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-is paper deals with an optimal layout design of the constrained layer damping (CLD) treatment of vibrating structures subjected
to stationary random excitation. -e root mean square (RMS) of random response is defined as the objective function as it can be
used to represent the vibration level in practice. To circumvent the computationally expensive sensitivity analysis, an efficient
optimization procedure integrating the pseudoexcitation method (PEM) and the double complex modal superposition method is
introduced into the dynamic topology optimization. -e optimal layout of CLD treatment is obtained by using the method of
moving asymptote (MMA). Numerical examples are given to demonstrate the validity of the proposed optimization procedure.
-e results show that the optimized CLD layouts can effectively reduce the vibration response of the structures subjected to
stationary random excitation.

1. Introduction

Attenuation of unwanted vibrations is important in engi-
neering structures as they could have detrimental effects on
structural performances. Constrained layer damping (CLD)
treatment is an effective way to suppress structural vibra-
tions. It is used in some critical thin-walled structures of
many engineering fields including vehicles, airplanes, and
ships. However, increasing the amount of CLD reduces the
cost-effectiveness and increases the weight of the devices.
-us, there is a growing demand for optimizing the layout of
CLD materials.
Topology optimization of the damping materials by

using a modal loss factor as the objective function has
attracted interests of many researchers. Zheng et al. [1] used
topology optimization as a tool to optimize the CLD layouts
and defined a combination of several modal loss factors
solved by the finite element-modal strain energy (FE-MSE)
method as the objective function. Moita et al. [2] presented
an efficient finite element model for optimizing the damping
of multilayer sandwich plates.-e optimization is conducted

in order to maximize the fundamental modal loss factor.
Madeira et al. [3, 4] proposed a multiobjective method to
optimize the viscoelastic laminated sandwich structures for
minimizing the weight and maximizing the modal loss
factors. Ansari et al. [5] adopted a level set method to search
the best shapes and locations of the CLD patches on
a cantilever plate for maximizing the structural modal loss
factor. -e result shows that the proposed method can in-
crease the structural modal loss factor significantly through
the shape change from a square to a circle. Sun et al. [6]
compared the modal loss factors of the structures with
damping material treatment obtained by topology optimi-
zation to the ones obtained by other approaches. -e result
shows that topology optimization provides about up to
61.14% higher modal loss factor. Chen and Liu [7] in-
vestigated the effect of shear modulus on the modal loss
factor and optimized the microstructures of cellular visco-
elastic materials with a prescribed shear modulus to improve
damping. Alfouneh and Tong [8] presented a study on
maximizing single and multiple modal damping ratios by
finding the optimal layouts of damping layer materials and
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base materials by using an extended moving isosurface
threshold (MIST) topology optimization. Xu et al. [9]
implemented the evolutionary structural optimization
(ESO) method to optimize the layouts of the damping
material attached to the headstock. -e optimization results
indicate that the first two orders of the modal loss factor
decrease by less than 23.5% compared to the original
structure when the added weight of the damping material
decreases by 50%.
Many studies have recently been carried out on fre-

quency response-based optimization of the structure with
CLD treatment. Kang et al. [10] investigated the optimal
distribution of the damping material in vibrating struc-
tures subject to harmonic excitations. -e optimization
objective function is to minimize the structural vibration
at specified positions, and the steady-state response of the
vibrating structure is obtained by using the complex mode
superposition method in the state space to deal with the
nonproportional damping. Zhang and Kang [11] pro-
posed an optimization methodology based on the fre-
quency response analysis, and they extended their work
to simultaneous optimization of the damping and host
layers. Fang and Zheng [12] proposed a topology opti-
mization method to minimize the resonant response
of plates with CLD treatment at specified broadband har-
monic excitations and studied the effect of the modal sen-
sitivity analysis on optimization of the damping material.
Takezawa et al. [13] proposed complex dynamic compli-
ance as the objective function for optimizing damping ma-
terials to reduce the resonance peak response in the
frequency response problem. Zhang et al. [14] established
an acoustic topology optimization model with the objective
to minimize sound radiation power at a specific modal
frequency.
-e nature of the dynamic environment in which the real

structures operate is often uncertain. -e uncertain dynamic
loading can be characterized as a random process, such as
flying aircraft, automobile suspension systems, moving
high-velocity trains, ship hulls, submarines, etc. Only
a limited number of works have been devoted to the to-
pology optimization of the structures with random excita-
tion. Rong et al. [15] used the ESO method and the
sequential quadratic programming (SQP) method to opti-
mize continuum structures under random excitations.
Zhang et al. [16] investigated the optimal placements of the
components and the configuration of the structure to im-
prove the structural static and random dynamic responses
simultaneously. All the above works were carried out by
using the complete quadratic combination (CQC) method.
Lin et al. [17] adopted the pseudoexcitation method (PEM)
as an efficient optimization procedure to optimize the pi-
ezoelectric energy harvesting devices under stationary
random excitation. Zhang et al. [18] used an efficient op-
timization procedure integrating the pseudoexcitation
method and mode acceleration method to optimize the
large-scale structures subjected to stationary random
excitation.
-e sensitivity analysis of frequency response plays

a major role in topology optimization because most

frequency response-based optimizations require this in-
formation. -e optimization efficiency is dependent largely
on the calculating efficiency of the sensitivity analysis.
Because of the CLD structure with nonviscous damping,
the sensitivity analysis of frequency response is much more
complicated and time consuming. It is necessary to propose
an efficient sensitivity analysis method for optimizing the
layout of the CLD structures subjected to stationary ran-
dom excitation.
In this paper, the objective is to provide a topology

optimization method to minimize the root mean square
(RMS) of the CLD structures subjected to stationary random
excitation. -e optimization procedure integrating the PEM
and the double complex modal superposition method is
proposed to calculate the sensitivities of the optimization
objective in order to improve the calculative efficiency. -e
method of moving asymptote (MMA) is adopted to search
the optimal layout of CLD treatment.

2. Dynamic Responses of CLD Structure under
Stationary Random Excitation

-e CLD structure consists of a base plate covered with
a viscoelastic material and constrained layer material. -e
base plate and the constrained layer are isotropic and
linearly elastic, and their shear strains are negligible. -e
viscoelastic material dissipates the vibrational energy. -e
modulus of elasticity of the viscoelastic material is
complex such that Ev � E0(1 + jη), where η is the loss
factor of the viscoelastic material and j �

���
−1

√
. -en, by

using the finite element method, the governing equation
for the structure under stationary random force excitation
is written as [19]

M€x + KR + jKI( )x � f, (1)

where M is the global mass matrix, KR and KI are the real
and imaginary parts of the stiffness matrix, and x is the nodal
displacement vector. f is the stationary stochastic excitation
force with power spectrum density (PSD) matrix Sff .
-e CQC is the well-knownmethod for solving Equation

(1), and it is used to optimize the structures under random
excitations. However, the CQC is not only computationally
expensive but also has low computing accuracy for large-
scale problems. -e PEM is also known as the fast CQC.
Although both methods can completely achieve the same
precision with the same number of structural modes, the
efficiency of the PEM is much higher than that of the CQC
[20]. In this paper, the dynamic responses of the CLD
structure under stationary random excitation are solved by
using the PEM.
Constituting the pseudoexcitation f̃ � l

���
Sff

√
ejωt and

substituting it into Equation (1) yield

M€̃x + KR + jKI( )x̃ � l
���
Sff

√
ejωt, (2)

where l is a transformation matrix representing the force
distribution.
-e steady state pseudodisplacement response of Equa-

tion (2) can be assumed to be
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x̃ � X̃ejωt. (3)

Substituting Equation (17) into Equation (16) yields

KR + jKI −Mω2( )X̃ � F̃, (4)

where F̃ � l
���
Sff

√
.

-e pseudodisplacement response can be obtained by
using the complex mode superposition method:

X̃ �∑n
r�1

φTr F̃φr
ω2r −ω2

, (5)

where φr and ωr are the complex eigenvector and complex
circular eigenfrequency of the rth modal, respectively.
-e pseudodisplacement X̃ is complex, which is defined

as

X̃ � X̃R + jX̃I, (6)

where X̃R and X̃I are the real part and imaginary part of X̃,
respectively.
According to the PEM, the PSD of the ith degree of

freedom stochastic displacement can be calculated as
follows:

Sxixi � x̃
∗
i x̃
T
i � X̃

2

Ri + X̃
2

Ii. (7)

-e root mean square (RMS) can be defined as

]xixi
�

����������
∫ωβ

ωα

Sxixi dω

√
, (8)

where [ωα,ωβ] refers to the frequency interval of random
excitation.

3. Topology Optimization

3.1. Formulation of the Optimization Problem. -e RMS of
random response at specified positions can be used to
represent the vibration level in practice. In this way, min-
imizing the RMS of random displacement response at
specified positions is selected as the optimization objective
when the CLD structures are subjected to stationary sto-
chastic excitations. At the same time, many engineering
applications require the control of the added weight to the
structures, so the consumption of the CLD material is
limited strictly. -erefore, the optimization model of the
problem can be described as follows:

find: ρe, e � 1, 2, . . . , n,

min: ]xixi,

s.t.:
∑ne�1 ρeVe∑ne�1 Ve ≤V∗,

0< ρmin ≤ ρe ≤ 1, e � 1, 2, . . . , n,



(9)

where ρe is the relative density of e element of the CLD
material attached to the base plate and it is assigned as

a design variable. ρmin denotes the lower bound limit of the
density variable, which is set to be 0.001 in this paper. ]xixi is
the RMS of the random displacement response of the
concerned ith degree of freedom of the structure. Ve is the
volume of the eth CLD element when ρe � 1. V∗ is the total
volume fraction ratio of the CLDmaterial. n is the number of
elements in the design domain.

3.2. 3e Sensitivity Analysis. -e optimization problem in
Equation (9) can be solved using gradient based opti-
mization algorithms. -e first-order sensitivity analysis
of the RMS with respect to the design variable is pre-
sented below,

z]xixi

zρe
� 1

2σxixi
∫ωβ

ωα

zSxixi
zρe

dω. (10)

According to Equation (7), the following equation holds:

zSxixi
zρe

� 2 X̃Ri
zX̃Ri

zρe
+ X̃Ii

zX̃Ii

zρe
( ). (11)

-e first partial derivative of Equation (4) with respect to
the design variable ρe is presented:

KR + jKI −Mω2( ) zX̃
zρe

� Q, (12)

where Q is defined as

Q � − zKR

zρe
+ j zKI

zρe
−ω2zM

zρe
( )X̃. (13)

-e sensitivities of the pseudodisplacement response can
be obtained by using the double complex modal superpo-
sition method, which are defined as

zX̃

zρe
�∑n
r�1

φTrQφr
ω2r −ω2

. (14)

-e base plate is not changed. Based on the solid iso-
tropic material with penalization (SIMP) method [21], the
global mass and stiffness matrices can be calculated as
follows:

M �∑n
e�1

M
e
b + ρpe M

e
v +M

e
c( )( ), (15)

KR �∑n
e�1

K
e
b + ρqe K

e
v + K

e
c( )( ), (16)

KI �∑n
e�1

ρqe K
e
v( )η. (17)

In the above equations, Me
b, M

e
v, M

e
c, K

e
b, K

e
v, and K

e
c are

the eth element mass and stiffness matrices of the base plate,
VEM layer, and constrained layer, respectively. p and q are
the penalty factors, with values of 1 and 3.
-e sensitivities of the mass matrix and the stiffness

matrix with respect to the design variables can be
calculated:
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zM

zρe
� M

e
v +M

e
c,

zKR

zρe
� qρq−1e K

e
v + K

e
c( ),

zKI

zρe
� qρq−1e K

e
vη.

(18)

3.3. Optimization Strategy. �eMMA is usually flexible and
theoretically well found to deal with large-scale topology
optimization designs with complicated objectives and
multiple constraints [22]. It is widely used in topology
optimization of structures [23–25]. In this paper, the MMA
is used to update the design variable. �e flowchart for the
implementation of the topology optimization procedures is
shown in Figure 1.

4. Numerical Examples

4.1. �e Cantilever Plate/CLD System. A numerical ex-
ample involving a cantilever plate/CLD system is pro-
vided first to confirm the validity of the proposed
methodology. �e cantilever plate/CLD system clamped
is shown in Figure 2. It is clamped at the left side, and the
stationary random excitation with PSD value 1 N2/Hz is
applied at the middle node of the right edge. �e length
and width of the plate/CLD system are 0.2 m and 0.1 m,
respectively. �e thickness of the base plate, VEM layer,
and constrained layer is 0.002m, 0.0001m, and 0.0002 m,
respectively. �e material of the base layer and con-
strained layer is aluminum with Young’s modulus of
70 GPa, Poisson’s ratio of 0.3, and mass density of
2700 kg/m3. �e physical properties of the VEM layer are
Young’s modulus of 12MPa, Poisson’s ratio of 0.495,
mass density of 1200 kg/m3, and a loss factor of 0.5.

�e location of the excitation force is always the main
vibration source, and the optimization objective is to
minimize the RMS of vertical displacement at the loading
position. �e fraction ratio of CLD V∗ is restricted to 0.5. It
means that the volume consumption of the CLD material is
limited to 50% of full coverage after optimization. �e initial
values of the design variables are set to 0.5. Two fre-
quency intervals of random force excitation are considered
with f � [0, 100]Hz and f � [100, 1000]Hz.

�e optimal layouts of CLD treatment are shown in
Figure 3. �e convergence histories of the objective
function are plotted in Figure 4. It is noted that the ob-
jective function finally convergences to a stable value after
a certain iteration number. Table 1 is the comparison of
objective functions before and after optimization. It can be
seen that the values of the objective function of the CLD
structure are greatly decreased through optimizing the
layout of the CLD treatment. �e PSD curves are shown in
Figure 5. It is shown that PSD curves of optimized
structures globally decrease within the prescribed fre-
quency intervals.

To further verify the effectiveness of the proposed op-
timization method, the initial values of the design variables
are, respectively, set to 0.001 and 0.75.�e optimal layouts of
CLD treatment are shown in Figure 6. �e values of the
objective function of the optimal layouts of CLD treatment
are shown in Table 2. For the frequency interval of random
force excitation f � [100, 1000]Hz, it can be seen that the
optimal layouts of CLD treatment are different when the
initial values of the design variables are different. �is is
because the MMA is used in this paper. �e MMA is not
a global optimization method, so it is normal to get local
optima instead of global optima. It is normal to obtain
different solutions when the initial values of the design
variables are different.

No

Yes

State

Initialize the design variables

Establish �nite element
model of the CLD plate

Calculate the RMS by using the PEM

Sensitivity analysis by using
the double complex modal

superposition method

Update design
variables by using MMA

Is the constraint
condition satis�ed ?

Stop

Figure 1: Block diagram of the optimization procedure.

f

Figure 2: �e cantilever plate/CLD system.
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4.2. �e Plate/CLD System with Two Short Edges Clamped.
Figure 7 is the plate/CLD system with two short edges
clamped. �e length and width of the plate/CLD system are
0.4m and 0.2m, respectively. Other physical and geo-
metrical parameters are the same as the first example. �e
stationary random excitation with PSD value 1N2/Hz is
applied at the center of the plate. In a similar way, the
minimization of the RMS of vertical displacement at the
excitation point is selected as the optimization objective.�e
fraction ratio of CLD is restricted to 0.5. �e initial values of
the design variables are set to 0.5. Two frequency intervals
are considered with f � [0, 100]Hz and f � [100, 1000]Hz.

�e optimal layouts of CLD treatment are shown in
Figure 8. �e convergence histories of the objective function
are plotted in Figure 9. It is noted that the objective function
also convergences to a stable value after a certain iteration

number. Table 3 is the comparison of objective functions
before and after optimization. It can be seen that the ob-
jective functions of the CLD structure are greatly decreased
through optimizing the layout of the CLD treatment. �e
PSD curves are shown in Figure 10. It is shown that the PSD
is effectively attenuated by the proposed optimization
method.

To further verify the effectiveness of the proposed op-
timization method, the initial values of the design variables
are, respectively, set to 0.001 and 0.75.�e optimal layouts of
CLD treatment are shown in Figure 11. �e values of the
objective function of the optimal layouts of CLD treatment
are shown in Table 4. It can be seen that the optimal layouts
of CLD treatment and the values of the objective function are
different when the initial values of the design variables are
different. It is also because the MMA is used in this paper.

(a) (b)

Figure 3: �e optimal layouts of CLD treatment. (a) f � [0, 100]Hz and (b) f � [100, 1000]Hz.
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Figure 4: �e convergence histories of the objective function. (a) f � [0, 100]Hz and (b) f � [100, 1000]Hz.

Table 1: �e comparison of the values of the objective function before and after optimization.

Values of the objective function

Initial design (m) Optimized structure (m) Percentage of reduction

f � [0, 100]Hz 0.074 0.0287 61.22
f � [100, 1000]Hz 0.00412 0.00273 33.74
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5. Conclusion

�is work developed a topology optimization method to
minimize the RMS of the CLD structures subjected to

stationary random excitation. In order to improve the
calculative efficiency, the PEM is introduced to analyze
the dynamic responses of CLD structures under station-
ary random excitation and the double complex modal
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Figure 5: PSD curves of the initial and optimal design of CLD treatment. (a) f � [0, 100]Hz and (b) f � [100, 1000]Hz.

(a) (b)

(c) (d)

Figure 6:�e optimal layouts of CLD treatment. (a)f � [0, 100]Hz and the initial values of the design variables 0.001. (b)f � [0, 100]Hz and
the initial values of the design variables 0.75. (c) f � [100, 1000]Hz and the initial values of the design variables 0.001. (d) f � [100, 1000]Hz
and the initial values of the design variables 0.75.

Table 2: �e values of the objective function of the optimal layouts of CLD treatment.

Values of objective function

Initial values of the design variable 0.001 (m) Initial values of the design variable 0.75 (m)

f � [0, 100]Hz 0.0287 0.0287
f � [100, 1000]Hz 0.00284 0.00284
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superposition method is used to calculate the sensitivities of
the RMS. �e numerical examples demonstrated the ef-
fectiveness of the proposed method. It can be very useful in

the design of this kind of structures, where the PSD of
optimized structures globally decrease within the prescribed
frequency intervals.

f

Figure 7: �e plate/CLD system with two short edges clamped.

(a) (b)

Figure 8: �e optimal layouts of CLD treatment. (a) f � [0, 100]Hz and (b) f � [100, 1000]Hz.
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Figure 9: �e convergence histories of the objective function. (a) f � [0, 100]Hz and (b) f � [100, 1000]Hz.

Table 3: �e comparison of objective functions before and after optimization.

Value of objective function

Initial design (m) Optimized structure (m) Percentage of reduction

f � [0, 100]Hz 0.0032 0.0019 40.63
f � [100, 1000]Hz 0.00071 0.000305 57.04
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Figure 10: PSD curves of the initial and optimal design of CLD treatment. (a) f � [0, 100]Hz and (b) f � [100, 1000]Hz.
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Figure 11:�e optimal layouts of CLD treatment. (a) f � [0, 100]Hz and the initial values of the design variables 0.001. (b) f � [0, 100]Hz
and the initial values of the design variables 0.75. (c)f � [100, 1000]Hz and the initial values of the design variables 0.001. (d)f � [100, 1000]Hz
and the initial values of the design variables 0.75.

Table 4: �e values of the objective function of the optimal layouts
of CLD treatment.

Values of the objective function

Initial values of the
design variable 0.001

(m)

Initial values of the
design variable 0.75

(m)

f � [0, 100]Hz 0.0020 0.0021
f � [100, 1000]Hz 0.000263 0.000312
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