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ABSTRACT The development of technologies for the additive manufacturing, in particular of metallic
materials, is offering the possibility of producing parts with complex geometries. This opens up to the
possibility of using topological optimization methods for the design of electromagnetic devices. Hence,
a wide variety of approaches, originally developed for solid mechanics, have recently become attractive
also in the field of electromagnetics. The general distinction between gradient-based and gradient-free
methods drives the structure of the paper, with the latter becoming particularly attractive in the last years
due to the concepts of artificial neural networks. The aim of this paper is twofold. On one hand, the
paper aims at summarizing and describing the state-of-art on topology optimization techniques while on
the other it aims at showing how the latter methodologies developed in non-electromagnetic framework
(e.g., solid mechanics field) can be applied for the optimization of electromagnetic devices. Discussions and
comparisons are both supported by theoretical aspects and numerical results.

INDEX TERMS Topology Optimization, Electromagnetic modelling, Additive manufacturing, Electro-

magnetic design, Neural Networks.

I. INTRODUCTION

Originally developed for solid mechanics engineering
problems [1], numerical Topology Optimization (TO)
has recently become attractive also in designing electro-
magnetic devices [2]-[11]. When performing topology
optimization, usually the resulting structures have com-
plex and irregular geometries that are difficult to manu-
facture using conventional machining techniques. Nowa-
days, however, these limits can be overcome thanks to
developments in additive manufacturing and 3D printing
technologies [12]-[14].

Differently from parameterized shape optimization
problems which act only on the design domain bound-
aries, topology optimization deals with the modification
of the material distribution in the domain, i.e., material
can be removed or added. This capability is of consid-
erable interest in applications where there is no prior
knowledge on the optimal arrangement or shape of the
material in the device.

General optimization problems can be tackled fol-
lowing two main approaches [15]: gradient-based and
gradient-free techniques, each one characterized by pros
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and cons. Gradient-based methodologies typically ex-
hibit a faster convergence speed, but suffer for local
optima trapping. Gradient-free methods on the other
hand are more flexible since they do not require the
knowledge of the objective function derivatives with
respect to the design variables (sensitivities), usually
not easy to compute, sand generally require a higher
computational effort, especially in the case of stochastic
algorithm. Alternative to these methods, deterministic
gradient-free ones, such as the simplex gradient method
or the simplex-base simplicial Nelder-Mead method, can
be adopted [16].

Denoting with p(x) the material distribution at any
point of the design domain D C R¢, the TO problem
can be written as

find F* = min F'(u(p), p)
p

under given constraints

D

where F' is the objective function and problem con-
straints may be of the equality and/or inequality type.
Since the objective function depends on the solution
u(p) of an electromagnetic problem, (1) is a Partial
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Differential Equation (PDE)-constrained optimization
problem (i.e., an optimization problem where at least
one of the constraints is expressed as a partial differential
equation) where the governing PDE can be written as

L(u(p),p) = 0. (2)

As in solid mechanics topology optimization, also in
electromagnetic problems an additional volume inequal-
ity constraint can be added to the problem (1), i.e.,

G(o) = [ ooy~ Viry <0, 3)
D

where V., is the desired maximal volume of the device.

The basic ingredient for the solution of problem (1)
is the numerical solution of the PDE governing the
underlying physics of the objective function. This, if
volume discretization methods are used, requires the
discretization (i.e., the meshing) of the computational
domain D C RY with N, elements, usually triangles
or quadrilateral for d = 2 and tetrahedra or hexahedra
for d = 3. A material property is then assigned to each
mesh element. Then, using the discretization, the PDE is
represented as a system of equations by exploiting clas-
sical Finite Element Methods (FEM), Integral Equation
Methods (IEM), or other approaches [17]-[20].

For topology optimization problems, the design vari-
able related to the ith mesh element p;, € S, with
i = 1,..., N, defines the elemental material property
g with the map

S—R ()
P g(p) (5)

A first distinction between TO approaches, concerns
in the space S where the design variable p; is defined,
that can be continuous or binary, i.e., [21]

if{ 0<p; <1 — continuous TO

pi ={0,1} — binary TO ’ ©

where the discrete problem, also termed ON/OFF
method [22], is the most common approach for topol-
ogy optimization. When the design variable lies in
the continuous space, the intermediate values (0,1) are
“gray scales”, which have no clear material specifica-
tion. A further distinction between sub-classes of TO
approaches follows from the definition of the so called
hard-kill methods. In these methods a finite amount
of material is gradually removed or added, based on
heuristic criteria, which may or may not be related to
sensitivity information [23].

The solution of the functional minimization depends
on the underlying technique, i.e., if a gradient-based or
gradient-free approach is adopted.

When facing engineering problems, the optimal de-
sign of components often requires conflicting demands
to be satisfied for their best functionality [24]—[26]. This

2

reflects into the need of solving multi-objective opti-
mization problems, where the scalar objective functions
F;; are formally collected in vector form and the optimal
solutions lie on the so-called Pareto front.

When only two conflicting objectives are considered
it may be convenient to rewrite the vectorial multi-
objective optimization problem into a scalar one through
the convex combination

F=a1F + axFy, @)

where «; € R are weights in [0,1]. These weights can
be retrieved using the Adaptive Weighted Sum (AWS)
scheme, which for some problems complies also with
non-convex Pareto fronts [27]. Since the AWS scheme at
each iteration treats only scalar optimization problems,
this vectorial-scalar transformation may be conveniently
applied when using “black-box" numerical optimization
tools for which only a scalar objective is required as in-
put. For example the optimization toolbox of MATLAB®
can be used for the single objective optimization and the
results combined following AWS scheme.

The aim of this work is to address in detail the charac-
teristics of the different TO methods presented so far and
to provide practical application examples. Moreover, it is
shown how numerical tools initially developed for e.g.,
mechanical applications, can be also applied to electro-
magnetic problems. In this respect, section II highlights
the main peculiarities of TO approaches developed in the
solid mechanics field, and the ones that can be efficiently
used for the electromagnetics problems.

In particular the gradient-based method described
in the following are: homogenization method III-C1,
density-based method III-C2, level-set method III-C3,
phase-field III-C4 method, Bi-directional Evolu-
tionary Structural Topology Optimization (BESO)
method III-C5, Topology Optimization of Binary
Structures (TOBS) method III-C6 and the Two-Step
method ITI-C7, which is a bridge between gradient-based
and gradient-free approaches. The methods considered
in the latter class are: boolean methods IV-A1l, binary
methods IV-A2, Normalized Gaussian Network Meth-
ods (NGnet) IV-A3, deterministic methods IV-B, deep
learning methods IV-C and the Proportional Topology
Optimization (PTO) method IV-D.

The remainder of the paper is organized as follows:
section III describes the gradient-based methods requir-
ing the computation of objective function sensitivities.
To this aim, a brief introduction of the so-called adjoint
variable approach is given in section III-A. Next, meth-
ods that do not require the evaluation of the gradient
of the objective function, thus avoiding the knowledge
of classical sensitivities, are described in section IV.
Section V briefly summarizes other methods proposed
for the TO of electromagnetic devices, which are not
described in detail in this work. Section VI demonstrates
the feasibility of the proposed methods for solving the
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TABLE 1. List of gradient-based approaches discussed.

Method References

Characteristics Used in electromagnetics

Homogenization [28][29]

Density-based [30] [31][32] [33] [34]

Level-Set [35] [36] [37] [38] [39]

[40] [40]

BESO with Sensitivity [41] [42]

TOBS [43] [44] [45] [46] [47]

Two-Step [48]

first TO approach, v
continuous p
simple concept,

used in many physical fields,

continuous p, v

suited for multi-material TO,
built in commercial software
evolve boundary of design domain,
hole seeding for topology change, v
used for multi-material TO

hard-kill method,
binary p, v

heuristic search algorithm
combines continuous and binary logic,

binary p,

integer search algorithm,

sensitivity information

used to increase performance of v

topology optimization of two electromagnetic devices.
In the first test-case a comparison between selected
approaches belonging to the two classes is performed.
In section VII, a critical discussion of the presented
methods is given, then section VIII summarized the
conclusions of the work.

Il. PECULIARITIES OF TOPOLOGY OPTIMIZATION
FOR ELECTROMAGNETICS

The topology optimization, although it was mainly de-
veloped in the structural mechanics framework, can be
conceived in a transversal way based on physical prob-
lems of different nature, for example fluid dynamics
[49], heat transfer [50], photonics design [51] and so
on. The investigation of TO for electromagnetics (EM)
is discussed in this paper. The wide spectrum of TO
applications may lead to the erroneous conclusion that
any method can be used “as is” independently of the
underlying physics. In fact each physical problem has
specific requirements to be satisfied. For instance, when
dealing with solid mechanics, the optimized topology
has to comply with connectivity properties. In this class
of problems, for which the compliance is the objective
function of the TO, the structural robustness from the
mechanical point of view is guaranteed by the TO prob-
lem itself. In designing electromagnetic devices the con-
cept of structural connection, is sometimes misleading
because the connectivity between the different parts may
or may not be wanted. Mostly of the TO algorithms
developed in the solid mechanics are not general purpose
and sometimes intrusive modifications are required to
use them for electromagnetic problems. Generally, the
gradient-based methods such as the SIMP described in
section III-C2 can be used as general purpose, con-
versely, the level-set of section III-C3 requiring the
topological derivative information, is more challenging.
The PTO algorithm, developed for structural mechanics
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stochastic algorithms

problems and briefly described in section IV-D, uses
deeply the assumption that the objective function is
an energy density and cannot be considered as general
purpose because if the electromagnetic problem does
not uses the energy density (e.g., of magnetic nature) as
objective function, the algorithm cannot be applied “as
is”.

From the computational point of view, as briefly stated
in the introductory section, the numerical solution of the
PDE governing the physical problem is a key part in
the optimization process. In fact, the objective function
evaluation requires the solution of the discretized system
many times during the optimization algorithm. The FEM
is extensively used in solving mechanical and structural
problems. The main advantage of this approach is the
sparsity pattern of the arising system matrices, which re-
duces the memory requirements for their storage. In most
cases, this approach is used even for the numerical solu-
tion of the PDE governing the electromagnetic problem.
When modelling antenna propagation or eddy currents
the need of discretizing the non-conductive parts, for
example the air domains, can be circumvented by using
e.g., IEM. These methods require only the discretiza-
tion of the non-electromagnetic neutral domains, but the
arising system matrices are fully populated (dense), thus
increasing the computational burden for their storage
up to O(N?), where N is the number of unknowns,
and to O(N?) for the system solution (although some
sophisticated technique is used [52]). In principle the TO
method can be based both on FEM and IEM approaches
for the solution of the EM problem. However, the devel-
opment of the code in the two cases is different and also
the general performance. As an example consider a TO
problem which changes the material from air to magnetic
or the other way round. By using FEM the number of
degrees of freedom of the whole discretized domain (air
+ magnetic) remains unchanged, conversely, by using

3
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e.g., an IEM when subtracting or adding magnetic ma-
terial, the number of unknowns is respectively reduced
or augmented, this because the IEM deals only with the
non-air domain.

When dealing with electromagnetics, several sub-
classes of problems can be defined: electrostatic, magne-
tostatic, electro- and magneto-quasistatic, full-wave with
and without propagation. The solution of the electromag-
netic field for each sub-class can be tackled by different
techniques requiring different computational effort. In
particular, the full wave propagation problem, thus the
objective function derived from it, is highly demanding
from the computational point of view. Since the TO
algorithm requires the objective function to be evaluated
many times, it is clear that the reduction of the number
of evaluations is mandatory to reduce the computational
burden.

The aim of this paper is to introduce the TO methods
suited in electromagnetics. As described in what follows,
some of them, directly derived from the solid mechanics
world, are used without substantial modifications. As
an example the novel TOBS algorithm described in
section III-C6, and recently applied to solid mechanics
and fluid dynamics problems, seems to be useful also
in the electromagnetics field. The issue of structural
connectivity will be addressed in the context of the so
called stochastic methods IV-A.

lll. GRADIENT-BASED METHODS

In this section, the gradient-based approaches for TO
listed in Table 1, all using the information provided by
the derivative of objective function with respect to the
design variables, are described.

A. MATHEMATICAL PRELIMINARIES

When solving PDE-constrained topology optimization
using a gradient-based method, evaluation of the sensi-
tivity of the objective function w.r.t. the design variables
is required [30], [53], [54]

Sensitivity := d—F (8)
dp
The so-called Adjoint Variable Method (AVM) briefly
described in this section, is usually applied for sensitivity
calculations [55], [56]. In principle, the AVM approach
can be applied to the continuous PDE problem, but here
we focus our attention to its discretized version.
Using the chain rule, the total derivative of the objec-
tive function F'(u(p), p) is expressed as

dF  9F _ OF du,
dpi — Op;  Ouj dp;’

€))

while for the kth residual equation of the discretized
system (2) we have

AL, 9L

_ 4Ly 0Ly du
dpi B dpi

8u]' dpi '

(10)

Multiplying the previous equation by A\ and adding the
result to (9) we obtain

dF - [8F dﬁk:| |:8F 8/3@ duj
dp;

8;)1- + A dpl 8uj k 8uj dpl ’

term 1 term 2

(1D
Computing the second term of (11) is a complex task
since the derivative of the solution array with respect to
the design variables is required. However, if the coeffi-
cients )\ are chosen in such a way that

OF oL,

the second term of (11) vanishes. Thus, the evaluation
of the objective sensitivities is a two step process, first
requiring the solution of the the so-called adjoint prob-
lem defined by (12), from which the adjoint field A is
obtained. Then, the latter is used for the evaluation of
the first term of (11), which is equal to the objective
sensitivities dF'/dp;.

As an example, considering for simplicity a system
whose coefficients depend only on the design parameters
p, the discretized PDE can be written as

A(p)u=bh, (13)

thus, the partial derivatives of the residual appearing
in (11) are expressed as

6L‘k 6£k 8A;€l
Du. ki dpi = Oy ug- (14)
7 7 7
The arising adjoint system (12) is written as
F
ATX= —g—u, (15)

and, once the solution array A is obtained, the sensitivity
of the objective function is given by
dF  OF 70A
= =+ —1u
dpi  Op; op

(16)

The adjoint variable method can be extended to non-
linear [55], [57] and time-domain problems such as
transient eddy current ones [58].

B. INTERPOLATION, FILTERING, AND PROJECTION
SCHEMES

In this section, the interpolation functions mapping the
design variables p to the elemental material property (5)
are defined. To mitigate the oscillatory behaviour of
material properties, thus improving the numerical stabil-
ity, filtering techniques are described together with the
projection schemes used to reduce the “gray scales”.
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1) Interpolation Schemes
The Material Interpolation Schemes (MIS) assigning the
material property to each element are described in this
section. Starting from a discretization of the computa-
tional domain 2, the continuous variable p, 0 < p < 1is
assigned to each mesh cell. Analyzing the two-material
case, elements with p = 1 are filled with material
property 1 (pmqt1), while material property 2 (ppqe2) 18
assigned to cells for which p = 0. When p is between 0
and 1, the cell is partially filled by material and is said to
be in the “grey scale”. This situation should be avoided
since in the majority of the applications it is not possible
to partially fill a cell (i.e., a portion of space) with the
desired material (unless the density of the material can
be also controlled, however this is not the case in the
majority of applications).

Denoting with g(x) the material property at the point
x € (, e.g., the relative permeability p,.(x) for mag-
netic problems, the classical MIS interpolates g from the
continuous density p(x), using a power-law [59]

g(p) = Pmatl + (pmatQ - pmatl)pa7 (17)

with the property g(0) = pmar1 and g(1) = pmat2.
In (17), « > 1 is a penalization parameter. Due to
the continuous nature of p, “gray” scales regions (i.e.,
with p € (0, 1)) are generated during the optimization
procedure. These “gray scales” regions correspond to
unmanufacturable layouts since, as previously discussed,
in the physical realization of the device it is necessary to
decide whether or not to insert the material in the grey
regions.

Increasing « helps the optimization process to avoid
the generation of these “gray scale” regions assigning
the material property 1 over a wide range of p and the
material property 2 only when p is near to one. However,
for too high values of « convergence problems may arise
[59]. Moreover, the classical MIS approach shows an
asymmetry trend which favours values of the material
property associated with low p. This issue may be solved
using different interpolation schemes, like the uniform
sequence proposed in [59] for which

[e3%

Pmat2 — Pmatl i
= Dma _ . 18
9(p) = Pmat1 + o ; p (18)
In solid mechanics TO, the Rational Approximation of
Material Properties (RAMP) proposed in [60] is usually
adopted. Given the parameter ¢ > 0, the RAMP interpo-
lation is expressed as

g(p) = Pmatl + p — ) (pmat2 _pmatl) . (19)

1+q(1—-p
In [61], a different interpolation method is proposed by
D. Lukas through the scheme

g(p) = pmat1+

(pmatZ - pmatl) 1
2

arctan(p(2p — 1))
arctan(p) ) (20
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FIGURE 1. Material density interpolation schemes for p,,q¢1 = 1072,
Pmat2 = 1 and a = g = 10: classical polynomial MIS (17), uniform
sequence (18), RAMP (19), the Luka$ variant with p = 5 (20) and the
reluctivity approach (21). In Luka$ approach the transition threshold
between two material properties is p = 0.5 in the limit of high p.

2000

(b) (©)

(a)

1

FIGURE 2. Material distribution during optimization problem produced
by different values of penalization parameter in classical MIS: o« = 3 (a),
a =5 (b)and o« = 7 (c). The simple underlying topology optimization
problem aim at maximizing the magnetic energy adding iron

(Pmat2 = 2000) in the air (p;mq+1 = 1) design domain surrounding the
square axialsymmetric coil. As can be seen, increasing «, the relative
permeability spread over the interval [1,2000] is reduced.

where the “gray scales” depend only on the parameter p,
which cannot be too large, in order to avoid convergence
problems [33]. Lastly, the so-called reluctivity based
mapping proposed for electromagnetic TO is defined
[62]

-1
1 1 1
9(p) = [ +< - >p} . @D
Pmat1 Pmat2 Pmat1

A graphical comparison of the aforementioned inter-
polation schemes is reported in Fig. 1, while an illustra-
tive example showing the spread of material property g
when different values of the penalization parameter o of
classical MIS are used is reported in Fig. 2.

The advantage of using a continuous design variable
instead of a discrete binary one, lies in the possibility
of computing derivatives for sensitivity analysis [30].
Although it would be better if the optimization problem
was binary (i.e., p € {0,1}), it is in any case convenient
to work continuously with the drawback of having to
manage the gray scale issue.
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(a) (b)
[
2000 1000 1

FIGURE 3. Comparison of material density with Helmholtz filter (a) and
without filtering (b), for the topology optimization of a magnetic actuator.
The color bar refers to the value of u, which can vary within [1,1000] in
the design domain, whose boundary is highlighted in red.

2) Filtering Technique
Using p directly as input of the MIS, may produce an
oscillatory behaviour of the material distribution over
the finite element discretization [63], therefore a spatial
filtering function has to be adopted. The density filter for
each mesh element ¢ can be written as [64]

N ZjeNM ij(xj)

pi= < o (22)

ZjeNi,j w(x;)

where IV; ; is the set of neighbourhoods of the ith cell
within the filter radius R and w(x;) is a weight function
between cells 7, j :

w(x;) = R — [Ixs — x| 23)

Particular care must be paid when selecting the filter
radius R as high values may lead to sub-optimal designs.

Alternatively to the density filter given in (22), the so-
called Helmholtz filter can be adopted [65], [66]

—Ry A+ =p, (24)

where R}, is again a filtering parameter playing a similar
role to R and, in finite element settings, usually retrieved
from the maximum element size of the mesh. Usually,
Ry, and R are related with R;, = R/2+/3 [64].

The effect of filtering on the material density p is
illustrated for the case of the Helmholtz filter (24) in
Fig. 3.

3) Projection Schemes

From the filtered design variables p, the projected vari-
ables p are obtained using a smoothed Heaviside func-
tion, having the form [67]

(=

1 <p
p=Hc(p)=q ¢ -b<p<b (25)
0 < =b

where the constant c is

- -\ 3 N
1 15 /p 5 (p 3 (p
=—+—=(=]—-=1= — (=] . 26
2+16<b) 8<b>+16(b (26)
Parameter b, with 0 < b < 1, in (25) and (26) refers to
the transition width. For decreasing values of b, the ma-

terial density converges to binary {0,1} representation
[68].

6

Projected densities H

0 0.2 0.4 0.6 0.8 1
p

FIGURE 4. Shape of projection function (27) with n = 0.5 for
B =3,5,8,10.

A different Heaviside projection [64] reads

_ tanh (8n) + tanh (8(p — 1))
tanh (8n) + tanh (B(1 — 1))’

where (3 controls the sharpness of the projection and 7
is a threshold level. The shape of the projection function
for different S parameters is shown in Fig. 4.
Summarizing, the design variables p in the continuous
setting, before being used as input of MIS are firstly fil-
tered and projected. Usually, this simple approach lacks
on local convergence, thus a modified robust approach
based on dilated, intermediate, and eroded designs with
g < 1; < ne in (27) can be adopted as shown in [64].

27

p = Hy(p)

C. METHODS

In this section, the gradient-based methods listed in
Table 1 are described. At the beginning, the homogeniza-
tion method III-C1, as the first TO approach, is depicted.
Next, the extensively used density III-C2 and level-
set I1I-C3 methods, together with the phase-field III-C4
method are analyzed. The Bi-directional Evolutionary
Structural Topology Optimization (BESO) with sensi-
tivity information and the novel Topology Optimization
of Binary Structures Approach (TOBS) are briefly de-
scribed in section III-C5 and section III-C6, where the
latter, to the author’s knowledge, has not yet been applied
for electromagnetic TO. Finally, a method which uses the
sensitivity information to improve the performance of a
gradient-free technique is described.

1) Homogenization Method
Firstly introduced by Bendsge and Kikuchi in 1988 [1],
the homogenization method, was applied to a variety of
structural topology optimization problems [69] and, with
less impact, to the design of electromagnetic devices
[28], [29], [70], [71].

In the homogenization method, each finite element
constituting the discretized design domain D, is com-
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posed of an infinite number of microstructures usually
formed by rectangular cells with rectangular holes [2].
The size of each hole and its rotation angle are the design
variables of the optimization. In homogenization logic, a
cell becomes “solid” if the the hole vanishes, conversely
is “void” if the hole has the same dimension of the cell.
Thus, the material is changed only in the microscale cell,
and not in the whole mesh element. In the optimization
process, the material is transferred between different
parts of the design domain giving, at the end, the optimal
material distribution. This approach currently seems to
be abandoned in favor of the others described below.

2) Density Method

The density method originally developed for solid me-
chanics topology optimization [72], recently, due to its
simplicity, has gained great interest also for electro-
magnetic topology optimization even for multi-material
problems [30]-[34].

In a discretized domain, the density method aim at
minimizing the objective function by identifying the type
of material to be assigned to each element.

The density methods are based on the interpola-
tion, filtering and projection schemes described in sec-
tion III-B.Originally, the density method was developed
using the simple power-law (17) as material penaliza-
tion. This choice leads to the so-called Solid Isotropic
Material with Penalization (SIMP) approach [73]. As
already depicted in section III-B, the choice of an appro-
priate MIS penalizing the material property is a critical
aspect from the numerical point of view. In the context
of density methods, a wrong selection of material penal-
ization function may drive to numerical issues, such as
singularities in the system matrices, due to bad scaling
of the coefficients.

The density method can be realized also within com-
mercial tools and a schematic flowchart of the operations
is shown in Fig. 5.

3) Level-Set Method

The Level-Set Method (LSM) is a standard boundary-
based method for topology optimization. The level-set
approach was applied for the topology optimization
of different electromagnetic devices [35]-[38], also in
cases when multiple materials were involved [39], [40].
In this latter case the method is called Multiple Level-Set
Method (MLSM). Referring to the illustrative example
of Fig. 6, D C R? is the design domain and €2 the
material region, whose boundary 052 is identified by I
The level-set function ¢(x) : R? — R, defines the
boundary I as [74]

>0 VxeQ\l'
Pp(x)¢ =0 Vvxel . (28)
<0 VxeD\I

Performing topology optimization with LSM, means
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FIGURE 5. Possible flowchart of TO using density method. The exit
criterion groups convergence of objective function and fulfillment of
additional constrains, for example volume ones.

doﬁ\a‘“Q‘ T

Mate“a\

FIGURE 6. lllustration of design domain D C R?, material domain Q
and level-set function ¢(x) for the compliance minimization of the
classical cantilever test case.

tracking the evolution of the level-set function ¢(x)
solving the Hamilton-Jacobi partial differential equation
for a fictitious time ¢ [75]

9¢

- . — 2
ot +v-V¢=0, (29)
where v is the velocity field
Vo
=Vt (30)
[IVall

with Vi the scalar velocity normal to the interface T,
derived from the design sensitivities [35], [36]. The opti-
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mization proceeds until convergence, when the velocity
Vi becomes zero, stopping the propagation of the level-
set function.

When the level-set function is a signed distance func-
tion, the level-set function at iteration k£ + 1, or equiva-
lently at time instant ¢ + At, is

o(t + At) = ¢(t) — AtVy, (31)

where At is the fictitous time step size chosen in such a
way that the Courant—Friedrichs—Lewy (CFL) condition
is fulfilled [76]. Following [77], the time step at each
iteration k, can be expressed as

At(k) = C(k) lmzn/mglka)am (32)

where [,,;, is the minimum edge length of mesh ele-
ments, Vn(jz)m is the maximum absolute value of advec-
tion velocity at kth iteration and

¢k = CE=D (F(pR—D) < F(¢pk—2))
rCED (F(e*D) > F(p*—2))

for k > 2, with 7 < 1 a regularization parameter.

Equation (29) is usually solved by means of stabiliza-
tion techniques which involve the inclusion of reaction
and diffusion terms.

Following [74], [78], a simple diffusion term can be
used and controlled by the parameter o, with the aim of
adjusting the amount of numerical diffusion to be added.
Equation (29) is then reformulated as

d(t+ At) = ¢(t) — At(BF' —aV2¢) in D
{ ¢=0 ondD "’
(34
where [ is the derivative of the augmented objective
function which incorporate possible volume constraints,
and (3 is the normalization parameter

_ [paQ
[ |9

(33)

5 (35

Alternatively, as shown in [79]-[81], an approach
involving Radial Basis Functions (RBF) may be applied
for the time evolution of the level-set function.

One major criticality of the level-set method, relies in
the difficulty of adding new holes in the design domain
or, in other words, change the material property of the
elements. To overcome this issue, the initial design do-
main should be seeded with holes or a mechanism for
hole nucleation during the optimization process would
need to be adopted [82]. Potentially, this issue can be
circumvented by coupling the level-set method with the
concept of topological derivative [83], [84].

Considering a design-domain dependent objective
function F'(D), its topological derivative dr F represent
the sensitivity with respect to the insertion of an infinites-
imal hole w, around point xo € D [85]:

F(D\w:) — F(D) = f(e)drF(x0) + O(f(c)), (36)

where f(¢) — 0 for ¢ — 0. Topology variations are
allowed in regions where the values of dpF(x) are
small. The derivation of topological derivatives for linear
and nonlinear magnetostatic problems can be found in
[83], [86].

Following [87], in a discretized setting, if ¢4, and
Pmin are maximum and minimum values of the nodal
sensitivity field, introducing the parameter 7; as

n; = Pi — Pmax 7 (37)

Pmaxr — Pmin
hole seeding can proceed by following these steps [88]:

1) Compute the sensitivity field for each mesh ele-
ment;

2) Define a maximum value for the field and truncate
it to all void elements;

3) Map sensitivity values to mesh nodes;

4) Compute nodal array 1 with (37) and allow hole-
nucleation at a number of selected nodes for which
N < Nselecteds

5) Generate the hole perturbing the design variables
in the selected nodes.

A large value of 7serected € [0,1] can speed up the
convergence, but at the cost of increasing the probability
of reaching a non-optimal solution [87]. A MATLAB®
numerical implementation of the aforementioned logic
for the compliance minimization problem can be found
at https://www.topopt.mek.dtu.dk/.

4) Phase-Field Method

The phase-field method is a variation of the standard
level-set approach aiming at regularizing the topology
optimization problem. In the phase-field approach the
level-set function is re-defined as [89], [90]

0<o(x) <1 VxeO\l
o(x)=0 vxel' (38)
—1<¢(x)<0 VxeD\T

and the regularization is achieved adding a fictitious
interface energy term to the objective function, that is

F(6) = F(9) + /D Vel . (9

fictitious interface energy

This means that the design domain is subdivided into two
sub-regions where the phase state is “1” for the material
region, “-1” for the void region and the diffusion region
—1 < ¢ < 1inalayer of thickness € [91], [92].

5) Bi-directional Evolutionary Structural Topology
Optimization

The Bi-directional Evolutionary Structural Topology
Optimization (BESO) is an evolutionary method devel-
oped by O.M. Querin et al, in 1998 [93], dealing with
binary design variables. In classical Evolutionary Struc-
tural Optimization (ESO), material can only be removed
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from the structure [94], while in Additive Evolution-
ary Structural Optimisation (AESO) algorithms, material
can only be added [95]. Conversely, BESO enables the
bi-directional addition or removal of material.

These algorithms in general belong to the class of
hard-kill methods, however as described in [41], the
sensitivity information ¢; can be used to change the
elemental density as

0—=1 ifp; > ol

. ; (40)
1 =0 if i < @s-ZnL
where " and ¢!" , are real numbers used as threshold

values to decide whether add or remove.

6) Topology Optimization of Binary Structures Approach
The Topology Optimization of Binary Structures
(TOBS) method is a gradient-based optimization tech-
nique based on the binary design variable p € {0,1},
proposed by R. Sivapuram and R.Picelli [43]. Within
the TOBS, the optimization problem is solved by means
of sequential approximations, through linearization of
objective and constraint functions. At the kth iteration,
the problem to be solved is written as [44]

i
Minimize Fip) -ApF
op
(ot
Subject to aGéE:) -Ap* < AG;(p*) i€ [1,N,]
|Ap"]]1 < BNa

Apf e {=pf,1—pf} je[1,Nd

(4D
where N¢ is the number of constraints and Ny is the
number of design variables. The number of flips 0,1 —
1,0 at each iteration is controlled by the parameter
B < 1, that is, only a fraction 5 of cells are allowed
to change state. Due to the integer nature of the design
variables, the problem (41) is solved using Integer Linear
Programming (ILP) [43]. As shown in [96], even if
TOBS employs binary design variables, the sensitivities
can be evaluated using a density-based approach, thus
exploiting the techniques described in I1I-B.

Recently, the TOBS method was applied for the com-
pliance maximization of fluid structures [45]-[47], but
up to now, to the author’s knowledge, not to electromag-
netic problems.

7) Two-Step Topology Optimization Methods

Two-step topology optimization method combine a
global stochastic search algorithm with a local method
based on sensitivity analysis. These algorithms were de-
veloped to overcome the poor performances of stochastic
algorithms like the Genetic Algorithm (GA), in find-
ing engineering-feasible designs at the end of the op-
timization procedure [48]. To increase the efficiency in
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finding optimal topologies, a local search method based
on sensitivities information is added giving rise to the
following two-step algorithm:

1) The first step coincides with the global search
performed by the stochastic algorithm;

2) The configuration achieved in the first step is fur-
ther optimized using methods involving sensitivity
analysis.

In [48], the local search is performed evolving the mate-
rial boundary using the level-set equation, while in [97]
an approach involving only the Normalized Gaussian
network (NGnet) basis functions both for global and
local search is proposed.

IV. GRADIENT-FREE METHODS
In this section, the use of gradient-free methods avoid-
ing the computationally expensive evaluation of objec-
tive function sensitivities, is discussed for the TO of
electromagnetic devices. The section generally distin-
guishes between stochastic IV-A and deterministic IV-B
approaches. The novel deep learning methods based on
neural networks are briefly described in section IV-C,
followed by the recently proposed proportional topology
optimization (PTO) method I'V-D for solid mechanics.
A list of the described methods is reported in Table 2.

A. STOCHASTIC METHODS

The so-called stochastic approaches, which avoid the
computationally expensive calculation of objective func-
tion sensitivity, such as Genetic Algorithm (GA), Dif-
ferential Evolution (DE), Particle Swarm Optimization
(PSO), Simulated Annealing (SA) and Bat algorithm
were extensively applied in literature for the design opti-
mization of a wide class of electromagnetic components
[117]-[123]. Just to summarize the algorithmic structure
of one of these evolutionary approaches, the flowchart of
DE is illustrated in Fig. 7. In principle, these algorithms
belong to the class of hard-kill methods, where the
property of each material cell is changed heuristically.
In addition, restricting the space of design variables to
the binary case, algorithms can be also classified as
ON/OFF methods [72]. As an example, when dealing
with magnetostatic problems for which the material can
be chosen among iron and air, “1” encode iron elements
and “0” air elements.

1) Boolean Methods
When dealing with binary search spaces as it is the case
of ON/OFF methods, the so-called boolean algorithms
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TABLE 2. List of gradient-free methods discussed.

Method References Characteristics Used in electromagnetics
Boolean [98] [99] [100] simple logic, v
uses logical operators (®, B, ®, .. .)
Binary [101] [102] same algorithmic structure of standard evolutionary,
convert continuous p to binary v
using e.g., a sigmoid function
nGA [103] based on genetic approach of GA, v
uses small population number w.r.t. GA
Immune Algorithm (IA) [104] [105] combines local and global search v
NGnet [106] [107] smooth design using Gaussian basis, v
used in combination with GA
Nelder-Mead [108] deterministic approach
used as local search v
in combination with global stochastic
Deep Learning [109] [110] [111] [112] [113] reduced number of function evaluations,
[114][115] create surrogate model, v

PTO [116]

can be adopted [98]. Referring to the scheme of Fig. 7,
the optimization begins with a random binary popula-
tion of Np individuals, then the standard subtraction,
addition, and multiplication embedded in the algorithm
blocks, are replaced with the logical operators “XOR”
(®), “OR” () and “AND” (®) [99], [100]. As an exam-
ple, defined with x¢ € R® the ith population individual
composed of D optimization parameters at generation
G, the typical mutation operator of DE scheme

vf*‘1 = X?l + F(xf2 — X%) (42)

fori =1,..., Np,is replaced with the following [124]

Vi =xC o Fe (G exg), @)

where r1 # r2 # r3 are randomly chosen and F' is the
mutation factor.

2) Binary Methods

In the class of binary methods we group all the methods
that have the same algorithmic structure of the continu-
ous versions, but for which the design variables defining
the material property of each cell, later used for the
field solution, lies in the binary space. Looking at the
flowchart of Fig. 7 this can be achieved introducing for
instance a sigmoid function f(z) = 1/[1 + exp(—=x)]
[101], [125] acting on each population individual x;,
after the crossover step

0
Yij = 1

transforming the continuous design variables to discrete
ones. Another approach based on the algorithmic struc-
ture of DE and preserving its benefits, relies in the
definition of a probability estimation operator starting
from the mutated vector (42) [102], [126]

P(agfh) =

{1+ exp[—2b(MO — 0.5)/(1 + 2F)]} ",

ifU(0,1) < f(z;;)

otherwise ’ (44)

(45)

suitable for large-scale optimization

simple heuristic logic,
design variables p
proportional to global quantity

where MO defines the mutated vector and b > 0 is
the bandwidth factor. Applying the probability operator,
the binary representation of the mutant vector vffl
becomes

Lot _ [0 ifU(O,l)gP(xffl)'
b 1 otherwise

It is worth remembering that the advantage of ON/OFF
methods relies in the fact that no “gray” regions are
generated in the domain, however due to the random
nature of the classical evolutionary algorithms, single
spots of solid or empty material can appear in the design.
This reflects the well known checkerboard-like situation
characterizing the class of ON/OFF topology optimiza-
tion problems [127].

To circumvent this criticality, different approaches
were presented in literature, most of these involving the
inclusion of penalty regularization terms and techniques
to guarantee elements connectivity [103], [128]. Among
them, we mention the approaches applied to Immune
Algorithms (IA) [104], [105], [129]-[131] and microGA
(uGA) algorithms, with the latter recently applied for the
topology optimization of wireless power transfer (WPT)
devices [132].

(46)

3) Normalized Gaussian Network Methods

The Normalized Gaussian network (NGnet) introduced
by Sato et. al. in 2015 allows smooth shapes without
introducing additional filtering [106], [107]. Consider-
ing a finite element discretization of the computational
domain, the material property g to be assigned to each
mesh element is determined by the value of the shape
function f(x) defined as

F(x) = S0 wibi(x)

N,

bi(x) = Gi(x)/ >_;2 Gj(x)
where G; is the Gaussian function centered at the ith
element barycenter, b; is the ith normalized function and

(47)
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(@) (b) ©

FIGURE 8. Example of NGnet procedure over a 2D domain discretized
with 16 regular quadrilateral elements. Gaussians G; (x) are shown in
(a), two examples of their normalized version b; (x) in (b) and the shape
function f(x) from the weighted sum in (c). In the latter, elements label
with “ON" refers to f(x) > 0 values, while those labelled with “OFF" to
f(x) <o.

w; is the ¢th weight. For the two-material case (e.g., iron
and air), the elemental material is expressed as [133]

iron f(x)>0
<_{ air f(x) <0’ “48)

but extensions are available also in multi-material prob-
lems [134]. The weight vector w = [wy,..., wnyg) is
determined by an evolutionary algorithm (e.g., tGA) in
such a way the optimization problem (1) is satisfied.
That is, the original problem becomes a parametric op-
timization problem [132]. An illustrative example of the
procedure determining the shape function f(x), is shown
in Fig. 8.

When the genetic algorithm is used as search tool, the
initial configuration may have a high number of non-
survival individuals [110], thus increasing the computa-
tional cost of the method as stated in [111].

B. DETERMINISTIC METHODS

In this section, we briefly discuss the deterministic (di-
rect search) gradient-free methods for TO. Starting from
a candidate point solution, the direct search algorithm
find the best points within a set around the starting one,
for which the objective function is lowered. The search
directions are not stochastic and can be retrieved us-
ing line search methods, simplex methods (e.g, Nelder-
Mead), simplex gradients methods and so on [135].

For TO a direct search method is usually used in
symbiosis with a stochastic method thus defining hybrid
algorithms. In such cases the deterministic method plays
the role of local search, while the stochastic one is
used for the global search [108], [136]. An example
of flowchart of hybrid stochastic-deterministic algorithm
can be seen in Fig. 9.

From the author’s knowledge, its seems that electro-
magnetic TO literature discusses these approaches in a
little extensive way.
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FIGURE 9. Schematic flowchart of TO using hybrid
stochastic-deterministic method where N, is the number of cells and Q1
the number of major cycles. Following [108], GA can be used as
stochastic method and the deterministic Nelder-Mead for the local
search.

C. DEEP LEARNING METHODS

In recent years, deep learning techniques gained great
interest for the optimization of electromagnetic devices
[109]. Due to the stochastic nature of evolutionary meth-
ods like GA, the topology optimization based solely
on these techniques suffers from high computational
costs since every objective function (fitness) evaluation
requires the solution of an electromagnetic problem. Ma-
chine learning techniques trained with the data generated
by the electromagnetic simulations, were used to obtain
surrogate models with the aim of speeding up the com-
putations. In this setting, surrogate models based on Ar-
tificial Neural Networks (ANNs) [137]-[141], Kriging
methods [142], [143], response surface methods [144],
and Space Mapping methods [145] have been built, even
for multi-objective problems [146]-[148].

A particular subclass of ANNSs, usually applied in
computer vision, called Convolutional Neural Networks
(CNNSs) [149] has recently gained particular attention
due to its capability in dealing with huge number of
design variables (for example in real problems where the
mesh has million of degrees of freedom) [150]. CNNs
were applied to a large class of electromagnetic prob-
lems, showing their general capabilities [110]-[115].

D. PROPORTIONAL TOPOLOGY OPTIMIZATION
METHOD

The Proportional Topology Optimization (PTO) is an
heuristic non-sensitivity based method for solid mechan-
ics applications proposed by Biyikli and To [116]. Even
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in this method, the material property is interpolated
according to the MIS approach (17), while the elemental
densities during the iteration procedure are updated as

pe(k+1) = ape(k) + (1 — a)p°, (49)

where p2P! is the optimized density proportional to the
objective function, and « is a history parameter control-
ling the ratio of dependence of elemental density to its
older value from the previous iteration [116].

With the focus of increasing robustness and capability
of approaching binary distributions, some improvements
have been recently proposed [151].

A MATLAB® implementation of the PTO algorithm
applied to classical solid mechanics examples is avail-
able at http://www.ptomethod.org/. Up to now, to the
author’s knowledge, this method has not been used for
the topology optimization of electromagnetic devices.

V. OTHER METHODS
Since the research on TO for electromagnetics is rapidly
evolving, a variety of approaches were developed in
the recent years, and some of them are summarized
in this section. In [152] the Allen-Cahn equation is
used to update the design variables using the phase-field
method of section III-C4. In [153] a method based on
the a — 8 Swap Move theorem to improve the hole gen-
eration capability of boundary-based TO methods (e.g.,
the level-set described in III-C3) is proposed. In [154]
the min-cut theorem is used to define a new methodol-
ogy for 3D problems. A two-step algorithm for multi-
material problems coupling the combinatorial optimiza-
tion for the global search with the variable design region
method [155] for the local search is proposed in [156].
A hybrid parametric and topology optimization algo-
rithm to optimize both the shape of the magnet and the
flux barriers of a permanent magnet motor is proposed
in [157]. The Monte Carlo tree search (MCTS) in combi-
nation with the hybrid parametric-topology optimization
is proposed in [158] for the design of permanent magnet
motors. The Gabor filtering technique, alternative to the
NGnet approach of section IV-A3, usually adopted in
image processing, is applied in [159]. The geometry
projection method using elementary bars parametrized
by the location of the endpoints of its medial axis, is
applied in [160] for the optimization of a WPT device.
Finally, it is worth mentioning that high frequency
electromagnetic problems can be tackled with novel
methodologies, such as the one described in [161], using
the Characteristic Mode Analysis (CMA).

VI. RESULTS
In this section, numerical results obtained with selected
methods described in the previous sections are reported.
The first test case compares gradient and non-gradient
methods for the design of a magnetic actuator.

For the gradient-based method, the SIMP and level-set
approaches are selected, due to their known applicability

12

in electromagnetic TO. In addition, the novel TOBS
approach is also investigated. It is worth noting that, up
to the author’s knowledge, this is the first time that TOBS
is used for electromagnetic TO.

Concerning the choice of the selected gradient-free
approaches, the standard Binary-DE algorithm is se-
lected as it is an example of a basic and naive approach.
Then, due to the poor capabilities of the standard Binary-
DE of ensuring structural connectivity and to mitigate
the checkerboards pattern, a modified version with added
topology constraints is also adopted. As expected, this
modified Binary-DE shows much better performances
but it looses generality since the required modifications
and the added constraints are highly problem-dependent
and cannot be always applied in general TO optimiza-
tion. Lastly, the novel deep learning-based Self-directed
Online Learning Optimization (SOLO) method is used
since it is a promising method to reduce the number of
function evaluations required by stochastic gradient-free
TO.

The second test-case compares the novel TOBS ap-
proach and SIMP method for the TO of the ferrite do-
main in a standard WPT1-Z1 device for wireless power
transfer. This example is chosen to show the capability
of the proposed approaches of treating 3D non-trivial
geometries which will be of great interest for future
industrial applications.

A. MAGNETIC ACTUATOR

The 2D linear magnetic actuator showed in Fig. 10
is used as a benchmark to compare the selected TO
approaches. In such test case the goal of the topology
optimization is the maximisation of the magnetic energy
W, in the objective function domain, while keeping the
amount of ferrite material in the design domain D below
a fraction V},.q. = 0.6 of the full design domain

1
find W, = max W, := 5/.] - AdQ
R (50)

In the following sections some selected gradient-
based III and gradient-free IV approaches are used to
solve problem (50) and the results are compared. The
objective function improvement is measured with the
following metric

* 0
Objective Increase = log;, <w> , (3D

where W0 is the magnetic energy when the whole
design domain is filled with ferrite.

1) Gradient-based results

Due to their general interest and wide application, even
in electromagnetics, the density based III-C2 and level-
set III-C3 approaches are used to solve TO problem.
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FIGURE 10. 2D layout of magnetic actuator retrieved from [35]. The
armature have p,, = 2000, while the ferrite core p,. = 1000. The
relative permeability of the design domain can be "™ = 1 or
wu™e* = 1000. The current density in the coil is 2 A/mm?.

TABLE 3. Gradient-based TO methods comparison.

Method Objective Obj. Fun.
Increase Evaluations
SIMP 2.65 90
Level-Set 2.53 36
TOBS 2.51 24

Moreover, the novel TOBS method III-C6 which to the
author’s knowledge, has not yet been used in electro-
magnetics, is considered. The density-based approach
is implemented in COMSOL® under the topology opti-
mization node and the classical MIS approach (17) used
for the material interpolation. Then, then minimization
problem is solved using the Method of Moving Asymp-
totes (MMA) [162]. The developed level-set method
combines COMSOL® with MATLAB ® environments.
The physics is solved within COMSOL®, while the
optimization proceeds in MATLAB ® following the code
which uses RBFs for the time evolution of the level-set
function [81].

The TO scheme using TOBS is described in the paper
by R. Picelli et. al., [163] and uses COMSOL® for the
physical and sensitivity analyses in combination with
MATLAB ® for the optimization problem. Here, the bi-
nary elemental densities are evolved using Integer Linear
Programming (ILP). An online repository demonstrating
TOBS approach for structural mechanics, is available at
https://github.com/renatopicelli/tobs.

Optimization results are reported in Table 3 and the
final material distribution is illustrated in Fig. 11.

2) Gradient-free results
Here, the Binary-DE (BDE) IV-A2 and deep learning
approach IV-C are considered to solve problem (50).

A MATLAB® script for the BDE was implemented
based on the continuous algorithm, and converted to
ON/OFF method through a sigmoid function. Here, only
the volume constraint is added without domain connec-
tivity check. A BDE with the improved capability of
satisfy both volume constraint and domain connectivity
in the same fashion of 4GA described in [103], is coded
in MATLAB®.
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FIGURE 11. Final material distributions achieved by the different
gradient-based methods under examination: SIMP (a), TOBS (b),
Level-Set (c).

TABLE 4. Gradient-free TO methods comparison.

Method Objective Obj. Fun.
Increase Evaluations
BDE 2.48 10%
Constrained 2.55 104
BDE
SOLO 2.38 103

Lastly, the recently developed Self-directed Online
Learning Optimization (SOLO) [164], based on deep
learning method IV-C, was used. SOLO uses a Deep
Neural Network (DNN) to reduce the objective function
evaluations, thus requiring less computational effort. An
online repository of the SOLO method with some ex-
planatory examples using COMSOL® plus MATLAB®
and Python scripts, is available at https://github.com/
deng-cy/deep_learning_topology_opt. For the field so-
Iution and thus the objective function evaluation, pro-
prietary FEM MATLAB® scripts are used to speed-
up the computation bypassing communication with
COMSOL®.

The number of iterations of standard and constrained
DBE are selected as G,,,4, = 100 and the number of
individuals Np = 100, thus the number of objective
function evaluations is Gqe X Np = 10*. The proposed
SOLO method is based on the binary version available
at the linked repository and runs for 100 algorithm
iterations with 10 additional training samples for a total
of 10% objective function evaluations.

The results are reported in Table 4 and the final
material distribution illustrated in Fig. 12.

B. WPT1-Z1 DEVICE

The wireless power transfer device termed as WPT1-
Z1, according to the description provided by the SAE
international standard [165], is here considered as 3D
test case. Referring to Fig. 13, the design domain D
lies below the Ground Assembly (GA) coil. There, the
relative magnetic permittivity is the subject of topology
optimization, that is u, € {1, urg}. The geometrical
parameters are reported in Table 5.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


https://github.com/renatopicelli/tobs
https://github.com/deng-cy/deep_learning_topology_opt
https://github.com/deng-cy/deep_learning_topology_opt

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

IEEE Access

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3206368

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 12. Final material distributions achieved by the different
gradient-free methods under examination: Binary-DE (a), uGA (b),
SOLO (c).

TABLE 5. WPT1-Z1 device parameters.

Parameter Value
Air-gap 100 mm
Ferrite width 440 mm
Ferrite length 600 mm
Ferrite urp 3300
Ferrite o 0.16667 S/m
Turns GA coil 15

Turns VA coil 8 (upper layer), 9 (lower layer)

FIGURE 13. CAD view of WP1-Z1 3D device. Due to symmetry, only a
quarter of the design is shown. The design domain D highlighted in red,
correspond to the ferrite in the Ground Assembly (GA). GA and Vehicle
Assembly (VA) coils are colored in cyan and green, respectively, while
gray parts are aluminum shielding.

The topology optimization aims at maximising the
coupling coefficient k, while keeping the amount of
ferrite below half of the volume of the design domain,
ie.,

M
find £* =maxk = ———
VLgaLva
V. errite
L < Ve = 0.5, (52)
Vb

where M is the mutual inductance between GA and
VA coils and Lga, Ly a their self-inductances. The
problem is firstly solved with the TOBS method (Sec.
I11-C6), using combined COMSOL® plus MATLAB®
algorithms and the obtained ferrite topology is illustrated
in Fig. 14. Even if TOBS produces binary design vari-
ables, for graphical reasons and for direct comparison
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TABLE 6. Results for WPT1-Z1 TO.

Method Objective Obj. Fun.
Increase [%]  Evaluations

TOBS 12.5% 18

SIMP 13.9% 18

FIGURE 14. Top view of final ferrite topology obtained with the TOBS
method. TOBS deals with binary p but for graphical reasons the
achieved material distribution is linearly interpolated. Light grey area
represents GA coil.

with the continuous approach, the material property is
linearly interpolated. As a comparison, the SIMP method
I1-C2 fully developed within COMSOL® Multiphysics
software is used to solve the problem and the final
ferrite topology reported in Fig. 15. Table 6 summarizes
the numerical results. There, the objective increase per-
centage is computed with respect to the case of fully-
filled ferrite design domain, which has £ = 0.3619.
The TOBS approach increases the objective function to
k* = 0.4071 after 18 iterations, while SIMP results in
k* = 0.4123 after 18 iterations of MMA. In the latter
case, due to the continuous nature of the design variable
p, the value of the relative permittivity is intrinsically
spread over the interval [1, upp] and post-processing is
required to cut the final layout.

VII. DISCUSSION

The information carried by the sensitivity of the objec-
tive function highly increases the capability of gradient-
based approaches of obtaining good results after few ob-
jective function evaluations, as reported in Table 3. How-
ever, these approaches may become extremely costly and
intrusive from the computational point of view since they
require the derivative of the system matrix. If the ana-
Iytical expression of the derivative is not available, this
may be evaluated using the finite difference method by
adding a small perturbation to the design variable [55],
thus requiring multiple constructions of the system of
equations. When a density method is used (e.g., SIMP),
the selection of MIS function penalizing the material
property, is extremely important to reduce numerical
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FIGURE 15. Top view of final ferrite topology obtained with the
COMSOL® density method using the SIMP approach with a = 5. Light
grey area represents GA coil.
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instabilities. In addition, when the objective function ex-
hibits many local minima, these approaches may remain
stuck and the true global minimum may not be reached.
The latter is a well-known problem when dealing with
gradient-based optimization techniques.

To overcome this issues gradient-free approaches may
be adopted IV. As highlighted in the test-case results of
Table 4, one of the main disadvantages of these methods
is the high number of objective function evaluations,
which depend on the population size. Reducing the
population size in general may produce non-satisfactory
results thus this approach cannot be followed to improve
the performances. Due to the stochastic nature of these
approaches it is difficult to ensure domain connectivity
or avoid checkerboards layouts, and the situation is
even worse in cases of final topologies where multiply
disconnected components are generated. As expected,
the naive DE approach fails to find a connected struc-
ture and the checkerboard pattern is highly evident. To
overcome this issue, the user can ensure the connectivity
between selected parts using specific techniques, but this
approach is extremely problem dependent and unfeasible
in cases when no prior information is known on the final
topology. An example for this can be found in the WPT
TO of [132] where the final layout may have different
disconnected components. If the TO has to result in
a single domain, a structurally feasible layout can be
ensured coupling the electromagnetic TO optimization
with a structural one, as shown in [166].

The higher number of objective function evaluations
required by gradient-free approaches may be reduced
using novel deep learning approaches, for example the
tested SOLO method. As stated in [164], SOLO is able
to drastically reduce the number of objective function
evaluations. When the evaluation of objective function
becomes computationally expensive due to the solution
of the underlying system of equations, the possibility of

VOLUME 4, 2016

reducing its evaluation is extremely important, even at
the cost of increasing the computational time.

Lastly we highlight the fact that, in general, the
gradient-free methods can be used more easily for multi-
objective optimizations.

VIIl. CONCLUSION

A survey on Topology Optimization (TO) methods for
electromagnetic applications is proposed. The state-of-
art approaches already used in electromagnetics are re-
viewed together with novel techniques recently devel-
oped for mechanical and fluid-dynamics problems.

The paper follows the general distinction between
gradient-based and gradient-free methods. Although nu-
merical TO is highly problem dependent, so that it is
difficult to assert that an approach is better or worse
than another, a simple 2D example of magnetic actuator
and a realistic 3D example of wireless power transfer
device are considered as benchmarks for the selected
methods. The test-case is used to analyze the different
aspects of the proposed approaches, with the purpose of
highlighting general pros and cons of the gradient-based
and gradient-free techniques.

From a practical perspective of a potential user that
should choose most suited optimization method, a trade-
off between generality, computational burden, and man-
ufacturability of the final result should be considered.
For instance, if the “gray scales” are not a problem, the
standard density-based approach III-C2 can be preferred,
due to its implementation within commercial software,
thus simplifying the application of TO techniques in the
industrial world. If a clear transition boundary between
the material is needed, the user has to choose ON/OFF
optimization methods. In this respect the novel gradient-
based TOBS method, which uses concepts of standard
density-based techniques but is based on binary design
variables, seems to be very interesting. Unfortunately,
the computation of sensitivities may represent a major
limitation of this approach due to its intrusive nature and
more involving computational skills are required by the
user unless the algorithm is coupled with commercial
software that already implement the computation of sen-
sitivity maps.

If the sensitivity of the objective function is extremely
costly from the computational viewpoint, a gradient-
free approach may be preferred due to its simplicity,
requiring only objective function evaluation. With these
methods some forethought must be used to ensure do-
main connectivity, thus avoiding checkerboards patterns.
Moreover, when using stochastic-based methods, the
number of objective function evaluations is highly in-
creased with respect to gradient-based ones. When the
evaluation of objective function becomes very costly
from the computational point-of-view, as is the case of
large systems of equations, the novel approaches using
neural networks can be adopted to reduce the computa-
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tional burden through the creation of surrogate models.
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