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RESEARCH ARTICLE
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This paper presents an evolutionary structural topology optimization method for design of
completely submerged buoyant modules with design-dependent fluid pressure loading. This
type of structure is used to support offshore rig installation and pipeline transportation in all
water depths. The proposed optimization method seeks to identify the buoy design that has
the highest stiffness, allowing it to withstand deepwater pressure, uses the least material and
has a minimum prescribed buoyancy. Laplace’s equation is used to simulate an underwater
fluid pressure, and a polymer buoyancy module is considered to be linearly elastic. Both
domains are solved with the finite element method. Using an extended bi-directional evo-
lutionary structural optimization (BESO) method, the design-dependent pressure loads are
modeled in a straightforward manner without any need for pressure surface parametrization.
A new buoyancy inequality constraint sets a minimum required buoyancy effect, measured
by the joint volume of the structure and its interior voids. Solid elements with low strain en-
ergy are iteratively removed from the initial design domain until a certain prescribed volume
fraction. A test case is described to validate the optimization problem, and a buoy design
problem is used to explore the features of the proposed method.

Keywords: Topology Optimization; BESO Method; Buoyancy; Buoyant Structures;
Subsea Buoyancy Modules;

1. Introduction

Structural topology optimization (Bendsoe and Kikuchi 1988; Bendsoe and Sigmund
2003) has been used extensively in structural design problems, especially in the aerospace
and automotive industries. Over the last decade considerable effort has been made to
extend the methods used in topology optimization to different problems, such as those
involving different objective functions, constraints and multiphysics problems (Yoon,
Jensen and Sigmund 2007; Duhring, Jensen and Sigmund 2008; Silva and Pavanello
2010; van Dijk et al. 2013). Here, it is proposed the use of topology optimization in off-
shore structural engineering, specifically in the design of completely submerged (subsea)
buoyancy modules to support oil pipelines. Subsea buoyancy modules provide buoyancy
forces for offshore pipelines (flexible risers, cables and umbilicals) to hold them in specific
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geometric configurations other than the natural self-weight catenary riser shape, as seen
in Figure 1 (Saito et al. 2011). Buoyancy also reduces the overall weight of the pipeline
system, increasing buckling load values. Deepwater buoyancy modules of this type are
usually made from polymers and may be used at water depths of up to 2000 m.

Catenary riser Lazy wave Pliant wave

Figure 1.: Examples of geometric configurations of subsea oil pipelines supported by
buoyancy modules, represented as bullets in the illustrations. Buoyancy modules provide
upward forces which counteracts the pipeline weight, holding the pipelines in the desired
configurations.

To design subsea polymer buoys with topology optimization, buoyancy effects and
design-dependent underwater pressure loads must be considered. Topology optimization
considering interior voids has already been explored, as in the paper by Clausen, Aage
and Sigmund (2014), but buoyancy has not been considered. To the best of the authors’
knowledge, the present paper is the first to take buoyancy effects into account in topology
optimization. Design-dependent pressure loads have proved to be a challenging topic for
topology optimization (Sigmund and Clausen 2007) and are still the subject of research
(Deaton and Grandhi 2014; Xia, Wang and Shi 2015).
The difficulties in optimizing structures subjected to pressure loads arise because of the

variation in the location, direction and magnitude of the loads during the optimization
procedure. This variation requires additional modeling techniques when the traditional
density-based topology optimization methods are applied in such problems. For instance,
in the SIMP model (Bendsoe and Sigmund 2003), the pressure-loaded surfaces are not
explicitly defined because of the existence of intermediate density (gray scale) elements
(Hammer and Olhoff 2000). The main efforts to solve pressure-load problems in topology
optimization have used pressure surface parametrization schemes (Hammer and Olhoff
2000; Du and Olhoff 2004a; Lee and Martins 2012; Zheng, Chang and Gea 2009; Zhang,
Liu and Zhang 2010) and multiphysics approaches (Chen, Silva and Kikuchi 2001; Bour-
din and Chambolle 2003; Sigmund and Clausen 2007; Bruggi and Cinquini 2009). These
works showed that pressure loading problems can be efficiently solved with density-based
topology optimization by using different pressure boundaries modeling techniques. The
idea of using mixed element formulations by Sigmund and Clausen (2007) could be fur-
ther applied in a range of different multiphysics problems (Yoon, Jensen and Sigmund
2007; Yoon and Sigmund 2008; Yoon 2010).
On the other hand, Picelli, Vicente and Pavanello (2015) proposed an extended BESO

method for use in hydrostatic fluid-loaded structural design problems using a partially
coupled fluid-structure formulation. Because of the discrete nature of the BESO method,
no intermediate density elements are allowed during the optimization and the problem is
solved without any need for pressure load surface parametrization schemes. In comparison
with the SIMP model, the BESO scheme can be used with staggered analysis and separate
domains, which can be handy for its association with commercial finite element codes
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and the use of classical formulations. However, the evolutionary methods still lack of
procedures in handling multiple linear and nonlinear constraints, while this is simpler to
be considered with the density-based methods.
The idea by Picelli, Vicente and Pavanello (2015) was extended to acoustic-structure

interaction problems, as shown by Vicente et al. (2015) and Picelli et al. (2015a). This
evidences the recent uses of the BESO method on multiphysics problems (Picelli et al.
2015b; Picelli 2015). The discrete nature of these methods are also recently explored in
multiscale problems (Zuo et al. 2013; Xia and Breitkopf 2014; Huang et al. 2015; Xia
and Breitkopf 2015; Vicente et al. 2015). Similar approaches can also be adopted by
other topology optimization methods with explicit boundaries definition, such as level
set based methods (Luo et al. 2012; Shu, Wang and Ma 2014; Xia, Wang and Shi 2015).
A global outline of the present approach is as follows. To handle pressure loads, the

fluid-structure BESO method described by Picelli, Vicente and Pavanello (2015) is used.
This approach substitutes some of the void elements with hydrostatic fluid ones that
can model the pressure field. Laplace’s equation is used to model the fluid domain,
allowing the existence of constant and non-constant pressure fields at wet fluid-structure
interfaces. The use of surface coupling matrices turns out the problem handy for the
discrete topology optimization scheme by transfering pressure loads automatically to the
structural analysis whatsoever is the structural topology. Herein, buoyancy requirements
are introduced as an inequality constraint in the optimization problem. According to
Archimedes’ principle, the buoyancy force is equivalent to the weight of the fluid displaced
by the submerged structure and can be expressed as:

FB = −ρfVfga, (1)

where FB is the buoyancy force acting on the structure, ρf is the mass density of the fluid,
Vf the volume of the displaced fluid and ga the vector of the gravitational acceleration.
The force FB is balanced by the weight Ws of the structure, expressed as:

Ws = msga, (2)

where ms is the mass of the structure, implying in a resulting force

Fresulting = FB +Ws. (3)

As the mass of the structure is a constraint in the proposed optimization method, Ws

is constant and the only variable in the force diagram is FB, which depends exclusively on
Vf , since ρf and ga are also constant. The volume Vf of the displaced fluid is equivalent
to the sum of the volumes of the structural material and the buoy’s interior voids. Thus,
in order to guarantee higher buoyancy, the entire buoy volume (including structure and
interior voids) must be as big as possible, implying in a positive Fresulting. In this work
it is assumed that the buoyancy modules must withstand the underwater surrounding
pressure and exhibit minimal deformation so that they maintain the correct displaced
volume. Hence, the final goal of the optimization problem is to design a structure as stiff
as possible that can handle design-dependent underwater pressure loads and has high
buoyancy (displaced fluid volume).
This article is organized as follows: Section 2 introduces the governing equations and

the finite element model for the fluid-structure system. In Section 3, the topology opti-
mization problem and sensitivity analysis are described. Section 4 discusses implemen-
tation issues and the steps in the fluid-structure BESO method. Section 5 presents the
discussion and the numerical results obtained using the proposed methodology. Section
6 presents final conclusions.
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2. Fluid-structure model: governing equations and finite element

discretization

It is considered the static analysis of completely submerged flexible structures floating
in an incompressible fluid domain. The use of subsea buoyancy modules in deepwater
conditions implies high pressures in the fluid domain. Because of the depth at which the
modules are operating, these pressures can be considered constant in this case.
The governing equation considering a homogeneous, inviscid, irrotational fluid domain

Ωf can be described by Laplace’s equation

∇2Pf = 0 in Ωf , (4)

where Pf is the fluid pressure (Morand and Ohayon 1995). A Dirichlet boundary con-
dition (b.c.) boundary condition Pf = P0 is applied on the particular portion Sp of the
fluid boundary, as illustrated in Figure 2. The term P0 is the imposed deepwater pressure
value and must be different than zero.
Neglecting body forces, a linear structural static analysis is governed by

∇ · σs (u) = 0 in Ωs, (5)

where ∇ · σs (u) is the divergence of the Cauchy stress tensor and u is the displace-
ment field on the solid domain Ωs. Dirichlet boundary condition is applied to the solid
boundaries Su as u = 0. A void domain Ωv can also exist inside the solid domain.

s

f

0fP P

0u

0u

pS

fsS
uS

uS

n
v

Figure 2.: The solid (Ωs), fluid (Ωf ) and void (Ωv) domains and boundary conditions.
Pressure P0 is imposed on the portion Sp of the fluid boundary. Fluid pressure loads acts
on the structure through the fluid-structure interface Sfs.

The normal vector n (see Figure 2) can be used in order to guarantee the equilibrium
condition between fluid pressures and structural tractions on the interface Sfs as follows:

σsn = −Pfn on Sfs. (6)

This equation ensures the continuity in pressure on the the interface Sfs, which indicates
the pressure forces ffs = Pfn exerted by the fluid on the structure.
Using an approximation based on the finite element method (FEM), the force acting
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on the structure provided by the fluid pressure can be calculated as

ffs =

∫

Sfs

NT
s nNfdSfsPf = LfsPf , (7)

where Pf is the vector of nodal pressures, n is the normal vector inwards the structural
domain and Ns and Nf contains the finite element shape functions for the interface. The
matrix Lfs is the coupling matrix (Morand and Ohayon 1995; Axisa and Antunes 2007).
Thus, in the context of the finite element approximation, and assuming no exter-

nal loads are applied, the hydroelastic equilibrium problem can be described by a non-
symmetric system of equations

[

Ks −Lfs

0 Kf

]{

us

Pf

}

=

{

0

0

}

, (8)

where us is the vector of structural displacements and Ks and Kf are the stiffness
matrices of the structural and fluid domains, respectively.
In this one-way coupled multiphysics model, the fluid analysis provides pressure loads

to the structural analysis through the application of the coupling matrices. In this case,
the fluid pressure field can actually be solved separately. However, for the sake of gen-
erality, by imposing proper boundary conditions and solving Equation 8, both fluid and
structure responses can be obtained simultaneously for any discretized fluid-structure
configuration. This turns to be handy for the iterative procedures of topology opti-
mization. Furthermore, this methodology can be extended to different design-dependent
physics problems, where fully coupled equations might exist (Vicente et al. 2015; Picelli
et al. 2015a).

3. Problem formulation and sensitivity analysis

3.1 Topology optimization problem

The buoy design problems considered in this work involve minimizing the mean com-
pliance of structures under design-dependent pressure loads while satisfying volume and
buoyancy constraints. The goal is to find how a given amount of solid material should be
distributed to ensure that the structure has maximum stiffness (or minimum compliance
C) and a prescribed buoyancy. The corresponding evolutionary topology optimization
problem can be formulated as:

min: C (xi) =
1
2u

T
s Ksus,

xi

subject to:

[

Ks −Lfs

0 Kf

]{

us

Pf

}

=

{

0

0

}

and b.c.,

g = 1− B
Blim

≤ 0,

h = V (xi) /V0 = Vs,

xi = [0,1] ,

(9)
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where C is the structural mean compliance (external work), the inverse measure of the
overall stiffness of the structure or its flexibility, Blim is the minimum required buoyancy
volume (displaced fluid area for 2D cases), B is the buoyancy volume of the current struc-
tural design, V0 is the full design domain volume, Vs is the prescribed final solid volume
fraction and xi represents the discrete design variables, 1 being a solid element and 0 a
void. The extended BESO method substitutes some of the void elements by incompress-
ible fluid ones capable of modelling the pressure field. First, the standard BESO update
scheme is used to set a 0/1 design. Then, the fluid region is updated considering their
neighbouring elements. For instance, new fluid elements should be placed only besides
fluid neighbour elements, as illustrated in Figure 3. Fluid elements which appear inside
the design domain are considered equivalent to a void design variable (xi = 0) in the
optimization procedure, i.e., in the sensitivity analysis and in the 0/1 update scheme.
However, they are fluid elements in the finite element analysis.

BESO
update scheme

Discrete 0/1 design

Fluid region
update

Fluid domain

Structural
design domain

0P

Initial design

fsS

Final F-S design

fsS

Figure 3.: Optimization step: fluid region update as a new operation in each iteration of
the BESO method procedure.

The inequality constraint g sets a threshold for the required buoyancy volume and
the equality constraint h sets the amount of solid material to be used with respect to
the volume of the design domain. The constraint g is considered to be active when B,
measured by the joint volume of structural and void elements, is equal as the prescribed
buoyancy volume Blim. The final solution do not need to present an active g, since
B > Blim is also in the feasible solution region and it g is inactive in this case. The
constraint h must be active in the final solution, ensuring the solution to present a final
volume fraction equal to Vs.
To enable the procedures in the standard evolutionary method to be used, the previous

problem statement is modified so that it can be solved in a penalty form (Luenberger
and Ye 2008). Thus, the topology optimization problem becomes:

min: f (xi) =
1
2u

T
s Ksus + pmax(0,g),

xi

subject to:

[

Ks −Lfs

0 Kf

]{

us

Pf

}

=

{

0

0

}

and b.c.,

h = V (xi) /V0 = Vs,

xi = [0,1] ,

(10)

where p is an arbitrary penalty factor. When B is lower than Blim, g is greater than 0
and is added to the objective function f(xi). This behavior is then discouraged by a high
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penalty factor.

3.2 Sensitivity analysis

Starting from a full design domain (or initial solution), the BESO method slowly removes
elements and reduces the solid volume fraction towards Vs. Void elements near high-
stressed regions can return to the solid (Xie and Steven 1993; Huang and Xie 2010). A
sensitivity analysis is needed to determine the efficiency of each element in the structural
performance and decide which element should be eliminated or returned to solid. The
sensitivity of f(xi) with respect to xi is:

∂f(xi)

∂xi
= αCi + pαBi, (11)

where αC and αB correspond to the derivatives of the compliance and buoyancy objective
functions, respectively. The derivative of the compliance is

αCi =
∂C

∂xi
= uT

s Ks
∂us

∂xi
+

1

2
uT
s

∂Ks

∂xi
us. (12)

This compliance derivative is exactly the same as developed by Picelli, Vicente and
Pavanello (2015) and detailed description of it can be found in the reference paper or in
Picelli (2015). By deriving the equilibrium to find the unknown ∂us/∂xi and reorganizing
the expression, the sensitivity of the compliance part is

αCi = uT
s

∂Lfs

∂xi
Pf −

1

2
uT
s

∂Ks

∂xi
us. (13)

The derivative of the buoyancy can be expressed as

αBi =
∂g

∂xi
=

∂(1− B
Blim

)

∂xi
= −

1

Blim

∂B

∂xi
. (14)

The derivatives must be then evaluated locally at the element level, generating a sen-
sitivity number αi for each element represented by both compliance (αCi) and buoyancy
(αBi) element sensitivities.
The version of the BESO method described here is developed using a hard-kill tech-

nique, where the densign variables of the void elements are set to zero, as proposed by
Huang and Xie (2007). A material interpolation scheme similar to the SIMP method
can also be used to set a very small density (design variable) for the void elements in a
soft-kill evolutionary procedure described by Huang and Xie (2009). When used with a
mesh-independency filter, both hard-kill and soft-kill approaches present similar results
for structural design and can be used in a similar manner, as shown in Huang and Xie
(2009).
In the present paper, the hard-kill BESO method is chosen to allow void elements to

be completely replaced by fluid ones and to ensure better control of the buoyancy area1.
In this approach, no material interpolation functions or design variables with very small
values appear in the element modeling and the sensitivities cannot be calculated with
continuous functions in the manner it is carried out by the SIMP approach. Therefore,

1The term “buoyancy area” is used to refer to the cross sectional area of the buoy.
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an approximation based on a single step finite difference can be carried out for the hard-
kill sensitivities, considering the structural configuration before and after an element
removal (Huang and Xie 2010). The derivative of the global structural stiffness matrix
with respect to the design variable of the ith element can be then expressed as

∂Ks

∂xi
≈ ∆Ks(xi) = Ki

s. (15)

The derivative of the coupling matrix ∂Lfs/∂xi indicates the change in the coupling
condition when the ith element is removed. This change can be predicted by a finite
difference with step equivalent as the system configuration before and after the element
removal. Thus,

∂Lfs

∂xi
≈ ∆Lfs(xi) =

(

L∗

fs − Lfs

)i
= Li

c, (16)

where Lfs is the coupling matrix before the element is removed and L∗

fs is the final
coupling matrix after the element is removed, resulting in a matrix assembled according
to this change, as detailed by Picelli, Vicente and Pavanello (2015).
To find αBi, the derivative ∂B/∂xi must be calculated. This derivative represents the

change in the total buoyancy volume B when element xi is removed. The absolute change
in B can be approximated as

(

∂B

∂xi

)i

≈ |∆B(xi)| = |(B∗ −B)i| = (Ai)
fs , (17)

where B∗ is the buoyancy volume after removal of the ith element, and the superscript
fs indicates that the term is valid only for elements at the fluid-structure interface.
Removal of elements in the interior of the structure does not cause any change in B.
For 2D cases, solid elements at the fluid-structure boundaries cause a change equivalent
to the area Ai of the element. In these cases, the derivative of the buoyancy objective
function is a constant valid only for solid elements at the fluid-structure interface. For
all other elements, the sensitivity value is 0. Thus, returning to Equation 14, αBi can be
expressed as

αBi =
∂g

∂xi
≈ −

1

Blim

(Ai)
fs . (18)

Finally, the sensitivity numbers for the present buoyancy-module design are

αi = −
∂f(xi)

∂xi
=

{

1
2u

T
i K

i
sui − uT

i L
i
cPi +

p
Blim

(Ai)
fs xi = 1

0 xi = 0
. (19)

The minus sign is introduced when minimization of the objective function is considered
in the optimization problem.
This analysis is carried out for each element i in the design domain. For solid elements

which are not at the fluid-structure boundary (interface), the pressure transferred by
the occupying fluid is null and the term uT

i L
i
cPi vanishes. The term for buoyancy in

the sensitivities are also only for boundary elements. Although the sensitivities for void
elements are computed as zero, the application of a numerical filter scheme smooth the
sensitivities over the finite elements and voids nearby regions with high sensitivities can
return to solid.

8



It is also important to note that the new term αBi is only valid when the inequality
constraint g is violated. The first term of αi is the strain energy of element xi. The
second term is the derivative of the pressure loads at the element level. The elements
with the lowest sensitivities can be removed from the domain with a minimum change in
the objective function. When g is not violated, the compliance derivatives will provide
the gradient information for the optimization procedure. For buoyant structures, the
minimum compliance would be obtained with the smallest possible structure without
holes, i.e., a structure with a very small B. However, as B decreases, g will be violated
and the solid elements at the fluid-structure interfaces will have a high sensitivity number
because of the penalty factor p, causing elements to be added in the region of the fluid-
structure interfaces so that the volume (and consequently B) of the structural design
increases. At this point, only elements in the interior of the structure will be removed,
since these elements have lower sensitivities.

4. Optimization procedure

Originally, evolutionary structural optimization (ESO) was based on successive elimi-
nation of material from the initial design domain (Xie and Steven 1993). Further im-
provements to the ESO method were made using a bi-directional algorithm (Querin and
Steven 1998).
One of the last major developments in ESO-based methods was the convergent and

mesh-independent BESO method proposed by Huang and Xie (2007), which allows mate-
rial to be simultaneously removed and added in the domain until a volume constraint and
convergence criterion are satisfied. In general, these methods can be considered gradient-
based methods that rely on design updates and result only in 0/1 solutions during the
optimization process.
The proposed methodology described in this article is a hard-kill BESO approach, in

which some void elements are substituted by incompressible fluid ones and the loads are
generated by imposed pressures in the coupled model.

4.1 Implementation matters for a BESO-based method

In order to rank all the elements according to their contribution to the objective function,
the sensitivity numbers from Equation 19 are evaluated for each element. Boundary and
interior elements are identified by checking their neighbouring elements. A solid element
is a boundary element if it has at least one fluid neighbour element and an interior
element if it does not have any fluid neighbours. A mesh-independency filter is applied
over the whole mesh by averaging each elemental sensitivity number with its neighboring
elements. The filter scheme is similar to that described by Sigmund and Peterson (1998).
To evaluate the filter weights, nodal sensitivity numbers αj are calculated by averaging
the elemental sensitivity numbers of the j th connected elements. These nodal sensitivity
numbers must be converted back into elemental sensitivities by projecting a sub-domain
Ψi with length scale rmin centered on the ith element. All the nodes inside Ψi must have
their nodal sensitivity numbers averaged back to the ith elemental level as follows:

αi =

∑nod
j=1w(rij)αj

∑nod
j=1w(rij)

, (20)

where rij is the distance between the node j and the center of the element i, nod is the
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total number of nodes inside the design domain and w(rij) is a weight factor whose value
is rmin− rij for nodes inside the sub-domain Ψi and 0 for nodes outside the sub-domain.
This filter scheme can effectively address mesh-dependency and checkerboard problems.
However, the objective function and corresponding topology may not be convergent. To
avoid this problem, Huang and Xie (2007) showed that the above sensitivity numbers
should be averaged with their previous iteration numbers as follows

αi =
αn
i + αn−1

i

2
, (21)

where n is the current iteration number. Thus, the updated sensitivity number includes
the history of the sensitivity information in the previous iterations (Huang and Xie 2007).
For each iteration, a target volume Vn+1 = Vn(1 ± ER) is used, where ER is the

evolutionary ratio and n the number of the iteration. ER is the percentage change in
the structural volume and causes Vn+1 to increase or decrease toward the final desired
structural volume fraction Vs. When Vn = Vs, the equality constraint h is active and the
target volume Vn+1 is kept equal to Vs until the convergence of the algorithm. The target
volume Vn+1 sets the threshold αth of the sensitivity numbers. Solid elements (xi = 1)
for which αi ≤ αth are switched to the fluid/void condition (xi = 0). Fluid/void elements
(xi = 0) are switched to the solid condition (xi = 1) when αi > αth.
Meanwhile, the volume addition ratio (AR) is restricted to a maximum addition ratio

ARmax, which specifies the maximum allowable solid volume fraction that can be added
per iteration. It plays an important role when the inequality constraint g is violated and
solid elements at the interfaces have highly penalized sensitivities. Because of filtering,
exterior fluid/void elements close to the interfaces are also given high sensitivities and
tend to return to solid condition. The amount of these new solid elements is controlled by
the maximum admission ratio ARmax. This parameter is usually set with similar values
to ER, e.g., between 1% and 5%. If AR > ARmax, only some of the elements with highest
sensitivity numbers are added to set AR = ARmax. Then, some of the elements with the
lowest sensitivity numbers are removed to satisfy the target volume Vn+1.
When the variables xi for an element are equal to zero, a decision must be taken as

the element can become a fluid element or a void. If the element has at least one fluid
element as neighbor, it must be turned into a fluid element. If the element does not have
any fluid neighbors, it must be turned into a void. This procedure is repeated until there
are no more changes in the fluid-void regions. Thus, some layers of structural elements
near the fluid-structure interface can be replaced by fluid elements, and void elements
appear only inside the structural domain, similarly as illustrated in Figure 3.
When the prescribed final volume fraction Vs is reached, the target volume remains

constant, i.e., Vn+1 = Vn. The algorithm evolves until a stop criterion with a predefined
error tolerance τ is satisfied. Here, the convergence is estimated as

|Cn − Cn−1|+ |Cn−1 − Cn−2|

Cn − Cn−1
≤ τ , (22)

where Cn is the structural compliance value for the current iteration.

4.2 The extended fluid-structure BESO method

The evolutionary procedure for the BESO method presented here for buoyancy module
design problems is as follows:

(1) Define the design domain, loads and boundary conditions.
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(2) Define the BESO parameters.
(3) Discretize the design domain using a finite element (FE) mesh for the given boundary

conditions. Initially, the global fluid-structure stiffness matrix must be assembled
uncoupled.

(4) Couple and store a current global matrix Kn with the coupling matrices according
to the current design of the nth iteration and the appropriate boundary conditions.
Thus, the current Kn becomes equivalent to the stiffness matrix from Equation 8.

(5) Perform FE analysis (using Equation 8) on the current design to obtain the displace-
ment and pressure responses.

(6) Calculate the sensitivity numbers according to Equation 19.
(7) Apply the filter scheme. Project the nodal sensitivity numbers on the finite element

mesh and smooth the sensitivity numbers for all (fluid, void and solid) elements in
the design domain.

(8) Average the sensitivity numbers with their values in the previous iteration (n − 1)
numbers and then save the resulting sensitivity numbers for the next iteration.

(9) Determine the target structural volume Vn+1 for the next iteration.
(10) Construct a new fluid-structure design by switching design variables xi from 1 to 0

and from 0 to 1, tracking the advance of the fluid-void regions.
(11) Remove and/or add the element stiffness matrices from the original uncoupled global

matrix Kg according to the change in the current design.
(12) Repeat steps 2-12 until the stop criterion from Equation 22 is satisfied.

5. Numerical results

5.1 Test case

To test the algorithm, a simple square-shaped, buoyant structure was chosen. Figure 4
shows the structure floating in a fluid domain. A quarter of the model was discretized
with 11664 finite elements, of which 10000 are solid and 1664 fluid. The solid material
used was a polymer with Young’s modulus E = 1.25 KPa and Poisson’s ratio ν = 0.37.
The pressure P0 imposed on the fluid domain was an arbitrary value of 1 Pa. The
fluid properties are not taken into account in the static analysis when body forces are
neglected.

Design domain

Pf = P0 

Pf = P0

P
f 
=

 P
0
 P

f =
 P

0

Pf = P0 

P
f =

 P
0

0.5 m

0
.5

 m

0.25 m

0
.2

5
 mStructure

Buoyant

Fluid domain

Figure 4.: Design problem: complete fluid-structure model and the design domain used
(a quarter of the model) including boundary conditions.

Because of the buoyant nature of the structure, this type of model behaves differently
from those used previously in structural topology optimization (Bendsoe and Sigmund
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2003; Huang and Xie 2010). A buoyant structure suffers equal compression in all di-
rections, and if it is completely solid, is therefore in a hydrostatic pressure state with
the same stress values all over the structural domain independently of the coordinate
system. This also implies that the strain energy term 1

2u
T
i K

i
sui on αi is equal for all the

elements in a structure with no holes inside. Then, starting from a full design domain,
the evolutionary topology optimization method would not work without the derivatives
uT
i L

i
cPi of the design-dependent pressure loads.

The parameters of the BESO method for the test case design problem are set to
ER = 3%, ARmax = 5%, Vs = 15% and τ = 0.01. The filter radius applied is rmin = 0.01
m, the penalty factor is chosen to be a constant p = 1 · 105 and the buoyancy lower
limit Blim is set to 0.0419 m2, which is equivalent to the area of 6700 elements from
the design domain. Figure 5 shows snapshots of the evolutionary topology solution until
final convergence. Initially, only solid elements at the fluid-structure interface are removed
because of the influence of uT

i L
i
cPi on the sensitivities.

n = 0 n = 5 n = 10 n = 15 n = 20

n = 25 n = 30 n = 35 n = 40 n = 45

Figure 5.: Snapshots of the test-case solution.

When the buoyancy inequality constraint is violated, the penalty factor p gives the
elements at the interface a high sensitivity number. Then, holes are created in the struc-
ture and the algorithm evolves until convergence is reached. In Figure 6, it can be seen
that the buoyancy area B decreases in the first iterations until the buoyancy inequality
constraint is violated (iteration 12) and B increases.
Figure 7 shows the evolutionary history for the global mean compliance of the buoyant

structure. It must be pointed out that the strong oscillations on the mean compliance
values may be caused by the penalization on g and its consequent change in the joint
volume B or by the break of structural members. In Figure 7 the intermediate topologies
are detailed for the strong oscillations in the mean compliance convergence curve. In this
case, the highest compliance is linked to a topology with a broken structural member.
The solution is then said to be convergent with C = 2.6518·10−4 Nm at the iteration 45
according to the Equation 22, which evaluates two consecutive iterations.
For this simple 2D test case, the final solution obtained was a hollow cylinder. This

result is intuitive and was already expected as the optimal buoyant structure with a
volume constraint. If one takes the formula for the area of a circle Ac = 4B = πr2c , where
rc is the radius of the circle and the number 4 appears because a quarter of the whole
design model was used (see Figure 8), one can predict the radius of the optimal structure
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Figure 6.: Evolutionary history of the buoyancy area B of the buoyant structure.
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Figure 7.: Evolutionary history of the global mean compliance of the buoyant structure.

for this test case as function of B:

rc =

√

4B

π
. (23)

The formula of a cross-sectional area As of a hollow cylinder with an external radius rc
and internal radius ri can be given as 4As = π

(

r2c − r2i
)

. If rc is substituted and ri is
isolated, one can predict the internal radius for the final optimal hollow cylinder as a
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function of As,

ri =

√

4 (B −As)

π
, (24)

and, consequently, the thickness t of the hollow cylinder t = rc − ri.

rc

ri

As B = As + Av

Av

Ac = 4B

Figure 8.: Geometric properties of the hollow cylinder associated with the solutions for
the test case.

In conclusion, for this simple test case rc depends on B and ri is directly determined
by Vs, since As depends on the final volume of solid material. The results of numerical
analysis of the previous equations for different hollow cylinders obtained using the BESO
method with different values of Blim are shown in Table 1. These examples are obtained
with the following optimization parameters: ER = 5%, ARmax = 5%, Vs = 20%, rmin =
0.015 m, p = 1 · 104, τ = 0.001 and different values for Blim. The differences between the
geometrical measurements of the BESO topology solutions and the analytical results of
the previous equations are given by the thickness t in Table 1, which is always smaller
than the element size (0.0025). Thus, the numerical BESO solutions agree with the
analytical equations, validating the methodology. Problems with greater complexity (as
in the next example) can be expected to result in more complex designs.

5.2 Study case

As a study case, a subsea buoy design problem was chosen. The buoy is built with two
semicircles with an inner and outer radius, and the pipeline is attached to the buoy’s inner
edge. At higher oil temperatures and deepwater pressures, a pipeline’s natural tendency is
to relieve its axial stress by buckling. The type of buoyancy module described here reduces
the severity of buckle bending by using buoyancy to decrease the operational submerged
weight of the pipeline, especially in long vertical pipelines such as the catenary riser. In
some other applications, e.g., when pipelines are installed over subsea soil, the buoyancy
module decreases lateral soil-structure friction using the same buoyancy principle.
For this buoyancy-module problem, only one of the two semicircles making up the

design is considered. Figure 9(a) shows the floating structural model immersed in a
pressurized fluid domain. Half of the model is discretized with finite elements and used
as design domain. The boundary conditions for the finite element model used are shown
in Figure 9(b). The inner edge (represented by a thicker line) is considered a non-design
domain, i.e., it remains as solid material during the whole algorithm. The inner radius
should remain fixed as a design requirement. The solid material adopted is a polymer
with Young’s modulus E = 1.25 kPa and Poisson’s ratio ν = 0.37. The pressure P0

imposed on the fluid domain is an arbitrary value of 1 Pa.
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Table 1.: Dimensions of the hollow cylinders identified as the stiffest buoyant structures
using the BESO method with different values of Blim. The thickness t obtained with
the topology solutions and the analytical values are shown in the columns BESO and
Theory, respectively, as well as the absolute difference between them (column Diff.).

Topology Blim (m2) B (m2) As (m2) rc (m) ri (m)
t (m)

BESO Theory %Diff.

0.0288 0.0333 0.0125 0.2050 0.1625 0.0425 0.0431 0.0007

0.0331 0.0381 0.0125 0.2200 0.1800 0.0400 0.0397 0.0003

0.0375 0.0429 0.0125 0.2325 0.1975 0.0350 0.0370 0.0020

0.0419 0.0477 0.0125 0.2450 0.2125 0.0325 0.0347 0.0022

Buoyant Structure
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 P
0
 P
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 P
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2
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Pf = P0 

Pf = P0 

P
f =

 P
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(a) (b)

Figure 9.: Structural optimization design problem: (a) complete fluid-structure model
and (b) design domain using half of the model showing the boundary conditions for the
structure.

For the design problem shown in Figure 9 two initial solutions are considered, one
starting from the initial full design and another with an initial semicircle solution covering
75% of the design domain. The whole model is discretized with 51513 finite elements. The
evolutionary ratio (ER) is chosen to be 1%, i.e., the volume of solid material decreases
1% in each iteration until it reaches Vs, which is chosen to be 30%. The other parameters
of the BESO method are set as, ARmax = 5%, rmin = 0.0125 m and τ = 0.001. Figure
10 shows the initial solutions and final topologies for both cases, as well as a comparison
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case in which the fluid-structure interfaces are kept fixed. The buoyancy area limit Blim

is chosen as 0.1485 m2, which is equivalent to 80% of the area of the initial semicircle
solution in Figure 10(b). The penalty factor is chosen as a constant p = 1 · 105.

Case 1 Case 2 Case 3

B = 0.1622 m2 B = 0.1628 m2 B = 0.1856 m2

C = 4.2429·10−4 Nm C = 4.2061·10−4 Nm C = 5.8800·10−4 Nm
Vs = 30% Vs = 30% Vs = 30%

Figure 10.: Buoy module designs with topology optimization: Case 1 - full design do-
main and final topology; Case 2 - initial semicircle solution and final topology (design-
dependent loads); Case 3 - initial semicircle solution and final topology with fixed fluid-
structure interfaces (fixed loads).

It can be seen that the final topologies in Case 1 and Case 2 mainly cover the areas
in the “initial guess” solutions, indicating that the starting topology exerts a strong
influence on the final solution and suggesting that the designer should choose the initial
guess according to some desired final solution. This behavior is expected as the structure
is floating. When pressure is applied all over a floating structure that can change its shape
and topology, the structure starts to seek an equilibrium state, behaving like bubbles.
Indeed, the final results in this work are bubble-like structures. This behavior can be
observed in Figure 11, which shows snapshots of the solution for Case 2.
Although it uses the same amount of solid material, the structure in Case 2 is the

stiffest and represents an increase in stiffness and reduction in buoyancy area compared
with Case 3 of around 39% and less than 13%, respectively. The results for Case 1 were
very similar to those for Case 2. Figure 12 and 13 show the evolutionary history of the
buoyancy area and mean compliance, respectively, for Case 2.
The following analyses show the different solutions obtained using different parameter

settings and allow the details of the method to be explored. The reference parameters
are the same from Case 2. Figure 14 shows the topologies produced when three different
evolutionary ratios were used (1%, 3% and 5%). The numerical results did not vary sig-
nificantly, and the final solutions differed only in some aspects of their topology, reflecting
different local minima.
Another important parameter of the method is the maximum admission ratio ARmax,

which can limit the amount of added solid elements per iteration. Figure 15 presents
different solutions obtained with different ARmax’s. It was observed that smaller ARmax’s
leaded to smaller changes in the fluid-structure boundaries because less solid elements
are allowed to be added in these regions per iteration. Higher admission ratios allow
more drastic changes in the interface shapes. However, the amount of solid elements is
also limited by the filter radius, which extrapolates the highly penalized sensitivities in
the interface regions. Thus, the ARmax parameter does not affect the solution with a
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n = 40 n = 45 n = 50 n = 58

Figure 11.: Snapshots of the Case 2 solution after different iterations.
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Figure 12.: Evolutionary history of the buoyancy area for Case 2.

high enough value. As seen in Figure 15, the final solution is the same for ARmax = 5%
and ARmax = 100%, this last being equivalent as not considering the rule of maximum
addition ratio.
Figure 16 shows different solutions when the penalty factor p was varied. It can be

seen that this variable exerted a considerable influence on the solutions. Smaller penalty
factors produced greater variations in the outer shape than higher penalty factors.
A very high penalty factor may result into difficulties in the optimization procedures.
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Figure 13.: Evolutionary history of the mean compliance of the buoy in Case 2.

ER = 1% ER = 3% ER = 5%
C = 4.2061·10−4 Nm C = 4.1250·10−4 Nm C = 4.1123·10−4 Nm

B = 0.1628 m2 B = 0.1621 m2 B = 0.1619 m2

Figure 14.: Different solutions with different evolutionary ratios.

ARmax = 1% ARmax = 3% ARmax = 5% ARmax = 100%
C = 4.2061·10−4 Nm C = 4.1250·10−4 Nm C = 4.1123·10−4 Nm C = 4.1123·10−4 Nm

B = 0.1628 m2 B = 0.1621 m2 B = 0.1619 m2 B = 0.1619 m2

Figure 15.: Different solutions with different maximum admission ratios.

A continuous variation of the penalty factor can be used to try avoiding these issues.
Figure 17 presents a solution obtained with penalty variation. The initial penalty factor
was chosen to be p = 5 · 102 and updated with the rule pnext = 10 · pcurrent for each
iteration the constraint g was active. As presented, the problem shows to have many
local minima and the solution is also affected by the penalty update strategy adopted.
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C = 4.0437·10−4 Nm C = 4.0043·10−4 Nm C = 4.2061·10−4 Nm C = 4.4137·10−4 Nm
p = 1 · 103 p = 5 · 103 p = 1 · 105 p = 5 · 105

C = 4.1294·10−4 Nm C = 4.0488·10−4 Nm C = 4.0951·10−4 Nm C = 3.9732·10−4 Nm
p = 1 · 107 p = 5 · 107 p = 1 · 109 p = 5 · 109

Figure 16.: Different solutions with different penalty factors p.

C = 4.0538·10−4 Nm
pinitial = 5 · 102 and pfinal = 5 · 105

Figure 17.: Solution obtained using a continuous variation of the penalty factor.

The strain energy distributions of the final structures for Case 2 (variable boundary
with continuous penalty variation) and Case 3 (fixed boundary) for p = 1 ·105 are shown
in Figure 18. Both strain energy distributions are normalized to the maximum strain
energy in Case 3 so that the same scale can be used. It can be observed that for the
bubble-like structure (Case 2) the strain energy distribution is much smoother than for
Case 3, in which the predominant structural patterns are bars under compression. This
result is reflected in the compliance value, which is around 45% smaller for the bubble-
like design. This justifies the use of the proposed methodology even though the final
buoyancy area of the buoy with the variable boundary is smaller than the buoyancy area
of the fixed-boundary buoy in this example. One important point worth noting is that
the proposed buoy module can be used in a region where drag forces are negligible, i.e.,
where the loads produced by the subsea fluid flow are much smaller than the deepwater
pressure loads. Because its external shape is similar to that of the buoy in Case 3, this
solution may also be suitable for use in regions where drag forces are quite high. However,
in cases where the solution looks like Case 1, i.e., the buoy has a significantly different
shape, further analysis may be needed.
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C = 4.0538·10−4 Nm C = 5.8800·10−4 Nm
B = 0.1614 m2 B = 0.1856 m2

Figure 18.: Normalized strain energy distribution for the buoyancy module designed
with the proposed methodology using continuous p variation and the case with fixed
boundaries.

6. Conclusions

This work proposes the use of topology optimization to identify alternative structural
designs in offshore engineering. The specific case of fully submerged buoyancy modules
under constant underwater pressure loads is considered. The extended BESO method
proposed by Picelli, Vicente and Pavanello (2015) is used to directly circumvent the
known issues in topology optimization of design-dependent pressure loading problems.
The discrete nature of the evolutionary procedures allows the switch between solids, flu-
ids and voids with explicitly defined fluid-structure interfaces. Thus, no parametrization
schemes are needed to model the pressure surfaces. A new inequality constraint is pro-
posed to guarantee minimum required buoyancy effects, measured by the volume of the
displaced fluid. It was shown that with a penalty factor, the evolutionary optimization
problem could handle a different constraint rather the standard volume one. The final
topologies were bubble-like structures, results that confirms the effectiveness of the pro-
posed methodology. The parameters of the method were discussed. Comparison of the
results with a case in which the pressure loads are fixed showed that a stiffer structure
could be designed by moving the fluid-structure interfaces and fulfilling the buoyancy re-
quirements simultaneously. If other types of forces are negligible, e.g., viscous flow loads,
the proposed solutions can be used as a starting point for the design of new deepwater
buoyancy modules to support oil pipelines. Further improvements can be carried out,
such as the consideration of non-constant pressure fields or buckling constraints.
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