is nonzero, the same holds for the
inclusion H3(Lk+1) → Uk. QED

The computation of H∗(Gλ) is based on using the isomorphisms in (i) above and on the
Mayer–Vietoris sequences for the decompositions

U0...k = U0... k−1 ∪ N (Uk)

where N (Uk) is a neighborhood of Uk in U0...k. By Proposition 2.4 we may choose N (Uk)
to be a disc bundle over Uk. In particular, there is a fibration

S4k−3 → ∂N (Uk) → Uk .

Lemma 3.3 For all k ≤ `

H i(U0...k) = 0, 0 < i ≤ 4k.

Proof: The Mayer–Vietoris sequence for the decomposition U0...k = U0... k−1 ∪ N (Uk) is

→ H i(U0...k−1)⊕H i(N (Uk)) → H i(U0...k−1 ∩N (Uk)) → H i+1(U0...k) → · · ·

But, when i < 4k − 3,

H i(U0...k−1 ∩ N (Uk)) = H i(∂N (Uk)) = H i(N (Uk)),

since the fiber of the projection ∂N (Uk) → Uk is connected up to dimension 4k − 3. This
implies that

H i(U0...k) ∼= H i(U0...k−1), i ≤ 4k − 4.

The lemma follows by downwards induction on k because U0...` = Jλ is contractible.QED

The next result is contained in [1]. Its proof is repeated here for the convenience of the
reader.

Proposition 3.4 (i) H1(U0) = Q and its generator is nonzero on the class in H1(U0)
represented by the link L1 of U1 in U0.

(ii) There is an exact sequence

(MV1) : · · · → H i−2(U1) → H i(U01) → H i(U0)
τ
→ H i−1(U1)

δ
→ H i+1(U01) → · · ·

Proof: Using Lemma 3.3 on the Mayer-Vietoris sequence for the decomposition U01 =
U0 ∪ N (U1) we get the short exact sequence:

H1(U01) = 0 → H1(U0)⊕H1(N (U1)) → H1(∂N (U1)) → 0 = H2(U01)
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If r = rk H1(N (U1)) = rk H1(U1), it follows from Proposition 3.1 (i) that r+1 = rk H1(U0)
and hence we get from the previous short exact sequence that 2r + 1 = rk H1(∂N (U1)).
The existence of a fibration S1 ↪→ ∂N (U1) → U1 shows that

2r + 1 = rk H1(∂N (U1)) ≤ rk H1(U1) + 1 = r + 1

which implies that r = 0.
We conclude that H1(∂N (U1)) ∼= Q ∼= H1(U0) and also that the inclusion S1 ↪→ ∂N (U1)

is injective in homology (or surjective in cohomology), which proves (i).
Moreover, it also follows that the cohomology spectral sequence for the fibration

S1 → ∂N (U1) → U1

collapses and
H∗(∂N (U1)) ∼= H∗(S1 × U1) ∼= H∗(U1)⊕H∗−1(U1).

Part (ii) now follows easily. QED

Corollary 3.5 H2(U0) = H3(U0) = 0 and H3(Uk) = Q for k ≥ 1. Moreover, the smallest
integer d > 3 such that Hd(Uk) 6= 0 is the same for all k ≥ 0.

Proof: Since H1(U0) = Q we have by the isomorphisms in Proposition 3.1 (i) that
H1(U1) = 0. Using this and the fact that H i(U01) = 0, 0 < i ≤ 4 by Lemma 3.3, in
(MV1) we conclude that H2(U0) = H2(U1) = H3(U0) = 0. From H3(U0) = 0, and using
again Proposition 3.1 (i), we also get that H3(Uk) = Q for k ≥ 1. The statement about d
follows similarly by Proposition 3.1 (i). QED

Proposition 3.6 For all 1 ≤ k ≤ ` there is an exact sequence

(MVk) : · · · → H i(U0...k) → H i(U0...k−1)
τ
→ H i−4k+3(Uk)

δ
→ H i+1(U0...k) → · · · .

Proof: Observe that because H i(U0...k) = 0, for i ≤ 4k, the Mayer–Vietoris sequence for
the pair (U0...k, Uk) implies that

H i(U0...k−1)⊕H i(N (Uk)) ∼= H i(∂N (Uk)), i < 4k.

But N (Uk) ' Uk and the fiber of the projection

f : ∂N (Uk) → Uk

is S4k−3. Therefore the fact that H4k−2(Uk) injects into H4k−2(∂N (Uk)) implies that all
differentials in the Leray spectral sequence of f vanish. Hence the map

H i(Uk) ∼= H i(N (Uk)) → H i(∂N (Uk))

is injective for all i (not just for i < 4k) and has cokernel isomorphic to H i−4k+3(Uk). Hence
(MVk) is exact for all k ≤ `. QED
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Proposition 3.7 (i) In (MVk), for k < `, the boundary map

δk : Q = H3(Uk) → H4k+1(U0...k)

is an isomorphism.

(ii) H4k+j(U0...k) = 0 for j = 2, 3 and 1 ≤ k < `. Moreover

H4`(U0...`−1) = Q,

H4k+4(U0...k) = 0, k < `− 1.

Proof: (i) From (MVk+1) with i = 4k + 1 we find that

H4k+1(U0...k+1) → H4k+1(U0... k)
τ
→ H0(Uk+1) → H4k+2(U0...k+1)

is exact. Since the first and last terms above are 0 by Lemma 3.3 and the third is Q, we get
that H4k+1(U0...k) = Q. Moreover, the way (MVk+1) is constructed out of Mayer-Vietoris
for U0... k+1 = U0... k ∪N (Uk+1) and degeneration of

S4k+1 → ∂N (Uk+1) → Uk+1

shows that the generator of H4k+1(U0...k) is non-zero on the link S4k+1 of Uk+1 in U0...k,
and so this link is an explicit geometric generator for the homology group H4k+1(U0...k).

The homology version of the map δk : H3(Uk) → H4k+1(U0...k) in (MVk) sends the link
S4k+1 of Uk+1 in U0...k to its intersection with Uk, i.e. to the link of Uk+1 in Uk. Hence, δk
is an isomorphism because, by Corollary 3.2, the link of Uk+1 in Uk represents a non-zero
element in H3(Uk).

To prove (ii), look at (MVk+1) with i = 4k + j, where j = 2, 3, 4, using the facts that
H1(Uk) = H2(Uk) = 0 and that δk+1 is an isomorphism when k + 1 < `. QED

Our next aim is to show that the nonzero element in H4`(U0...`−1) restricts to give a
nonzero element in H4`(U0). Moreover, we will see that this is the “first” nonzero element
in the H∗(Uk) in degrees ∗ > 3. More precisely, as in Corollary 3.5, we consider the smallest
integer d = d` > 3 such that Hd(Uk) 6= 0 for any k, and will show that d` = 4`.

Lemma 3.8 d1 = 4, d2 = 8 while d` > 11 when ` > 2.

Proof: The fact that d1 = 4 follows from Proposition 3.7 (ii).
Consider the sequence (MV1) with i = d` = d:

· · · → Hd−2(U1)
δ
→ Hd(U01) → Hd(U0)

τ
→ Hd−1(U1) = 0 .

Clearly, d is the smallest integer > 3 such that Hd(U01) is nonzero and also not covered by
the image of δ.

Now suppose that ` = 2. In this case the sequence (MV2) collapses to the isomorphisms

τ : H i(U01)
∼=
→ H i−5(U2), i > 0.

Hence the first nonzero groups H i(U01) (for i > 0) occur when i = 5, 8. By Proposition 3.7
(i) we know that H5(U01) is in the image of δ, and so d2 ≥ 8. This implies that H6(U1) = 0,
which means that H8(U01) is not in the image of δ. Hence d2 = 8.
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If ` > 2 the argument showing that d` > 5 goes through as before. Now look at (MV2):

· · · → H i(U012) → H i(U01)
τ
→ H i−5(U2)

δ
→ H i+1(U012) → · · · .

We know, by Lemma 3.3, that H i(U012) = 0 for i ≤ 8. Hence H i(U01) = 0 for these i, since
in this range H i−5(U2) is either zero or mapped isomorphically by δ. Hence d` > 8. By
Proposition 3.7(i) we know that H9(U012) = Q is in the image of δ, while Proposition 3.7(ii)
says that H i(U012) = 0 for i = 10, 11 (and also 12 when ` > 3). But in this range, because
H i−5(U2) = 0, we get from (MV2) that H i(U01) ∼= H i(U012) = 0. Feeding this information
back into (MV1), we find that d` > 11 as claimed. In fact, if ` > 3 we get that d` > 12.
QED

More generally:

Proposition 3.9 d` = 4`, for any ` ∈ N.

Proof: We will prove by induction on ` ∈ N the statement:

for any ` ∈ N, d` = 4` and dp > 4`+ 3 for p > `

which implies the result and is more convenient for the inductive step.
As the previous lemma shows, the statement is true for ` = 1, 2. We now suppose, by

induction, that the statement is true for `− 1 ≥ 2 and will consider the case `. Combining
Lemma 3.3 with Proposition 3.7 we have that

H i(U0... `−1) = 0, i < 4`, i 6= 4`− 3;

H4`−3(U0... `−1) ∼= Q

H4`(U0... `−1) ∼= Q.

We will show that for all 0 ≤ k < `− 1,

H i(U0... k) = 0, 4`− 4 < i < 4`

H4`(U0...k) ∼= Q.

This for k = 0 together with the inductive hypothesis saying that d` > 4`− 1 immediately
implies that d` = 4`.

Consider the sequence (MVk) for k = `− 1, `− 2 and so on:

· · · → H i(U0...k) → H i(U0...k−1)
τ
→ H i−4k+3(Uk)

δ
→ H i+1(U0...k) → · · ·

When 4` − 4 < i ≤ 4` and 1 ≤ k ≤ ` − 1, the numbers i − 4k + 3 range in the interval
[4, 4` − 1], and so the inductive hypothesis implies that all H i−4k+3(Uk) = 0. In order to
deduce that H i(U0...k) ∼= H i(U0...k−1), for 4`− 4 < i ≤ 4` and 1 ≤ k ≤ `− 1, we also need
to know that H i−4k+2(Uk) = 0. This holds except when i = 4` − 3 and k = ` − 1, since
then i − 4k + 2 = 3. However, this nonzero group exactly cancels out the nonzero group
H4`−3(U0...`−1) via δ. Hence the groups H i(U0...k) = 0 for 4`− 4 < i < 4` and k = ` − 2,
and remain 0 as k decreases to 0. Similarly, the groups H4`(U0...k) = Q for all 0 ≤ k ≤ `−1.
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Now consider the case p− 1 < λ ≤ p with ` < p ∈ N. In this case we know that

H i(U0... `−1) = 0, i ≤ 4`, i 6= 4`− 3;

H4`−3(U0... `−1) = Q,

and the previous argument shows that dp > 4`. We also must show that H i(U0) = 0 for
4` < i ≤ 4`+ 3. But because p > ` Proposition 3.7 says that

H i(U0...`) = 0, i = 4`+ 2, 4`+ 3;

H4`+1(U0... `) = Q.

If we repeat the previous argument (replacing ` by ` + 1) we find that H i(U0...k) = 0 for
4` + 1 ≤ i ≤ 4` + 3 and k = ` − 1, ` − 2, . . . , 1. We cannot use this argument to reach
k = 0. However, as at the beginning of the proof of Lemma 3.8, it is enough to know that
H i(U01) = 0 for these i to conclude that dp > 4`+ 3. QED

Definition 3.10 We define an explicit new element w` ∈ H4`(Gλ). Let y ∈ H∗(Gλ) come
from the second SO(3) factor in K0 as in Lemma 2.10, and let yk ∈ H3(Uk) be its image
under the isomorphism of Proposition 3.1. Because U0···` ≡ Jλ is contractible, the map

τ : H4`(U0...`−1) −→ H3(U`)

in (MV`) is an isomorphism. Hence y` lifts to an element y` in H4`(U0...`−1) and then, by
the arguments above, restricts to a nonzero element v0 of H4`(U0). By Proposition 3.1,
there is a corresponding element in H4`(Gλ) and it is this that is called w`. When there
is no possibility of confusion, we will write w instead of w`. Finally, for k = 1, . . . , `, we
denote by vk the image of w in H4`(Uk) under the isomorphisms of Proposition 3.1.

Remark 3.11 It is perhaps easier to see y` in homology. Let η be a spherical representative
of the second SO(3) factor in H3(K0), and let S ∼= S4`−3 be the link of U` in Jλ = U0...`.
Because K0 acts on Jλ by multiplication on the left, there is a well defined 4`-cycle η ∗S in
U0...`−1 and by definiton y`(η ∗ S) = 1. (For more details of this notation, see Lemma 6.4.)
Note that we can replace η here by any 3-cycle in K0 that is nonzero in K`, i.e. by anything
except a multiple of ξ+ `2η. In §5, it is natural to consider the cycle ξ+ (`+1)2η that lives
in K`+1, while in §6 we will consider ξ.

Since H∗(Gλ) is the product of an exterior algebra with a polynomial algebra, we now
know that

Λ(a, x, y)⊗ S(w) ⊂ H∗(Gλ),

with dega = 1, degx = deg y = 3 and degw = 4`. This completes the first part of the
argument. Our final task is to show that these are all the generators of H∗(Gλ), i.e., the
above inclusion is actually an equality of algebras. To do this, we first calculate all the
groups and maps that occur in the part of (MVk) generated by this subalgebra, showing in
particular that the relevant part of H∗(U0...k) is a free algebra: see Lemma 3.14. Then, we
show that if d is the minimal degree in which H∗(Gλ) contains something else, there must
in fact be a new element in some degree < d.
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First we must work out the relations between the different elements vk ∈ H4`(Uk) that
were defined in Definition 3.10. We just saw in the proof of the previous proposition that
the restriction maps

H i(U0···k) → H i(U0···k−1)

are isomorphisms when 1 ≤ k ≤ `− 1 and 4`− 4 ≤ i ≤ 4`. Hence

i∗ : H4`(U0···k) → H4`(U0)

is an isomorphism for 0 ≤ k ≤ ` − 1, and we will denote by v0 the generator of each
H4`(U0···k) such that i∗(v0) = v0.

Lemma 3.12 Let ik denote the inclusion Uk → U0···k. Then i∗k(v0) = vk, for 0 ≤ k ≤ `−1.

Proof: This holds for k = 0 by definition. To avoid confusion in the following argument,
we will think of v0 as an element of H∗(U0...k) and will write i∗0(v0) for its restriction to
U0. Suppose k > 0, and let f : P → Gλ be a 4`-dimensional cycle in Gλ on which w does
not vanish. It follows from the construction of the isomorphisms in Proposition 3.1 that
the cycle fk : P → Uk, defined by fk(p) = f(p)∗(J2k) where J2k is the canonical complex
structure in Uk, satisfies vk(fk) = w(f) 6= 0, for all 1 ≤ k ≤ `. Further, i∗0(v0)(f0) = w(f).

Since there is a path of almost complex structures in U0···k joining J2k to J0, the cycles
fk and f0 are homotopic in U0···k. Hence,

v0(fk) = v0(f0) = i∗0(v0)(f0) = w(f) = vk(fk).

Since H4`(Uk) ∼= Q, this implies that i∗k(v0) = vk as claimed. QED

The collapse of the spectral sequence of the fibration

S4k−3 → ∂N (Uk)
π
→ Uk,

together with the fact that the fiber is an odd-dimensional sphere, implies that we have ring
isomorphisms

H∗(∂N (Uk)) ∼= H∗(S4k−3)⊗H∗(Uk), 1 ≤ k ≤ `.

Hence we know that

H∗(∂N (Uk)) ⊇ Λ(π∗(yk), ẑ4k−3)⊗ S(π∗(vk)), 1 ≤ k ≤ `,

where

(i) yk ∈ H3(Uk) is as in Definition 3.10;

(ii) ẑ4k−3 ∈ H4k−3(∂N (Uk)) is the restriction of z4k−3 ∈ H4k−3(U0···k−1), and z4k−3 is
determined from the isomorphism

τ : H4k−3(U0···k−1) → H0(Uk)

in (MVk) by the condition τ(z4k−3) = 1.

Lemma 3.13 Let jk denote the inclusion ∂N (Uk) → U0···k−1 and π the projection ∂N (Uk) →
Uk. Then:
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(i) j∗k(v0) = π∗(vk), for 0 ≤ k ≤ `− 1;

(ii) j∗` (v0) = ẑ4`−3 · π∗(y`) + cπ∗(v`), with c 6= 0.

Proof: Statement (i) follows trivially from the previous lemma. Since v0 lives in U0···k, its
restriction to ∂N (Uk) is given by π∗(i∗kv0) = π∗(vk).

To prove (ii), observe first that the isomorphism τ : H4`(U0···`−1) → H3(U`) from (MV`)
is the composite of the restriction map

j∗` : H∗(U0···`−1) → H∗(∂N (U`))

with integration over the fiber of the projection

π : ∂N (U`) → U` .

Since integration over the fiber kills the elements of π∗(H∗(U`)) and τ(v0) = y`, we must
have

j∗` (v0) = ẑ4`−3 · π
∗(y`) + cπ∗(v`) .

If c = 0 then j∗` (v0)
2 = (ẑ4`−3 · π∗(y`))

2 = 0 because of degree considerations. Since j∗` is
injective (because τ is an isomorphism) this implies (v0)

2 = 0. But this is impossible, since
the restriction of v0 to H∗(U0) is non-zero and H∗(U0) is a free algebra. Hence c 6= 0 as
stated. QED

Lemma 3.14 For each k, 1 ≤ k ≤ `, the elements z4k−3 and v0 generate a free subalgebra
of H∗(U0···k−1).

Proof: If 1 ≤ k ≤ `− 1 this follows since

j∗k(z4k−3 · v
n
0 ) = ẑ4k−3 · (π

∗(vk))n 6= 0

in H∗(∂N (Uk)). For k = ` we have

j∗` (z4`−3 · v
n
0 ) = ẑ4`−3 · [ẑ4`−3 · π

∗(y`) + cπ∗(v`)]
n = cn · ẑ4`−3 · [π

∗(v`)]
n 6= 0

in H∗(∂N (U`)). QED

Proposition 3.15 Let 1 ≤ k ≤ `− 1. The maps i∗, τ and δ in the exact sequence (MVk)

· · · → H i(U0···k)
i∗
→ H i(U0···k−1)

τ
→ H i−4k+3(Uk)

δ
→ H i+1(U0···k) → · · ·

satisfy:

i∗(vn
0 ) = vn

0 τ(vn
0 ) = 0 δ(vn

k ) = 0
i∗(z4k+1 · vn

0 ) = 0 τ(z4k−3 · vn
0 ) = vn

k δ(yk · vn
k ) = c · z4k+1 · vn

0 , c 6= 0 .

Proof:

i∗ is induced by inclusion, hence a ring homomorphism. By construction we know that
i∗(v0) = v0. Because δ : H3(Uk) → H4k+1(U0···k) is an isomorphism for k < ` (by
Proposition 3.7 (i)), we also know that i∗(z4k+1) = 0.
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τ Since i∗(vn
0 ) = vn

0 we have that τ(vn
0 ) = 0. By construction τ(z4k−3) = 1. Also

τ(z4k−3 · v
n
0 ) =

∫

S4k−3

ẑ4k−3 · (π
∗(vk))n = vn

k .

δ Since τ(z4k−3 · vn
0 ) = vn

k we have that δ(vn
k ) = 0. As before, since δ : H3(Uk) →

H4k+1(U0···k) is an isomorphism and H3(Uk) ∼= Q, we know that δ(yk) = c · z4k+1,
with c 6= 0.

It remains to calculate δ(yk · vn
k ). This is where the hypothesis k ≤ ` − 1 comes in.

We will restrict (MVk) to a neighborhood of Uk+1 and exploit the fact that the resulting
sequence is a module over H∗(Uk+1). The construction uses the fact that the Uk form a
stratification of Jλ with nice normal structure: see the discussion before Proposition 2.4.
The neighborhoods occuring below are chosen to be fibered, with fiber equal to a cone over
the relevant link.

Recall that (MVk) is derived from the Mayer–Vietoris sequence for the decomposition
U0···k = U0···k−1 ∪ N (Uk). Intersecting all sets with N (Uk+1), we may identify U0···k ∩
N (Uk+1) with its boundary ∂N (Uk+1), and N (Uk)∩N (Uk+1) with its deformation retract
∂Nk(Uk+1). (Here we write Nk(X) for the neighborhood of X in Uk and ∂Nk(X) for its
boundary.) Note also that

Y = U0···k−1 ∩ N (Uk) ∩N (Uk+1)

is (rationally) homotopy equivalent to an odd-dimensional sphere bundle over ∂Nk(Uk+1)
(S1-bundle if k = 1 and S3-bundle if k > 1).

Thus the Mayer–Vietoris sequence has the form

→ H i(∂Nk(Uk+1))⊕H i(U0···k−1 ∩ N (Uk+1)) → H i(Y ) → H i+1(∂N (Uk+1)) →

and, as with (MVk), it gives rise to an exact sequence

(∗) → H i(U0···k−1 ∩ N (Uk+1))
τ ′
→ H i−4k+3(∂Nk(Uk+1))

δ′
→ H i+1(∂N (Uk+1)) →

All these spaces fiber over Uk+1 in a compatible way. Hence the homology groups involved
are H∗(Uk+1)-modules, all the maps in the Mayer-Vietoris sequence preserve this module
structure, and it is not hard to check that those in the modified sequence (∗) do as well.

Next, consider the commutative diagram:

H i−4k−3(Uk)
δ
→ H i+1(U0···k)

r̂∗ ↓ ↓ r∗

H i−4k−3(∂Nk(Uk+1))
δ′
→ H i+1(∂N (Uk+1))

where the vertical maps are the obvious restrictions. Thus r∗ is the map previously called
j∗k+1. From the two preceding lemmas we know that r∗ is injective and

r∗(δ(yk)) = cr∗(z4k+1) = cẑ4k+1, c 6= 0.

Defining ŷk = r̂∗(yk), and using commutativity of the diagram, we have that δ′(ŷk)) =
cẑ4k+1.
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In order to compute δ′◦ r̂∗(yk ·vn
k ) we will show that r̂∗(vk) is pulled back from H∗(Uk+1)

via the projection
π : ∂Nk(Uk+1) −→ Uk+1,

and then will use the module property. Consider the commutative diagram of inclusions:

∂N (Uk+1)
r
→ U0···k

i∂ ↑ ↑ ik

∂Nk(Uk+1)
r̂
→ Uk

From Lemmas 3.12 and 3.13 we have that for 1 ≤ k ≤ `− 2

r̂∗(vk) = r̂∗ ◦ i∗k(v0) = i∗∂ ◦ r
∗(v0) = i∗∂ ◦ π

∗(vk+1).

(Recall that r = jk+1.) On the other hand, for k = `− 1

r̂∗(v`−1) = i∗∂ ◦ r
∗(v0) = i∗∂(ẑ4`−3 · π

∗(y`) + cπ∗(v`)), c 6= 0.

If we define
π̂ = π ◦ i∂ : ∂Nk(Uk+1) → Uk+1 ,

this can be written as
r̂∗(vk) = π̂∗(vk+1) for 1 ≤ k ≤ `− 2 ,

while
r̂∗(v`−1) = i∗∂(ẑ4`−3) · π̂

∗(y`) + c · π̂∗(v`).

We saw in Proposition 2.4 that the fiber L` of the fibration

L` ↪→ ∂N`−1(U`)
π̂
→ U`

is a 3-dimensional lens space. Moreover the Leray–Serre spectral sequence collapses by
Corollary 3.2. Hence

H4`(∂N`−1(U`)) ∼= π̂∗(H4`(U`)⊕H4`−3(U`) ∼= H4`(U`

by Proposition 3.9. Thus
r̂∗(v`−1) = c · π̂∗(v`).

We can now use the fact that δ′ is a map of H∗(Uk+1)-modules to conclude that for
1 ≤ k ≤ `− 2

δ′ ◦ r̂∗(yk · v
n
k ) = δ′(ŷk(r̂∗(vk))n) = δ′(ŷkπ̂

∗(vk+1)
n)

= π∗(vk+1)
n · δ′(ŷk) = r∗(v0)

n · c · ẑ4k+1

= r∗(c · z4k+1 · v
n
0 ),

while for k = `− 1
δ′ ◦ r̂∗(y`−1 · v

n
`−1) = r∗(cnc · z4`−3 · v

n
0 ) .

Therefore,
δ(yk · v

n
k ) = c · z4k+1 · v

n
0 , c 6= 0
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for all 1 ≤ k ≤ `− 1, as claimed. QED

Proof of Theorem 1.1

Suppose that
H∗(Gλ) 6= A = Λ(a, x, y)⊗ S(w),

and let
u ∈ H∗(Gλ)−A

be a non-zero element of minimal degree d. From the arguments leading to Proposition 3.9
and its proof we know that d > 4`. The existence of this new element u gives rise to new
non-zero elements

uk ∈ H
d(U0···k)− (Λ(z4k+1)⊗ S(v0)),

for 0 ≤ k ≤ ` − 1, in the following inductive way. For k = 0 we let u0 be the image of u
under the relevant isomorphism from Proposition 3.1 (i). Given a non-zero element

uk−1 ∈ H
d(U0···k−1)− (Λ(z4k−3)⊗ S(v0)), 1 ≤ k ≤ `− 1,

consider the following piece of (MVk):

· · · → Hd(U0···k)
i∗
→ Hd(U0···k−1)

τ
→ Hd−4k+3(Uk)

δ
→ Hd+1(U0···k) → · · ·

By exactness we know that that τ(uk−1) ∈ Ker δ, and by Proposition 3.15 and minimality
of d this implies that

τ(Uk−1) = vn
k = τ(z4k−3 · v

n
0 )

for some n. Hence the non-zero element uk−1 − z4k−3 · vn
0 belongs to Ker τ and, using

exactness again, there must exist a non-zero uk ∈ Hd(U0···k) such that

i∗(uk) = uk−1 − z4k−3 · v
n
0 .

It is clear from Proposition 3.15 that uk 6∈ Λ(z4k+1)⊗ S(v0).
The element u`−1 ∈ Hd(U0···`−1) − (Λ(z4`−3) ⊗ S(v0)) determines, via (MV`) and the

fact that U0···` is contractible, a new non-zero element

u` ∈ H
d−4`+3(U`)− (Λ(y`)⊗ S(v`)).

But this is impossible, since it would give rise to a non-zero element in H∗(Gλ)−A of degree
d− 4`+ 3, contradicting the minimality of d.

3.2 Computation of H∗(G1
λ)

Throughout, we fix ` ∈ N and λ ∈ R is such that ` − 1 < λ ≤ `. Recall that, for each
0 ≤ k ≤ `, the strata U1

k consists of all almost complex structures J ∈ J 1
λ for which the

class E2k+1 has a J-holomorphic representative, and K1
k
∼= U(2) denotes the group of Kähler

isometries of a standard complex structure J2k+1 ∈ U1
k . Moreover, as was shown in §2.4,

G1
λ/K

1
k is weakly homotopy equivalent to the strata U 1

k .
This whole subsection is devoted to M 1

λ = (CP 2# CP 2, ω1
λ) and the computation of

H∗(G1
λ), a process which is completely analogous to what we did in the previous subsection

for H∗(G0
λ). To avoid unnecessary repetitions, we will just state the relevant lemmas,

propositions and corollaries, leaving all the proofs as exercises for the interested reader. In
order to simplify notation, we will also omit the superscript 1.

26



Proposition 3.16 (i) H∗(Gλ) is a free algebra. Moreover

H∗(Gλ) ∼= H∗(Uk)⊗H∗(Kk) , for all 0 ≤ k ≤ ` , (3)

as graded algebras.
(ii) For all 0 ≤ k ≤ `, H∗(Uk) ∼= H∗(U0).

The computation of H∗(Gλ) is again based on using the isomorphisms in (i) above and
on the Mayer–Vietoris sequences for the decompositions

U0...k = U0... k−1 ∪ N (Uk)

where N (Uk) is a neighborhood of Uk in U0...k. By Proposition 2.4 we may choose N (Uk)
to be a disc bundle over Uk, which in particular means that there is a fibration

S4k−1 → ∂N (Uk) → Uk .

Lemma 3.17 For all k ≤ `

H i(U0...k) = 0, 0 < i ≤ 4k + 2.

Proposition 3.18 For all 1 ≤ k ≤ ` there is an exact sequence

(MVk) : · · · → H i(U0...k) → H i(U0...k−1)
τ
→ H i−4k+1(Uk)

δ
→ H i+1(U0...k) → · · · .

From (MV1) and part (ii) of Proposition 3.16, we get immediately the following

Corollary 3.19 H1(Uk) = H2(Uk) = H4(Uk) = H5(Uk) = 0 and H3(Uk) ∼= Q, for all
0 ≤ k ≤ `.

Proposition 3.20 (i) In (MVk), for k < `, the boundary map

δk : Q = H3(Uk) → H4k+3(U0...k)

is an isomorphism.
(ii) If 1 ≤ k < ` the groups H4k+2+j(U0...k) = 0 for j = 2, 3. Moreover

H4`+2(U0...`−1) = Q,

H4k+6(U0...k) = 0, k < `− 1 .

Denote by d the smallest integer greater that 5 such that Hd(Uk) 6= 0. Although inde-
pendent of k (by Proposition 3.16), the value of d depends on the integer ` ∈ N that was
fixed at the beginning of this subsection, and we make that dependence explicit by writing
d`.

Proposition 3.21 d` = 4`+ 2, for any ` ∈ N.
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Since H∗(Gλ) is the product of an exterior algebra with a polynomial algebra, we now
know that

Λ(a, x, y)⊗ S(w) ⊂ H∗(Gλ) ,

with dega = 1, degx = deg y = 3 and degw = 4`+2. Here we define w as in Definition 3.10.
Our final task is to show that these are all the generators of H∗(Gλ), i.e., the above inclusion
is actually an equality of algebras.

For k = 0, 1, . . . , `, let vk ∈ H4`+2(Uk) denote the generator corresponding to w ∈
H∗(Gλ) under the isomorphisms of Proposition 3.16. As in the previous subsection, it
follows from the proof of the previous proposition that the restriction maps

H i(U0···k) → H i(U0···k−1)

are isomorphisms when 1 ≤ k ≤ `− 1 and 4`− 2 ≤ i ≤ 4`+ 2. Hence

i∗ : H4`+2(U0···k) → H4`+2(U0)

is an isomorphism for 0 ≤ k ≤ ` − 1, and we also denote by v0 the generator of each
H4`+2(U0···k) such that i∗(v0) = v0.

Lemma 3.22 Let ik denote the inclusion Uk → U0···k. Then i∗k(v0) = vk, for 0 ≤ k ≤ `−1.

The collapse of the spectral sequence of the fibration

S4k−1 → ∂N (Uk)
π
→ Uk ,

together with the fact that the fiber is an odd-dimensional sphere, implies that we have ring
isomorphisms

H∗(∂N (Uk)) ∼= H∗(S4k−1)⊗H∗(Uk), 1 ≤ k ≤ ` .

Hence we know that

H∗(∂N (Uk)) ⊇ Λ(π∗(yk), ẑ4k−1)⊗ S(π∗(vk)), 1 ≤ k ≤ `,

where the elements yk ∈ H3(Uk) and ẑ4k−1 ∈ H4k−1(∂N (Uk)) are as before. Thus the yk

are are defined as in Definition 3.10, and ẑ4k−1 is the restriction of z4k−1 ∈ H
4k−1(U0···k−1),

where z4k−1 is determined from the isomorphism τ : H4k−1(U0···k−1) → H0(Uk) in (MVk)
by the condition τ(z4k−1) = 1.

Lemma 3.23 Let jk denote the inclusion ∂N (Uk) → U0···k−1 and π the projection ∂N (Uk) →
Uk. Then j∗k : H∗(U0···k−1) → H∗(∂N (Uk)) satisfies:

(i) j∗k(v0) = π∗(vk), for 0 ≤ k ≤ `− 1;

(ii) j∗` (v0) = ẑ4`−1 · π∗(y`) + cπ∗(v`), with c 6= 0.

Lemma 3.24 z4k−1 and v0 generate free subalgebras of H∗(U0···k−1), for 1 ≤ k ≤ `.
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Proposition 3.25 In the exact sequence (MVk)

· · · → H i(U0···k)
i∗
→ H i(U0···k−1)

τ
→ H i−4k+1(Uk)

δ
→ H i+1(U0···k) → · · ·

(for 1 ≤ k ≤ `− 1), the maps i∗, τ and δ satisfy:

i∗(vn
0 ) = vn

0 τ(vn
0 ) = 0 δ(vn

k ) = 0
i∗(z4k+3 · vn

0 ) = 0 τ(z4k−1 · vn
0 ) = vn

k δ(yk · vn
k ) = c · z4k+3 · vn

0 , c 6= 0 .

The final argument to show that

H∗(Gλ) = Λ(a, x, y)⊗ S(w)

is exactly the same as in the previous subsection. More precisely, if

H∗(Gλ) 6= A = Λ(a, x, y)⊗ S(w),

then we can choose a non-zero element u of minimal degree d in H∗(Gλ) − A, and show
that this new element u would give rise to a new non-zero element in H∗(Gλ)−A of degree
d− 4`+ 1, which by minimality of d is a contradiction.

This completes the proof of Theorem 1.4.

4 The limit at infinity

In this section we consider the limit structure of the groups Gi
λ as λ → ∞. Our aim is

to show that this limit exists and can be identified (up to homotopy) with the group D of
fiberwise diffeomorphisms considered in §2.5. To begin with we will consider only the case
i = 0 and, as usual, will omit superscripts. However, as we will see in Remark 4.7, our
arguments apply to any ruled surface.

In order to consider the limit limλ→∞Gλ, we need to construct maps Gλ → Gλ+κ for
κ > 0. However, there is no very direct way to do this, and the best approach is rather to
include Gλ into a space G[λ,λ+κ] that deformation retracts onto Gλ+κ. Therefore we make
the following definitions.

Definition 4.1 Given a family Hλ, λ ∈ [0,∞) of subgroups of Diff(S2 × S2) that varies
smoothly with λ, define

H∞ =
⋃

λ>0

{(φ, λ) : φ ∈ Hλ} ⊂ Diff(S2 × S2)× R+,

H[λ,λ+κ] =
⋃

λ≤µ≤λ+κ

{(φ, µ) : φ ∈ Hµ} ⊂ Diff(S2 × S2)× R+.

Our first aim is to prove the following result, which shows that

G∞ = lim
λ→∞

G[0,λ]

is the homotopy limit of the Gλ as λ→∞.
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Proposition 4.2 The inclusion Gλ+κ → G[λ,λ+κ] is a weak homotopy equivalence.

To prove this proposition we must consider various enlargments of the groups Gλ.

Definition 4.3 We define G̃λ to be the set of all pairs (φ, τt), where φ ∈ Diff+(S2 × S2)
and τt, 0 ≤ t ≤ 1, is a smooth family of cohomologous symplectic forms such that τt = ωλ

for t near 0 and τt = φ∗(ωλ) for t near 1. Define an operation G̃λ × G̃λ → G̃λ by

(φ, τt) ◦ (φ′, τ ′t) = (φ ◦ φ′, (τ ∗ τ ′)t)

where

(τ ∗ τ ′)t =

{
τ ′2t if t ∈ [0, 1/2]
(φ′)∗τ2t−1 if t ∈ [1/2, 1]

With this operation, G̃λ is a homotopy associative H-space with homotopy identity and
homotopy inverse. Moreover, Gλ can be identified with the subgroup of G̃λ on which the
path τt is constant.

The next lemma follows immediately from the usual Moser argument.

Lemma 4.4 G̃λ deformation retracts onto its subgroup Gλ.

We would like to define a family of maps Gλ → G̃λ+κ. However, as we shall see, we have
to do something a little more elaborate. The next lemma will be useful.

Lemma 4.5 Let π : X → Σ be a smooth fibration of an oriented 4-manifold X over an
oriented 2-dimensional base manifold, and suppose that τ is a symplectic form on X whose
restriction to each fiber is nondegenerate. Then, if β is any nonnegative form on Σ, the
form τ + π∗(β) is symplectic.

Proof: For each x ∈ X let Hx ⊂ TxX be the 2-dimensional τ -orthogonal complement to
the tangent space ker dπ(x) to the fiber at x. An easy calculation shows that a form ρ must
be nondegenerate if it restricts to τ on the fibers and is a positive multiple of τ on each Hx.
QED

Let Sλ denote the space of symplectic forms on S2×S2 that are isotopic to ωλ, Folλ be
the space of smooth foliations of S2×S2 whose leaves are ωλ-symplectic spheres in class F ,
and Projλ be the space of smooth surjections p : S2×S2 → S2 whose fibers form an element
of Folλ and that are compatible with the obvious orientations. Then there is a fibration

Diff+(S2) → Projλ → Folλ.

Moreover, Diff+(S2) acts on the left on Projλ via ψ · p = ψ ◦ p, and the induced map

SO(3)\Projλ → Folλ

is a homotopy equivalence. The preceding lemma implies that there is a family of maps

sκ : Projλ → Sλ+κ
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given by
sκ(p) = ωλ + κp∗(σ),

where σ is the usual SO(3)-invariant area form on S2 of total area 1. Since σ is SO(3)-
invariant, we in fact have a map

sκ : SO(3)\Projλ → Sλ+κ.

Lemma 4.6 The map
Ψ : Jλ → Folλ

that takes J to the foliation by J-holomorphic spheres in class F is a homotopy equivalence.

Proof: This holds by standard arguments because the inverse image of each point in Folλ
is contractible. QED

Each of the spaces Sλ,Folλ,Projλ has an obvious base point. If Y is any based space we
write P∗(Y ) for the space of smooth paths in Y starting at the base point.

The choice of a deformation retraction of Jλ onto the split complex structure J0 defines
a map ιr : Jλ → P∗(Jλ) and hence a map

Gλ → P∗(Folλ) : φ 7→ φ∗(J0) 7→ ιr(φ
∗(J0) 7→ Ψ∗(ιr(φ

∗(J0))).

Thus there is a diagram

P∗(SO(3)\Projλ)
sκ→ P∗(Sλ+κ)

f ↗ ↓'
Gλ −→ P∗(Folλ)

in which the lifting f : Gλ → P∗(SO(3)\Projλ) is really defined only over compact subsets
of Gλ. Thus for each compact subset C of Gλ we have a map

fC : C → G̃λ+κ : φ 7→ (φ, sκ(f(φ)).

Moreover, this set of maps fC is compatible in the sense that if C1 ⊂ C2 then the restriction
of fC2

to C1 is homotopic to fC1
.

Proof of Proposition 4.2 This follows immediately from the preceding discussion. QED

Our next aim is to show that G∞ is homotopy equivalent to the group D of orientation
preserving fiberwise diffeomorphisms, which up to homotopy is the same as

D = SO(3)×Map(S2, SO(3)) .

Since the elements φ ∈ D preserve the fibers of the standard fibration π : S2 × S2 → S2,
Lemma 4.5 implies that the forms φ∗(ωλ) + κπ∗(σ) are symplectic for all κ. Moreover, for
sufficiently large κ the elements of the linear isotopy

t(φ∗(ωλ) + κπ∗(σ)) + (1− t)ωλ+κ, 0 ≤ t ≤ 1,
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are also all symplectic. Thus, if DK is the subset of D consisting of elements whose first
derivative is uniformly bounded by K, there is, for some constant κ(K) a natural map

DK → G̃λ+κ, κ ≥ κ(K).

Hence there is a map from the homotopy limit

D′ = lim
→
DK

to G̃∞. The obvious map D′ → D is a weak homotopy equivalence, and hence a homotopy
equivalence since both spaces have the homotopy types of CW complexes. Thus we may
define a map D → G∞ via the composite

D → D′ → G̃∞ → G∞.

To get a map the other way round, we must enlarge the group D. For each λ, let

DFol
λ = {φ ∈ Diff+(S2 × S2) : φ({p} × S2) is ωλ-symplectic for all p ∈ S2}.

One has a natural fibration
D → DFol

λ → Folλ .

Hence D ' DFol
λ for all λ, since Folλ is contractible by Lemma 4.6. Thus, defining DFol

∞ as
in Definition 4.1, we have

D ' DFol
∞ .

Since G∞ ⊂ DFol
∞ , we can define a map G∞ → D as the composite

G∞ → DFol
∞

'
−→ D.

This is the homotopy inverse to the map D → G∞ defined before because every compact
subset of DFol

λ is contained in G̃λ+κ for suitably large κ (the argument is the same as for
Dλ since Lemma 4.5 can be applied with τ = φ∗(ωλ) for any φ ∈ DFol

λ ).

Remark 4.7 The analog of this result is true for any ruled surface X , i.e. the limit,
when the ratio of the size of the base to that of the fiber goes to infinity, of the group of
symplectomorphisms of X is homotopy equivalent to the group of fiberwise diffeomorphisms
D(X) of X that act trivially on H2(X). When X is the product Σ×S2, this group D(X) has
the homotopy type of the product Diff+(Σ)×Map(Σ, SO(3)). In the case of the nontrivial
bundle, let Γ(Σ; SO(3)) denote the space of sections of the bundle over Σ with fiber SO(3)
that is associated to X . Note first that every area-preserving diffeomorphism φΣ of Σ does
lift to X . If φΣ is Hamiltonian, it is the time 1 map of the flow generated by the Hamiltonian
Ht, and a lift is given by the time 1 map of Ht ◦ π. A similar argument works in general,
since every area-preserving diffeomorphism of Σ is the time 1 map of the flow generated by
some family αt of closed 1-forms on Σ. When X → S2 is the nontrivial S2-bundle over S2

we worked out the homotopy type of the relevant group D(X) in §2.5: namely

D(X) ' SU(2)×Z/2Z Γ(S2; SO(3)).
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When genus(Σ) > 0 the fibration X → Σ is pulled back from CP 2# CP 2 → S2, and it is
not hard to see that elements in all components of Diff+(Σ) lift. Moreover, the action of
Diff+(Σ) on Γ(Σ; SO(3)) is trivial. Hence, in this case

D(X) ' Diff+(Σ)× Γ(Σ; SO(3)).

One can also consider the other limit, when the relative size of the base goes to zero. The
case X = S2 × S2 is exceptional, since there is an extra symmetry of X that interchanges
the base and fiber. For all other X the fiber class F is distinguished by the fact that every
tame J defines a fibering of X by J-holomorphic spheres in class F . When X = CP 2# CP 2

the limit that we are now considering is given by λ→ −1, and the groups Gλ stabilize: by
Gromov’s work they all equal U(2) as soon as λ ≤ 0. It would be interesting to know if this
result had analogs when genus(Σ) > 0.

5 Relation with Kronheimer’s work

In [9], Kronheimer described some nontrivial families FX of cohomologous symplectic struc-
tures on certain 4-manifolds X . In particular he showed how to construct a family F` of
symplectic forms ων on S2 × S2 in class [ωλ] that are parametrized by ν ∈ S4`+1. In many
cases, he shows by an argument using Seiberg–Witten invariants that FX represents a non-
trivial homotopy class in the appropriate space SX of cohomologous symplectic forms on X .
Since his argument only works when b+(X) is sufficiently large, it does not apply directly
to S2×S2 or to CP 2# CP 2. In this section we exploit the close connection between F` and
w` to show that F` is nontrivial also in these cases.

As was pointed out at the beginning of the introduction, both M 0 = S2 × S2 and
M1 = CP 2# CP 2 have a unique symplectic structure in each permissible cohomology class.
In particular, this means that the spaces

Si
λ ≡ {all symplectic forms on M i representing the cohomology class [ωi

λ]}

are homogeneous for the groups Diff(M i) of all diffeomorphisms of M i:

Si
λ
∼= Diff(M i)/Gi

λ, i = 0, 1.

The corresponding fibration
Gi

λ −→ Diff(M i) −→ Si
λ

has an associated long exact sequence

· · · → πk(Diff(M i)) → πk(Si
λ)

∂
→ πk−1(G

i
λ) → πk−1(Diff(M i)) → · · · .

Since the rational cohomology of any H-space is freely generated by its rational homotopy,
Theorems 1.1 and 1.4 imply that π∗(G

i
λ)⊗Q has 4 generators, in degrees 1, 3, 3 and 4`+2i.

The first three of these map to nonzero elements in Diff(M i), but the fourth does not since
it already vanishes in Gi

λ+1. Hence it must lie in the image of the boundary map ∂ of the
above long exact sequence. Thus we have:
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Proposition 5.1 For i = 0, 1, and 0 ≤ ` − 1 < λ ≤ `, ` ∈ N, there exists a non-zero
element Fλ ∈ π4`+1+2i(Si

λ) whose image in π4`+2i(G
i
λ) maps to a non-trivial generator of

H4`+2i(G
i
λ,Q).

Remark 5.2 When ` = 0 (i.e. λ = 0 for i = 0, or −1 < λ ≤ 0 for i = 1) the boundary map
∂ : π1+2i(S

i
λ) → π2i(G

i
λ) is zero.

Kronheimer gave an explicit construction for this element F` at least in the case λ = `,
which shows clearly why it vanishes when λ increases past `. We will first describe this
construction and then relate it to the picture given in Definition 3.10 of w`. As usual, we
restrict to the case i = 0 and omit superscripts. The case i = 1 is almost identical.

The construction goes as follows. Let V be an open neighborhood of {0} ∈ C2`+1. For
` ≥ 1 Kronheimer constructs in [9] §3 a smooth family

(Xv, Jv , τv
` ), v ∈ V − {0},

of Kähler manifolds diffeomorphic to X = S2 × S2 with Kähler form τv
` in class [ω`]. This

family can be completed by a complex fiber (X0, J0) over 0 in such a way that the following
conditions are satisfied.

(i) The whole family X = ∪v∈V X
v, is smoothly trivial, i.e. is fiberwise diffeomorphic to

X × V . Moreover there is a complex structure on X that restricts to J v on each fiber
Xv, and a closed (1, 1) form τ` on X that restricts to τv

` when v 6= 0.

(ii) The restriction of τ` to X0 degenerates along a holomorphic curve ∆ in class E2`+2 =
E0 − (`+ 1)F .

(iii) For any λ > ` there is a Kähler form τλ on X whose restriction τv
λ to each Xv lies in

the class [ωλ]. Moreover the family τµ, µ ≥ `, varies smoothly with µ.

Condition (ii) implies that (X0, J0) is simply (S2 × S2, J2`+2). The complex variety Y 0

that is obtained from X0 by collapsing the curve ∆ has a quotient singularity of the form
C2/C2`+2 where Cp is the cyclic group of order p acting diagonally. If Y is obtained from X

by collapsing ∆, Y is smooth and the form τ` descends there. In fact, as is explained in [9] §5,
Y is the Artin component of the universal unfolding of this given quotient singularity, and
X is its simultaneous resolution.

Several points in this construction are relevant to us. First observe that we can consider
the forms τv

λ to lie on the fixed manifold X = S2 × S2 by using the smooth trivialization
given in (i). When λ = ` we therefore get a family τ ν

` , ν ∈ V − {0}, of Kähler forms on X
and hence an element F ′` ∈ π4`+1(S`). We will show:

Proposition 5.3 ∂(F ′`) 6= 0 where ∂ : π∗+1(S`) → π∗(G`) is the boundary map considered
above.

Thus we can take F` = F ′` in Proposition 5.1. This picture explains why Fλ vanishes
when λ increases beyond `. For, as mentioned in (iii) above, the family τ v

` , v ∈ V − {0},
smoothly deforms to a family τ v

λ , λ > `, that extends to v = 0. Using this, it is easy to see
that if G` → Gλ is constructed as in §4, ∂(F`) is in the kernel of the induced map on π4`.
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As a first step in the proof of this proposition, observe that when λ > ` we can trivialize
the family (Xv, τv

λ ), v ∈ V, as a family of symplectic manifolds, identifying them all with
(S2 × S2, ωλ). This gives us a family

Vλ = {Jν : ν ∈ V }

of elements of Jλ. Condition (ii) implies that J0 is an element in the stratum U`+1 that
we can identify with J2`+2. Moreover, as pointed out at the end of [9] §4, this family Vλ is
transverse to U`+1. In fact, since U`+1 has (real) codimension precisely 4`+2 in Jλ, Vλ is a
normal slice to U`+1. Therefore, we can investigate the structure of the links of one stratum
in another by looking at the intersections of these strata with Vλ. In particular, none of
these intersections is empty and the boundary of the intersection U` ∩ Vλ can be identified
with the link L`+1.

Now, let us look at the corresponding picture when λ = `. In this case, we restrict v to
a small (4`+ 1)-sphere SV that encloses {0} in V and pick a basepoint ∗ ∈ SV at which J∗

is diffeomorphic to the standard split structure. Let D be a neighborhood of ∗ in VS that is
diffeomorphic to an open disc and is small enough that the Jv for v ∈ D are all split. Then
trivialize the symplectic manifolds (Xv, τv

` ) for v in the disk VS −D, identifying them all
with (S2 × S2, ω`). This gives us a smooth family

W` = {Jν : ν ∈ VS −D} ⊂ J`.

Moreover, our choice of D implies that ∂W` lies entirely in U0. Thus we get an element β`

of π4`(U0).

Lemma 5.4 This element β` ∈ π4`(U0) lifts to ∂(F ′`) ∈ π4`(G`).

Proof: To see that β` lifts to G`, we just need to perform the previous construction with
a little more care. By construction, we can identify all the Kähler manifolds (Xv, Jv , τv

` ),
v ∈ D, with the standard model (S2 × S2, J0, ω`). Then the manifolds (Xv, τv

` ), v ∈ ∂D,
have two identifications with S2×S2 and the difference between these two gives the desired
lift. This lift represents ∂(F ′`) by the definition of the boundary map ∂. QED

The next claim is that the sets

W` ⊂ J`, and Vλ ⊂ Jλ, λ > `,

fit together nicely as λ varies. More precisely, define

Wλ = {Jν : ν ∈ SV −D},

and, for some ε > 0, consider the space

W =
⋃

µ∈[`,`+ε)

Wµ.

Each space Wλ inherits a stratification from Jλ, and it is not hard to see that by careful use
of the Moser method one can construct all the symplectic trivializations to vary smoothly
with µ. Thus we have:
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Lemma 5.5 The stratifications of each Wµ fit together to give a stratification of W by the
sets U0 ∩W , . . . , U` ∩W. In particular, the intersections Uk ∩Wµ for µ = ` and µ > ` are
diffeomorphic.

Corollary 5.6 The intersection U` ∩ W` is a connected 3-dimensional set that represents
a generator of H3(U`).

Proof: By the previous lemma it suffices to prove this for µ > `. But we remarked before
that the boundary of the intersection U` ∩Vλ can be identified with the link L`+1. Now use
Corollary 3.2. QED

Remark 5.7 One can construct W` so that it is invariant under the action of the SU(2)
factor in the automorphism group K`+1 of J2`+2. Then the intersection U` ∩W` is just an
SU(2)-orbit and so, by Lemma 2.10, represents the class ξ + (`+ 1)2η.

The proof of Proposition 5.3 is completed by the following result.

Proposition 5.8 The image v0 of w` in H4`(U0) does not vanish on β`.

Proof: W` is a (4`+1)-dimensional disk in J` that intersects all the strata Uk transversally.
We have just seen that it intersects U` in a cycle C that generates H3(U`). Let Z ⊂W` be
the boundary of a tubular neighborhood N (C) of C. Then, Z has dimension 4` and lies in
(U0...`−1)∩W`. In the notation of Remark 3.11, Z = C ∗D, where in fact C = ξ+ (`+ 1)2η
(though this will not be needed.) Thus ŷ`(Z) 6= 0. Further, since C = W` ∩ U`,

W` −N (C) ⊂ U0...`−1.

Since C is connected, H4`−4(W` −N (C)) = Q. Hence the cycle Z − β` is null homologous
in W` −N (C) and hence in U0...`−1. Thus

v0(β`) = ŷ`(β`) = ŷ`(Z) 6= 0,

as claimed. QED

6 Whitehead products and H
∗(BGλ)

Here we exhibit the w` as dual to certain higher products in the Lie algebra π∗(Gλ)⊗Q. Thus
they are desuspensions of higher Whitehead products in π∗(BGλ), and hence, via the work
of Andrews–Arkowitz [4], give rise to relations in the rational cohomology of the classifying
spaces H∗(BGλ). In fact, our knowledge of H∗(Gλ) allows us to calculate the differential
graded Lie algebra π∗−1(BGλ) ⊗Q and hence to determine the rational homotopy type of
BGλ.2 In particular, since H∗(BGλ) is not a free ring, BGλ does not have the rational
homotopy type of an H-space.

2The calculations in §3 show that Gλ, and hence BGλ, has finite rational homotopy type. Moreover
π1(BGλ)⊗Q = 0. Thus the work of [4] applies.
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First recall (see for example Ch X of [18]) that for any group G the Samelson product
[α, β] ∈ πp+q(G) of elements α ∈ πp(G) and β ∈ πq(G) is represented by the map

Sp+q = Sp × Sq/Sp ∨ Sq −→ X : (u, v) 7→ α(u)β(v)α(u)−1β(v)−1.

(For simplicity of notation, we will use the same letter for a map τ : C → X as for the
element of homotopy or homology that it represents.) The Samelson product in π∗(G) is
related to the Pontrjagin product ∗ in H∗(G,Z) by the formula

[α, β] = α ∗ β − (−1)pqβ ∗ α ∈ H∗(G).

Here we have suppressed mention of the Hurewicz map π∗(G) → H∗(G), and have written
α ∗ β for the cycle

Sp × Sq → G : (u, v) 7→ α(u) · β(v).

Thus the domain Dom(α∗β) of α∗β is Sp×Sq, while Dom(β∗α) is Sq×Sp. Moreover, if we
think of α, β ∈ π∗(G) as the desuspensions of elements E(α), E(β) in π∗(BG), the Samelson
product [α, β] is (up to sign) the desuspension of the Whitehead product [E(α), E(β)] ∈
πp+q+1(BG): see [18] Thm (X.7.10). Hence the Samelson products in G vanish if BG itself
is an H space, since Whitehead products vanish in H-spaces.

We will say that α, β are commuting representatives for their respective classes if

α(u)β(v) = β(v)α(u) for all u, v ∈ Dom(α) ×Dom(β).

Thus, in this case, [α, β] is trivially 0.
Let us first consider the case i = 0 and 0 < λ ≤ 1. As usual we suppress the superscript

i and write w instead of w`. We will also write G instead of Gλ and will work with rational
coefficients. Further, let α = α1 : S1 → G and ξ = ξ0 : S3 → G be as in §2.5. Note that
[ξ, η] = 0 because ξ, η have commuting representatives in K0, while [ξ, ξ] and [η, η] vanish
because π6(S

3) is finite.

Lemma 6.1 For 0 < λ ≤ 1, [α, ξ + η] = 0 while w([α, ξ]) 6= 0.

Proof: By Lemma 2.10 the classes α and ξ + η have commuting representatives in K1 ⊂
G = Gλ, which proves the first statement.

To prove the second, note first that because ξ has image in K0, it maps to a trivial
element in U0 = G/K0. Hence the image of [α, ξ] = α ∗ ξ + ξ ∗ α in H4(U0) is simply the
Pontrjagin product ξ ∗ α. Now G maps to U0 via φ 7→ φ∗(J) where we can choose any
J ∈ U0. If we choose J ∈ N (U1) very close to J1 ∈ U1 then the loop θ 7→ α(θ)∗(J) circles
the stratum U1 while the sphere u 7→ ξ(u)∗(J) is a copy in N (U1)−U1 of a generating cycle
for H3(U1). Thus the map

H∗(∂N (U1)) → H∗−1(U1)

induced by integration over the fiber takes the Pontrjagin product ξ ∗ α to a generator of
H3(U1). Since this map is dual to the map τ occuring in (MV1) it follows from Definition
3.10 that the element v0 ∈ H4(U0) that corresponds to w takes a nonzero value on ξ ∗ α.
QED
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Corollary 6.2 When 0 < λ ≤ 1, H∗(BGλ) = Q[A,X, Y ]/{A(X − Y ) = 0}, where A has
dimension 2 and X,Y have dimension 4.

Proof: The structure theorem for the rational cohomology of an H-space G states that
H∗(G) is freely generated as a graded algebra by the rational homotopy groups π∗(G)⊗Q.
Thus π∗(G) ⊗ Q = 0 for ∗ 6= 1, 3, 4, and is generated by the elements α, ξ, η, [α, ξ]. Since
[α, ξ + η] = 0, the only nontrivial Whitehead product in BG (including higher order ones)
is the surjective map

[·, ·] : π2(BG)⊗ π4(BG)⊗Q → π5(BG)⊗Q = Q,

with kernel E(α) ⊗Q(E(ξ + η)). By [4] Theorem 5.4, the dual of this map corresponds to
a relation in H∗(BG).

More precisely, when one constructs the minimal model M of H∗(BG), there is a gen-
erator A ∈ M2 dual to E(α), generators X and Y in M4 dual to E(ξ) and E(η), and a
generator W in M5 corresponding to E([α, ξ]). The image dW of W under the differential
d : M5 →M6 is dual to the above Whitehead product map [·, ·]. Hence dW = A(X − Y ).

Moreover, if A denotes the vector space of indecomposable (or primitive) elements in
M and M≥k is the subalgebra generated by A⊗k the differential d : M → M/M≥k+2 is
determined by the nonvanishing Whitehead products of order ≤ k. In the case of BGλ for
0 < λ ≤ 1 it is only the first order, i.e. the usual, Whitehead products, that can be nonzero,
since these account for the whole of π∗(G). It follows that H∗(BG) has only the one relation
A(X − Y ) = 0. QED

Remark 6.3 Another way of seeing the relation between Samelson (or Whitehead) prod-
ucts and H∗(BG) is to look at the cohomology spectral sequence of the fibrationG→ EG→
BG. In general, the relation is complicated, and the more natural spectral sequence to look
at is one constructed by Quillen: see Allday [2]. However, in the case considered above it
is not too hard to work out what happens since only first order products are involved. The
differential

d0,q
2 : H0(BG) ⊗Hq(G) → H2(BG)⊗Hq−1(G)

takes a to A, and x, y to 0, and, when q = 4, its restriction to the the primitive part of
H4(G) is dual to the Samelson product

H2(BG)⊗H3(G) ∼= π1(G)⊗ π3(G)⊗Q → π4(G) ⊗Q.

Thus
d0,4
2 (w) = A⊗ (x − y) = d2(a ∪ (x− y)),

so that
E0,4

3
∼= E0,4

4
∼= Qŵ.

Similarly,
d0,4
4 : H0(BG) ⊗H4(G) → H4(BG)⊗H1(G)

is dual to the Samelson product and so takes the generator ŵ of E0,4
4 to the element a(X−Y )

of
E4,1

4 = Ker(d4,1
2 ) ⊂ H4(BG)⊗H1(G).

Thus a(X − Y ) must lie in the kernel of d4,1
2 , i.e. A(X − Y ) = 0 in H∗(BG).
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Next, let us consider the case 1 < λ ≤ 2, i.e. ` = 2. We will discuss this case in detail
since it is a paradigm for the others. Now, the first order Samelson products [α, ξ], [α, η]
both vanish since [α, ξ + η] = 0 as before, and the classes α and ξ + 4η have commuting
representatives in K2. Hence all first order Samelson products vanish. Therefore, the second
order Samelson product

[α, ξ, ξ] ∈ π8(G)⊗Q

is defined. As explained in [2], in general [α, ξ, ξ] should be considered as a coset in π8(G)⊗Q,
but this is reduced to a single element because the relevant homotopy groups vanish. More
precisely, given two maps βi : Spi → X , i = 1, 2, whose Samelson product

[β1, β2] : Sp1+p2 → X

is null-homotopic, let us write C[β1, β2] for the chain given by a particular choice of null-
homotopy Dp1+p2+1 → X . (This is unique up to homotopy.) Then, Allday shows in [5] §2
that the image of [α, ξ, ξ] in H8(G) is represented by

[α, ξ, ξ] = [C[α, ξ], ξ] + [C[ξ, ξ], α] + [C[ξ, α], ξ] = 2[C[α, ξ], ξ] + [C[ξ, ξ], α],

since [α, ξ] = [ξ, α]. This is a cycle because of the Jacobi identity. Its suspension is the
obstruction to extending the map

E(α) ∨ E(ξ) ∨ E(ξ) : S2 ∨ S4 ∨ S4 −→ BG

to the product S2 × S4 × S4.

Lemma 6.4 When ` = 2,

(i) [α, ξ + η, ξ + η] = [α, ξ + 4η, ξ + 4η] = 0.

(ii) w2([α, ξ, ξ]) 6= 0.

Proof: First observe that when k = 1 or 2, one can choose commuting representatives for
α and ξ+ k2η in Kk. Moreover, one can also choose a representative for C[ξ+ k2η, ξ+ k2η]
that lies in the SO(3) factor of Kk and so commutes with α. This proves (i).

Now consider (ii). As in Lemma 6.1, let us look at the image of this cycle in U0. Since
[ξ, ξ] = 0 in H∗(K0) we can choose C[ξ, ξ] to lie in K0. Therefore, in U0 = G/K0 the class
[α, ξ, ξ] is represented by

2ξ ∗ C[α, ξ] + C[ξ, ξ] ∗ α.

Note that G acts on J = Jλ by J 7→ φ∗(J), and we may choose the neighborhood N (U1) to
be invariant under the induced action of the compact group K0. Further, given a K0 action
K0 × V → V , we write ∗ to denote the induced product

∗ : Hi(K0)⊗Hj(V ) → Hi+j(V ).

If we choose J ∈ N (U1)−U1 as in Lemma 6.1, the chains C[ξ, ξ], α, and C[ξ, ξ] ∗α all have
representatives in N (U1)−U1. In particular, C[ξ, ξ] ∗ α can be considered as an element of
H8(N (U1), ∂N (U1)) with boundary −2ξ ∗ [α, ξ] ∈ H7(∂N (U1)). But

H8(N (U1), ∂N (U1)) ∼= H4(U1) = 0.
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Thus we can replace the chain C[ξ, ξ] ∗ α (which does not intersect U1) by any chain with
the same boundary. But there is an obvious chain in N (U1) with boundary [α, ξ] = ξ ∗ α,
namely, ξ ∗ D where D is a 2-disc in N (U1) that is transverse to the stratum U1. Thus
[α, ξ, ξ] is represented by

ξ ∗ (C[α, ξ] − 2ξ ∗D),

where C[α, ξ]− 2ξ ∗D is a 5-cycle in U01. Observe that D has non trivial intersection with
U1 while C[α, ξ] lies in U0. Hence the cycle C[α, ξ] − 2ξ ∗D has nontrivial linking number
with U2. In other words, its image under the map τ : H5(U01) → H0(U2) of (MV2) is
nonzero. The desired conclusion now follows from Definition 3.10. QED

Corollary 6.5 When 1 < λ ≤ 2, H∗(BGλ) = Q[A,X, Y ]/{A(X−Y )(4X−Y ) = 0}, where
A has dimension 2 and X,Y have dimension 4.

Proof: Again, the relations in H∗(BG) are dual to the nonzero higher Whitehead products
in π∗(BG): see [4] Thm 5.4. Since [α, α] = 0, the three elements α, ξ, η are transgressive
and give rise to nonzero elements A,X, Y of H∗(BGλ). Moreover, since only one of the
groups π∗(BG) ⊗ Q = π∗−1G ⊗ Q for ∗ > 4 is nonzero, there can be at most one relation
between these generators. In fact, the question here is to decide whether the new element
w` is transgressive in the spectral sequence of the fibration G → EG → BG, i.e. gives rise
to a new generator of H∗(BG), or whether it gives rise to a relation between the existing
generators. The previous lemma tells us that the latter holds. Thus there is exactly one
nontrivial relation F = 0 in H∗(BG). Since it corresponds to a second order Whitehead
product, F is homogeneous of order 3 in the variables A,X, Y , and we can think of it as
a symmetric trilinear function on the vector space V that is spanned over Q by a basis
{eα, eξ, eη} dual to {A,X, Y }. The vanishing results in Lemma 2.10 (i) tell us that

F (eα, eξ + eη, eξ + eη) = 0, F (eα, eξ + 4eη, eξ + 4eη) = 0.

Since F (eα, eξ, eξ) 6= 0, F has to be a nonzero multiple of A(X − Y )(4X − Y ), as claimed.
QED

When ` > 2 the argument is similar. We first explain higher order Whitehead products.
Suppose given maps βi : Spi → X such that

β1 ∨ . . . ∨ βk : Sp1 ∨ . . . ∨ Spk −→ X

extends to a map f of the (p−1)-skeleton TI of PI = Sp1× . . .×Spk into X , where p =
∑

i pi

and I = (p1, . . . , pk). Then the usual higher Whitehead product [β1, . . . βk] is defined to be
the set of all obstructions Ob(f) to extending f over PI , where f ranges over all possible
extensions to TI . Thus this product is a coset in πp−1(X) ⊗Q. In our situation the space
X corresponds to BG and we must consider the analogous higher order products in G.
These are also called higher Whitehead products (though it might be more logical to call
them higher Samelson products.) As usual the pth order products are defined only when
all relevant lower order ones vanish. According to [3] §3 they can be defined inductively as
follows. Again, we will be somewhat sloppy with notation, and will consider the formulas
below to define representatives of the given classes, as well as the classes themselves.
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Suppose given representatives ξi of elements ξi ∈ πni
(G) ⊗ Q, and let I be a proper

subset {j0, . . . jk} of In = {0, 1, 2, . . . , n}. Then the kth order Whitehead product

νI = [ξj0 , . . . , ξjk
] ∈ πNI

(G)⊗Q

of the elements ξj0 , . . . , ξjk
has degree NI = k +

∑
j∈I nj if it is defined. If νI is null-

homotopic, then the corresponding map from the NI -skeleton TI of the product of spheres

PI = Sn1+1 × . . .× Snk+1

extends to PI and, as above, we write CνI for this extension. We should think of CνI as a
singular chain with boundary νI . (Usually it depends on choices, though in our situation it
will not.) We extend this definition to singleton sets I = {j}, by setting CνI = ξj in this
case.

Now suppose that these chainsCνI are defined for all proper subsets I of In = {0, 1, . . . , n}.
In this situation Allday shows that a representative for the nth order product is given by a
formula of the type

νIn
= [ξ0, . . . , ξn] =

∑

I⊂In

±[CνI , CνIn−I ]

where the sign depends on the shuffle (I, In − I).3

In our situation, all intermediate homotopy groups vanish and so the nth order product
ζn = [α, ξ, . . . , ξ] represents a single element of π4n(G) ⊗ Q. Moreover, it is determined in
terms of the ζk for 0 ≤ k < n and in terms of the pth order products ξp = [ξ, . . . , ξ] which
we can consider as (null homologous) cycles in K0. (Here we take ζ0 = α.) Moreover,

ζn = [α, ξ, . . . , ξ] = `[ξ, Cζn−1] + lower order terms

where by lower order terms we mean terms of the form [Cξp, Cζn−p] with p > 1.
In the next lemma we think of ξp, Cξp as chains in K0 that, as in Lemma 6.4, act via

the Pontrjagin product ∗ on chains in Jλ. In particular, we denote by S the link of U` in
Jλ. Thus S ∼= S4`−3 and ξ ∗ S is a cycle in U0...`−1. By Remark 3.11, this cycle generates
H4`(U0...`−1) ∼= H4`(U0). Hence the next lemma implies immediately that w`(ζ`) 6= 0.

Lemma 6.6 If `− 1 < λ ≤ `, the `th order Whitehead product ζ` ∈ π4`(Gλ)⊗Q is defined
and its image in U0...`−1 ⊂ Jλ may be represented by a nonzero multiple of the cycle ξ ∗ S
described above.

Proof: We prove this by induction on `. It is true when ` = 1, 2 by our previous work. To
prove it for ` > 2 we start, as in Lemma 6.4, from the equation

ζ` = [α, ξ, . . . , ξ] = ` [ξ, Cζ`−1] + lower order terms.

Since ξp and Cξp lie in K0 the image of ζ` in U0 = G/K0 has the form

`ξ ∗ Cζ`−1 + terms of the form Cξp ∗ Cζ`−p. (4)

3In fact, Allday interprets this formula in the minimal model of X = BG, showing that it defines a
primitive element there. Therefore it is spherical and can be considered as an element in π∗(BG) ⊗ Q =
π∗−1(G) ⊗Q.
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Again, the boundary of ξ ∗ Cζ`−1 is ξ ∗ ζ`−1. By the inductive hypothesis, the cycle ζ`−1

can be represented in a deleted neighborhood N (U`−1) − U`−1 of U`−1. Moreover, if we
choose this neighborhood to be K0-invariant, we can represent ξ ∗ ζ`−1 and all the cycles
Cξp ∗Cζ`−p, p > 1, in the above formula there as well. Note, however, that Cζ`−1 cannot be
represented there since, by the inductive hypothesis ζ`−1 = ξ ∗ S, which is clearly nonzero
in H∗(∂N (U`−1)). On the other hand, S is bounded by a ball D in the full neighborhood
N (U`−1) so that ζ`−1 is the boundary of ξ ∗D in N (U`−1). Therefore, as in Lemma 6.4, we
can replace the sum of terms Cξp ∗ Cζ`−p in equation (4) by a suitable multiple of ξ ∗D.
The result now follows as before. QED

Corollary 6.7 When `− 1 < λ ≤ `,

H∗(BGλ) = Q[A,X, Y ]/{A(X − Y )(4X − Y ) . . . (`2X − Y ) = 0},

where A has dimension 2 and X,Y have dimension 4.

Proof: By Lemma 2.10 all `th order Whitehead products of the form

[α, ξ + k2η, . . . , ξ + k2η], 1 ≤ k ≤ `,

vanish in π∗(Gλ). The rest of the proof is much the same as the proof of Corollary 6.5 and
is left to the reader. QED

This proves Theorem 1.2. The proof of the corresponding result for CP 2# CP 2 will, as
usual, be left to the reader.
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