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Topology Optimization Accelerated by Deep Learning 
 

 Hidenori Sasaki1, Hajime Igarashi1, IEEE Member  
 

1 Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan  

 

The computational cost of topology optimization based on stochastic algorithm is shown to be greatly reduced by deep learning. In 

the learning phase, the cross-sectional image of an IPM motor, represented in RGB, is used to train a convolutional neural network 

(CNN) to infer the torque properties. In the optimization phase, all the individuals are approximately evaluated by the trained CNN, 

while finite element analysis for accurate evaluation is performed only for a limited number of individuals. It is numerically shown that 

computational cost for the topology optimization can be reduced without loss of optimization quality. 

 
Index Terms— Deep learning, Convolutional neural network, Topology optimization, Approximate computing, IPM motor.  

 

I. INTRODUCTION 

HE the parameter optimization of electric machines seeks 

for an optimal solution in the space spanned by the user-

defined design variables such as length, nodal position, angle 

and so on. While this approach has been widely used in 

industries, it would be difficult to choose the adequate design 

variables to find a solution with a satisfactory performance. In 

contrast, the topology optimization does not require setting of 

the design variables. Moreover, because of the high flexibility 

in the topology optimization, which allows appearance and 

disappearance of holes in a design region and free modification 

of material boundaries, one can find a novel machine structure 

with excellent performance. It has been shown that the topology 

optimization based on stochastic algorithm, especially the 

genetic algorithm (GA), is fairly suitable for the topology 

optimization of rotating machines [1, 2]. However, this 

approach requires large computational cost because of a huge 

number of fitness evaluations using. e.g, the finite element 

method (FEM). 

    For reduction of the computational cost in optimization, the 

approximate computing based on, for example, the response 

surface method [3] and Kriging method [4] would be effective 

when the dimension of the design space is less than, say, ten. 

However, the result of the topology optimization is, in general, 

an image whose degree of freedoms is far larger than that 

adequate for the above methods. The artificial neural network 

(ANN) has been shown effective for the approximate 

computing for the parameter optimization [5]. It is, however, 

often difficult to make an adequate choice of the image features 

to build the input data for ANN. In contrast, when using deep 

learning (DL) for image processing, image can be directly input 

to a DL system without the feature design [6]. 

    In this paper, we propose the use of DL for reduction of 

computing burden in the topology optimization. The authors 

have shown that DL can accurately infer the torque 

performance of an interior permanent magnet (IPM) motor 

from the cross-sectional image in RGB [7]. In this paper, it is 

shown that DL is indeed effective for the reduction of 

computing complexity in the topology optimization. The 

several ways of the possible use of DL for this purpose are also 

proposed. 

II. TOPOLOGY OPTIMIZATION WITH AID OF DEEP LEARNING 

 Topology Optimization Method 

We adopt the topology optimization based on the normalized 

Gaussian function [1, 2] for the test of the proposed method, 

which will be briefly described below, while the proposed 

method can be applied to any topology optimization method in 

principle. For the numerical examples, we optimize the 

structure of an IPM motor. To evaluate the performance of an 

IPM motor, magnetostatic magnetic field is analyzed by FEM. 

    We introduce the shape function 𝜑 defined by 

𝜑(𝒙) = ∑ 𝑤𝑖

𝑛

𝑖=1

𝐺̃(𝒙 − 𝒙𝒊),                                           (1a) 

𝐺̃(𝒙 − 𝒙𝒊) ≡
𝐺(𝒙 − 𝒙𝒊)

∑ 𝐺(𝒙 − 𝒙𝒋)𝑛
𝑗=1

                                            (1b) 

where 𝐺 denotes the Gaussian function of the d-th dimension 

that is centered at 𝒙𝑖 , 𝑖 = 1,2, … 𝑛. The Gaussians are uniformly 

deployed in the design region. Because we consider here two-

dimensional magnetic fields, d is set to 2. The material attribute 

𝐴𝑒 = {iron, air} of finite element e is determined from 

𝐴𝑒 = "iron"  if 𝜑(𝒙𝑒) ≥ 0, 
𝐴𝑒 = "air"  else,                                              (2) 

where 𝒙𝑒  is the gravitational center of element e. In the 

topology optimization, the weights 𝑤𝑖 , 𝑖 = 1,2, … , 𝑛,  are 

determined, using GA in this study, so that the cost function is 

minimized. The standard deviation included in the Gaussian 

function is taken larger than the size of the finite elements to 

avoid convergence to complicated structures. 

 Deep Learning 

We adopt DL based on the convolutional neural network 

(CNN) [6] to perform fast evaluation of the performance of an 

IPM motor. In this study, the cross-sectional images in RGB 

(𝑁 = 3) appeared during the optimization process of an IPM 

motor are chosen for the input data to CNN. It is also possible 

to use the weighting coefficients 𝑤𝑖  in (1a) as the input data to 

T 
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CNN. However, they are highly problem-dependent. Hence, the 

CNN trained with 𝑤𝑖  is no more valid for other models with a 

different design region or different 𝑛. On the other hand, the 

image has universality in a sense that many image features are 

common for different models. For this reason, we use the image 

as the input to CNN. In our study, CNN is trained to classify 

different-shaped motor models into categories relevant to the 

grade of motor properties such as average torque, torque ripple 

and efficiency. 

 

 Use of Deep Learning for Optimization 

There are two possible ways in the use of DL for acceleration 

of the topology optimization: on-line and off-line methods. In 

the former, CNN is trained during an optimization process, 

whereas CNN is trained in the learning phase prior to the 

optimization in the latter case. We will make a discussion about 

the former elsewhere, while we confine ourselves to the latter 

in this paper. 

The data for training of CNN has to include pairs <image, 

property> with sufficient diversity. When considering the 

average torque of an electric motor, for example, we need as 

uniform distribution of average torque as possible. It would be 

hard to obtain such data by randomly generation of input 

images because this would provide only low-torque motors. For 

this reason, we generate the training data by performing a 

preliminary topology optimization to maximize average torque 

which would provide a set of motors with well-distributed 

torques. Then the trained CNN is used for acceleration of the 

topology optimization. 

Possible ways for the effective use of CNN in the topology 

optimization are listed in Table 1. In case (i), the trained CNN 

is used for the optimization problems 𝜋2, 𝜋3 etc. which include 

cost functions or constraints that are different from those in the 

preliminary optimization 𝜋1. In case (ii), CNN is trained with 

the data obtained by the optimization for model m1. Then the 

trained CNN is used as the approximate computing method in 

the optimization for different models m2, m3, etc. In the 

optimization of an IPM motor, the different model would have 

different magnet position or motor radius, for example. 

Similarly, in (iii), CNN trained for a set of random seeds in the 

GA process is used in the optimization phase with different sets 

of random seeds. In (iv), CNN is firstly trained with the data 

obtained by the optimization with small population size in GA. 

Then the trained CNN is used for the optimization with larger 

population size. In this paper, the feasibility of the proposed 

method for cases (i) and (ii) is discussed with numerical results. 

Case (iv) is effective especially for multi-objective problems 

that need a large computational cost, which is discussed in [8]. 

 
Table I Use of deep learning for optimization 

 Learning phase Optimization phase 

(i) problem 𝜋1 problems 𝜋2, 𝜋3, …  

(ii) model m1 models m2, m3, … 

(iii) random seed s1 random seed s2, s3, … 

(iv) small population size large population size 

 

 Reduction in Number of Fitness Evaluation with FEM 

In the optimization phase, the fitness evaluation can be 

performed only using the trained CNN without FE analysis. 

However, this might result in an unsuccessful optimization 

result because of the error in the evaluation with CNN. For this 

reason, we introduce the probability 𝑝 of FE analysis depending 

on the category 𝐹 of an individual provided by CNN. For the 

individual belonging to a category with low performance, 𝑝 is 

set low because they would not survive in the next generation. 

In contrast, the additional FE analysis for highly accurate 

evaluation is made at high 𝑝 for individuals in categories with 

high performance. The design of probability distribution 

function 𝑃(𝐹)  will be exemplified in the next section. 

III. NUMERICAL RESULTS 

 Application to different problem 

For a numerical example of (i) in Table I, we consider the 

topology optimization of the rotor of the IPM motor shown in 

Fig.1, which include 42 Gaussian bases represented by circles 

that have the same radius of the standard deviation and are 

centered at 𝒙𝑖 , 𝑖 = 1,2, . . ,42 . The optimization settings are 

summarized in Table II. In the learning phase, the training data 

for CNN is obtained by solving the preliminary optimization 

problem in which the average torque 𝑇ave is maximized: 

𝐹1 =
𝑇ave

𝑇ave
0

→ max.                                  (3) 

where the normalized constant is set as 𝑇ave
0 = 2.1 Nm, which 

is the average torque of the original model before optimization. 

Problem (3) is solved using GA, where we impose the 

constraint that the iron core is not separated into parts. This 

constraint is also imposed in the following problems. The 

torque ripple, 𝑇rip = (𝑇max − 𝑇min) 𝑇ave⁄ , of the individual 

generated in the GA process is also evaluated by FEM and 

stored. By solving (3), we obtain 168,000 samples of <motor 

image, ( 𝑇ave ,  𝑇rip )>. The samples are classified into eight 

categories shown in Table III with reference to the values of 

𝑇ave and 𝑇rip computed by FEM, and they are provided to CNN. 

It is found that the classification with respect to 𝑇rip is more 

difficult than that w.r.t. 𝑇ave. Hence, we train CNN with 4,000 

and 10,000 data for classification of 𝑇ave and 𝑇rip, respectively, 

and the remained data that is not used for the training is used 

for the test of the trained CNN for cross validation. 

 

Fig.1 IPM motor 
Circles represent contour of Gaussian-basis functions 
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    The accuracy of the trained CNN is summarized in the 

confusion matrix shown in Tables IV and V. It is found that 

samples of 99% and 81% are classified by CNN to the 

categories within the error range of ±0.1 compared to those 

classified by FEM. Since the classification by the trained CNN 

is not perfect, the additional FE analysis for a subset of 

individuals would be necessary in the optimization phase. 

    In the optimization phase, the different problem 

𝐹2 = 1.3
𝑇ave

𝑇ave
0

− 0.3
𝑇rip

𝑇rip
0 → max.                          (4) 

is solved with aid of the trained CNN, where 𝑇rip
0 = 0.57. The 

five different provability distributions 𝑃1, 𝑃2, … , 𝑃5 that are 

functions of 𝐹2  are summarized in Table VI, where case (a) 

corresponds to the conventional optimization in which all the 

fitness is evaluated by FEM, whereas no FE analysis is carried 

out in case (e). In cases (b), (c) and (d), the probability is set 

higher as the category label becomes higher. The optimization 

results are shown in Fig.2. It is found that the results (b)-(e) 

have almost the same values of Tave as that in (a), whereas the 

result (e) has a relatively large torque ripple. The number of FE 

analysis in (d) is about 10% of that in (a). Figure 3 shows the 

numbers of FE analysis per generation in the GA process for 

the different probabilities. The numbers for P2, P3 and P4 

gradually increase with generation because the individuals 

classified into good categories tends to increase with generation. 

It is concluded that use of CNN can reduce the computing cost 

to 10% with little change in the performance of the optimized 

IPM motor. 

 
Table II Parameters for FE analysis* and GA 
Number of genes 42 

Number of individuals 800 

Number of children 160 

Number of generations 100 

Current phase angle [degree] 30 

Current effective value [A] 4.2425 

Number of turns [turn] 35 

Residual flux density [T] 1.25 

*A customized (in-house) software is used. 

 
Table III Category labels for the data obtained by solving (3) 

𝑇ave (0, 0.45) (0.45, 0.55) ⋯ (0.95, 1.05) (1.05, ∞) 
𝑇̂ave 0 0.5 ⋯ 1.0 1.1 

𝑇rip (0, 0.65) (0.65, 0.75) ⋯ (1.15, 1.25) (1.25, ∞) 

𝑇̂rip 0 0.7 ⋯ 1.2 1.3 

𝑇̂ave and 𝑇̂rip denote the category labels for 𝑇ave and 𝑇rip, respectively. 

 

Table IV  Tave evaluated by CNN and FEM 

 

 

 

 Application to different model 

Here, we consider the application of the trained CNN to 

different electric-motor model as an example of (ii) in Table I. 

In the learning phase, CNN is trained with the data obtained by 

the topology optimization of motor models 1 and 3 shown in 

 

Table V  Trip evaluated by CNN and FEM 

 

 
Table VI Probability distributions for problem (4) 

Labels of 

F2 
probabilities [%] 

P1 P2 P3 P4 P5 

1.3 100 100 100 100 0 

1.2 100 100 50 25 0 

1.1 100 100 25 13 0 

1 100 50 13 7 0 

0.9 100 25 7 4 0 

0.8 100 13 4 2 0 

0.7 100 7 2 1 0 

0 100 0 0 0 0 
 

 

 

 
Tave = 2.17 Nm 

T
rip

 = 0.025 

 
Tave = 2.19 Nm 

T
rip

 = 0.035 

(a)  P1 (b)  P2 

 
Tave = 2.29 Nm 

T
rip

 = 0.134 

 
Tave = 2.22 Nm 

T
rip

 = 0.126 

(c)  P3 (d)  P4 

 
Tave = 2.21 Nm 

T
rip

 = 0.210 

 

Tave=2.08Nm 

T
rip

 = 0.570 

(e)  P5 (f) Reference model [9] 

Fig.2 Shapes optimized with CNN trained by the different 

problem. Probability distributions 𝑃𝑖 , 𝑖 = 1,2, . . . ,5, 
in Table VI are used to solve problem (4). 

 

0 0.5 0.6 0.7 0.8 0.9 1 1.1 TOTAL

0 520 29 4 3 2 1 0 0 559

0.5 15 452 47 1 0 0 0 0 515

0.6 0 38 482 49 0 0 0 0 569

0.7 0 1 38 518 23 0 0 0 580

0.8 0 0 0 18 390 12 0 0 420

0.9 0 0 0 3 18 473 15 0 509

1 0 0 0 0 0 10 396 16 422

1.1 0 0 0 0 0 0 8 418 426

TOTAL 535 520 571 592 433 496 419 434 4000

Label by CNN 

L
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E
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0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 TOTAL

0.6 627 411 53 51 7 28 17 25 1219

0.7 182 644 186 72 12 14 12 23 1145

0.8 50 267 589 187 33 38 23 15 1202

0.9 25 92 223 689 175 96 44 16 1360

1 12 59 93 259 425 301 72 27 1248

1.1 10 38 62 105 172 680 240 34 1341

1.2 24 51 56 55 154 295 520 103 1258

1.3 18 42 55 58 16 160 291 587 1227

TOTAL 948 1604 1317 1476 994 1612 1219 830 10000

Label by CNN 
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Fig. 4, where problem (3) is solved. The trained CNN is then 

used for the optimization of motor model 2 in Fig. 4. The 

average torque of model 2 is evaluated by the trained CNN. The 

classification results with respect to 𝑇ave provided by FEM and 

CNN are summarized in the confusion matrix shown in Table 

VII. The result seems satisfactory; 96% samples are within the 

range of ±0.1. Problem (3) is solved for motor 2 with aid of the 

trained CNN. The two different probability distributions 𝑃1
′ and 

𝑃2
′  that are functions of 𝐹1  for execution of FE analysis are 

summarized in Table VIII. The resultant shapes obtained with 

aid of the trained CNN are shown in Fig.5. There are no 

significant differences both in the rotor shapes and torque 

performances. The total number of FE analysis in (b) is about 

33% of the that in (a) which corresponds to the topology 

optimization without DL. 

 
Table VII Tave evaluated by CNN and FEM for model 2 in Fig.4 

 

 

   
(a) model 1 (b) model 2 (c) model 3 

Fig.4 IPM motors with different position of permanent magnet 

 

Table VIII Probability distributions for problem in III.B  

Labels of 

F1 

probabilities [%] 
𝑃1

′ 𝑃2
′ 

1.1 100 100 

1.0 100 25 

0.9 100 13 

0.8 100 7 

0.7 100 4 

0.6 100 1 

0.5 100 1 

0 100 0 
 

 

 
Tave = 2.38 Nm 

T
rip

 = 0.52 

 
Tave = 2.46 Nm 

T
rip

 = 0.39 

(a)  𝑃1
′ (b) 𝑃2

′ 

Fig.5 Shapes optimized with CNN trained by different model. 

Probability distributions 𝑃1
′ and  𝑃2

′ in 

in Table VIII are used to solve problem (3). 

 

 

IV. CONCLUSIONS 

In this paper, a method based on DL to accelerate the topology 

optimization using a stochastic optimization method has been 

proposed. In this method, the individuals in the GA process of 

the topology optimization are evaluated by the CNN prepared 

in the learning phase prior to the optimization. The FE analysis 

for the evaluation of the individuals is performed in accordance 

with a probability that depends on the categories provided by 

CNN. It has been shown that the average torque and torque 

ripple are accurately classified by the trained CNN. The 

optimization results obtained with aid of the CNN trained for a 

different problem as well as different models have little 

differences in the shape and performance compared with those 

obtained by the conventional method. The computing costs are 

reduced to about 10% and 33%, respectively. We plan to 

develop the method to extract design features necessary for 

good motor performances from the trained CNN in future. 

Moreover we will study the data size and training method to 

realize the CNN which accurately infers the performances of 

motors with different magnet shape, location and magnetization 

as well as different number of poles and teeth. 
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Fig.3 Change in number of FE analysis 
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