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Summary

In this paper a novel design procedure based on the integration of full wave Finite Element Analysis (FEA)
and a topology design method employing Sequential Linear Programming (SLP) is introduced. The em-
ployed design method is the Solid Isotropic Material with Penalization (SIMP) technique formulated as a
general non-linear optimization problem. SLP is used to solve the optimization problem with the sensi-
tivity analysis based on the adjoint variable method for complex variables. A key aspect of the proposed
design method is the integration of optimization tools with a fast simulator based on the finite element-
boundary integral (FE-BI) method. The capability of the design method is demonstrated by two design
examples. First, we developed a metamaterial substrate with arbitrary material composition and subject to
a pre-specified antenna bandwidth enhancement. The design is verified and its performance is evaluated via
measurements and simulation. As a second example, the material distribution for a Thermo-Photovoltaic
(TPV) filter subject to pre-specified bandwidth and compactness criteria is designed. Results show that
the proposed design method is capable of designing full three-dimensional volumetric material textures and
printed conductor topologies for filters and patch antennas with enhanced performance.

1 INTRODUCTION

Evidence in literature demonstrates that use of artificial composite materials provides for
a greater potential in designing new electromagnetic/RF devices [1-3]. However, existing
studies dealing with design optimization for RF applications focused to a large extent on
size or shape design only [4-7]. So far, material and topology optimization has not been
pursued primarily due to the challenges associated with the fabrication of inhomogeneous
materials and the limited access to versatile and efficient analysis tools. There are very
few examples in the literature on topology optimization of electrical devices and these have
dealt with problem specific, restricted or semi-analytic tools for magneto-static applications
[8,9]. Here, our goal is to develop a general design method that draws from a broader
class of design solutions as compared to conventional design methods and is capable of
achieving topology and material designs for “new” electromagnetic devices with much higher
performance.
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In this paper, a topology optimization method based on the Solid Isotropic Material with
Penalization Method (SIMP) is extended to develop full three-dimensional material topol-
ogy designs for electromagnetic devices. The design problem is formulated in a non-linear
optimization framework and is integrated with a fast full wave Finite Element-Boundary
Integral (FE-BI) simulator. Solution of the optimization problem is obtained via the Se-
quential Linear Programming (SLP) with a sensitivity analysis based on the adjoint vari-
able method for complex variables. This sensitivity analysis is specifically derived for the
antenna’s input impedance and filter’s transmission coefficient and integrated into the sim-
ulator.

The capability of the proposed design method is demonstrated by two design examples.
One example refers to the dielectric material topology of a patch antenna subject to pre-
specified bandwidth and miniaturization criteria. The optimized design is post-processed
via adaptive image filtering and is transformed into a two-material composite for manufac-
turability. The final substrate is manufactured using Thermoplastic Green Machining as a
composite of Low Temperature Co-firing Ceramic (LTCC) filled with stycast polymer. In
the second example, the dielectric substrate topology is designed for a spectral filter with
bandpass behavior. Results from both miniaturized antenna and spectral filter case stud-
ies demonstrate the capability of the proposed method of designing full three-dimensional
volumetric material textures for EM applications with enhanced performance.

2 BACKGROUND

This section provides an overview of the main milestones in electromagnetic (EM) design
optimization. In the second part of the section, we present some background on topology
optimization in structural mechanics and how it applies to EM. At the end of the section, we
give some examples of topology optimization studies with the understanding that topology
optimization refers only to the optimum material distribution approach.

2.1 Overview of Design Synthesis (Optimal Design) in EM History

The topic of optimal design in electromagnetics has a long history [10]. In other fields of
engineering, the history of optimal design is even longer, dating back to Lagrange [11] and
will be reviewed shortly in Section 2.2 in the context of structural topology optimization.
Optimization theory in structural mechanics has had a history of 45 years. However, modern
optimization theory as pertains to electromagnetics came much later. Among the pioneering
works is that of Marrocco and Pironneau [12] who developed an optimum design of a magnet
using lagrangian finite elements for modeling. Considering more general inverse problems
in EM, it is appropriate to quote the fundamental contribution by Hadamard [13] who
classified the optimization problem into two classes: well-posed and ill-posed classes.

As is well known, the solution of inverse problems is done iteratively. Historically, these
iterations were carried out by cut and try operations taking months for each iteration or
test. As a result, the design process relied on experience and intuition and was imprac-
tical. Today, modern optimization theory offers a great variety of automated techniques
[14] for solving inverse problems in EM. These can be generally categorized in deterministic
and stochastic techniques. Deterministic techniques (e.g. Simplex, Rosenbrock, gradient,
quasi-Newton, Newton-Raphson, Sequential Quadratic Programming, Lagrangian Multipli-
ers) seek the minimum point based on the information given by the negative of the gradient
(sensitivity) of the objective function. Challenges in their implementation are the require-
ment to evaluate the gradient of the objective function and issues relating to the algorithm
convergence. In contrast, gradient based techniques are mathematically well-behaved and
do not involve heuristics. Hence, they are regarded as more attractive for most practical
real world applications.
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An early paper by Nakata and Takahashi [15] must be quoted in connection with
gradient-based optimization. This paper presented a new design method for a permanent
magnet employing the finite element method. The method was later applied by Hoole et al.
[16] for the identification of cracks, sources and materials in inaccessible locations. Many
others employed the same technique and variations exist in the sensitivity evaluation or
the employed analysis module. Other applications of gradient based optimization include
array synthesis and shape or size design of antennas. In general, gradient type methods
have become prominent for large-scale topology optimization methods with thousands of
design variables. They have also been applied to solve diverse multidisciplinary topology
optimization problems.

With regard to gradient-free (stochastic methods) optimizers, their utilization has been
quite substantial over the 1990’s. Popular techniques in this category are simulated an-
nealing (SA) and genetic algorithms (GAs) [17]. Although GAs were known since 1975
[18], their applications to EM problems occurred mostly in the early 1990s [19-21]. Indeed,
GA’s seemed adequate for the solution of global EM optimization problems, where the ob-
jective functions are non-convex and very often stiff, non-differentiable and ill-conditioned.
Simulated annealing is analogous to the thermodynamic behavior of an annealed solid sys-
tem slowly cooled to reach its lowest energy rate. Simkin and Trowbridge [22] employed
this method successfully in combination with a direct search method for the solution of
a classical shimming problem. Gottvald et al. [23] later showed, in a clear way, how the
evolution strategy, simulated annealing and Monte-Carlo iteration are nothing but special
interpretations of processes in biology, thermodynamics and statistics, respectively.

In addition to GA and SA, there are numerous other global techniques. Among them,
the application of expert system in optimal design was proposed by Xueying et al. [24].
Also, artificial intelligence techniques have demonstrated a beneficial effect, when applied
to solution of inverse electromagnetic field problems. In this respect, neural networks
have been proposed [25] to solve problems at least in a limited domain of application.
Fuzzy programming also seems to be useful in the solution of inverse problems or when
used to improve the convergence of mathematical programming [26]. Recently, hybrid
methods including design of experiments [27] and response surface methodology [28] have
been proposed to combine the advantages of multiple optimization techniques.

In short, when dealing with inverse problems in EM, an adequate choice of optimization
techniques becomes one of the central questions in their solution. In this context, Preis
et al. [29] applied different evolution strategies to the optimal design of electromagnetic
devices and showed the reciprocal advantages and disadvantages for the simple example of a
magnet pole shape design. Gottvald et al. [23] examined some gradient based and stochastic
optimization methods for the n-parameter optimization of magnetic systems. The choice
of the algorithm was also considered by Bellina et al. [30] who compared and discussed
deterministic and stochastic approaches. There are numerous other comparison studies [31]
with most recent thorough investigations by Li et al. [32] demonstrating a comprehensive
study of optimization algorithms combined with the Finite Element -Boundary Integral
method for microstrip array design.

Due to the overwhelming literature and diversity of applications, the reader is referred
to some reviews for detailed references to key studies in each field. A review for synthesis
in EM related applications was given in [33]. Inverse EM problems were also reviewed by
Guarnieri et al. [34] and an overview of optimal design methods for magnetic circuits was
given by Takahashi [35]. For more recent investigations, the reader is referred to the studies
by Di Barba et al. and Borghi [36] and the book by Neiitanmaki [37].

Naturally, it is not possible to identify a general-purpose method capable of solving all
types of inverse problems in EM. Regardless of the optimization technique, the majority
of the optimization algorithms are integrated with problem-specific/semi-analytic tools for
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EM applications aimed to either improve the current design or speed-up the design process.
Their main focus is typically that of size, shape or topology/material design of problems
which can be separated in 3 categories: 1) magnetostatics 2) electrostatics and 3) electro-
magnetodynamics. Examples falling into each category are discussed next.

Design of magnets, rotors and salient poles has attracted remarkable interest among
magnetostatic applications. The linear two-dimensional magnet design [38] and its nonlin-
ear version were demonstrated [39] and extended to include a three-dimensional model of the
pole shape [40,41]. The solution of inverse problems in nuclear magnetic resonance (NMR)
presents another classical problem [42]. In addition to NMR, one field with numerous con-
tributions is that of non-destructive testing. There the focus is on eddy current tomography
to identify position and shape of flaws and cracks in metallic structures [43]. Similarly, the
best shape of coils has been defined [30] with more or less complicated configurations. The
design of magnetic circuits has also been extensively analyzed [15,39].

Electrostatics, offers a number of shape synthesis/design problems as well. The synthesis
of a capacitor [44], the optimal shape design of shielding electrodes [42] and the optimal
design of an electrode [46] are among such problems. The boundary-element method has
proved to be particularly convenient for electrostatic problems in homogeneous domains.
It has been used with the least-squares approach for the identification of the boundary
conditions in an electrostatic problem [47], and with a search technique [48] for the optimal
shape design of an electrode. Using the finite-element method and a min-max approach,
Sikora [49] solved the problem of locating an electrode in such a way that the resulting
electric field intensity is as small as possible. Finally, electrocardiography is another inverse
problem requiring the computation of potential values near and around the heart [50].

Electromagnetic radiation and scattering problems belong to the class of electro-magneto-
dynamics and are among the most difficult to solve. Among typical electromagnetic op-
timization problems are those of antenna design, reflector antenna shaping [51], antenna
array synthesis [52] for minimum sidelobe levels, antenna beam shaping [21], wire antenna
design [53] and microstrip antennas and arrays for broadband performance [4], miniatur-
ization and maximum efficiency. A popular method to solve these problems is the on/off
approach of metallic elements. Stochastic methods such as simulated annealing or neural
network are used for the solution of these problems. Often, brute force numerical methods
(using the simplex method) are also employed to perform size optimization in designing
FSS layers [54]. For the majority of antenna design problems, the dielectric constant of the
spacers was assumed or selected from a predetermined database. The design problem was
then limited to finding the surface resistivities of pre-determined metallic shapes and layer
thicknesses.

Besides antenna design, optimization tools have also been widely used to design radar,
satellite, and mobile communication systems. Design examples were demonstrated for strin-
gent specifications such as pass-band insertion loss, stop-band rejection, power handling,
and physical size of typically narrow-band bandpass devices. The goal is to determine
the arrangement of coupled resonant circuits (resonators) to achieve a specified frequency-
selective transfer function [55].

Other popular design problems include those of optimum design for broadband mi-
crowave devices involving layered material and anti-reflective coatings for low radar cross
section (RCS) absorbers [56], frequency selective surfaces (FSS), radar target recognition
and backscattering problems as well as wireless network layout design [19]. The develop-
ment of methods for target image reconstruction [57] and the determination of permittivity
distributions have attracted interest as well [58].

Regardless of the application area, the majority of design problems is limited to size
and shape optimization. Very few topology and material optimization studies exist. More
specifically, the focus has so far been on: 1) Size optimization for devices with a-priori known
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shape and topology, 2) Shape optimization for parameters describing the unknown geomet-
rical profile of a device with fixed topology and material, 3) Restricted material /topology
optimization, where material and geometry is constructed from a discrete set of available
materials/topologies pre-specified in a database and 4) Ill-posed topology optimization ef-
forts where the geometric representation of devices is determined via an image based on/off
approach.

Topology optimization methods are more general than size and shape optimization.
They allow for changes in the topological configuration of the device, that is they allow
for changes in the geometry, physical dimensions, connectivity of boundaries and material
implants. Consequently, the possibility of topology design holds much greater promise since
it dramatically increases the available degrees of freedom. Examples of restricted topology
optimization those of shape design for microstrip antenna patches and material blocks form-
ing the substrate have been mostly done using GA’s. Here, the topology is not treated as a
material distribution problem but is rather selected from a set of predetermined database.
Further, the GA’s are not as practical in solving generalized 3D topology optimization
problems since they have extremely large CPU requirements and may become impractical
due to their on/off design approach. Impracticality is an inherent drawback with stochastic
methods. This is also related to the ill-posed formulation in the context of mathematical
topology optimization. In fact, within the four groups of pursued design techniques, none
is suited for addressing the topology and/or material aspect in a practical way.

The principle of “relaxation” [59] in topology optimization algorithms of electromag-
netic systems is the same as that for structural systems. Relaxation has overcome the
aforementioned mathematical difficulty in dealing with generalized topology optimization.
The concept of three dimensional topology optimization relies on a specific form of relax-
ation and opens avenues for novel designs by distributing the available material in a given
design domain. Background on topology optimization in structural mechanics is addressed
in the next section. This is followed with related EM applications.

2.2 Topology Optimization for Structures

Optimization dates back to the fundamental design studies of Galileo [60], Lagrange [11]
and Maxwell [10]. Mathematical programming techniques were developed in the late 1940s
and early 1950s; the Finite Element Method (FEM) formulation was introduced by Courant
[61] and set up by Clough [62] and Zienkiewicz [63]. Today, both tools represent the back-
bone of modern numerical optimization. It was Schmit [64] and later Zienkiewicz et al. [65]
who initiated the integration of FEM with nonlinear mathematical programming for opti-
mal structural design. Since then, the last three decades witnessed intensive research in the
field of modern structural optimization. Much research work was subsequently devoted to
the solution of practical optimization problems in a variety of applications including aero-
nautical, civil, mechanical and nuclear engineering. An early survey on optimal structural
design is given by Venkayya [66]. More recent exhaustive collections with an emphasis
on the fundamental aspects of optimal design are provided in [67] and [68]. Weeber et
al.’s collection [69] gives a short review of structural design optimization as a source for
developments in electromagnetics.

Structural optimization is usually divided into three areas: size, shape and topology
optimization. Topology optimization, is sometimes called layout optimization, and is by
far more general than any other existing design technique. Fundamental to topology opti-
mization is that the connectedness of optimal structure is not assumed a priori.

Structural topology optimization methods are found in the literature dating back to
1904 (see Michell for truss-like structures [70]). These principles were extended later to
grillages (beam systems) by Rozvany [71] who later [72,73] formulated the principles of
optimal layout theory. The birth of (practical) FE-based topology optimization for non-
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truss structures was brought about by the pioneering research of Bendsoe and Kikuchi who
introduced the Homogenization Based Topology Optimization (HBTO) method [74].

Bendsoe and Kikuchi applied HBTO to find the optimum layout of a linearly elastic
structure to achieve global stiffness. Since then, the HBTO method has become a common
approach for determining the structural layout [75,76]. Their success to make generalized
shape optimization practically possible for real designs was based on the idea of “design-
ing thru material distribution” and “relaxation” of earlier ill-posed topology optimization
problems. In the context of topology optimization of the linear elastic continua, a naive
mathematical modeling of the physical problem is known to result in an ill-posed opti-
mization problem. Typically, the problem is posed in terms of distributing an isotropic
material in a fixed domain so that every domain point is associated with either filled or
unfilled material. It was thru the pioneering work of Bendsoe and Kikuchi, that a partly
relaxed version of the compliance minimization problem was solved. Their approach was
amounted to introducing a periodic microstructure with rectangular inclusions from which
the effective stiffness was determined by a homogenization formula. In technical terms, the
homogenization method computes the macroscopic material properties on the assumption
that a structure is full of microvoids. The macromaterial properties are then used in a
regular finite element program to compute the compliance, i.e. the objective function for
minimum compliance/stiffness problems, a classical problem in structural topology opti-
mization. In short, the HBTO method is based on the assumption of a composite material
with a microstructure whose properties are homogenized by a rigorous mathematical pro-
cedure. Typically, an algorithm based on the optimality criteria is used to update the size
and orientation of voids.

Several other penalization techniques have been suggested. One strategy is to add
a penalization term to the objective function [77]. Also, a specific full relaxation was
proposed by Allaire and Kohn [78] for a special case of compliance problems. A more
popular method is the so-called Solid Isotropic Material with Penalization (SIMP)/density
formulation [72,79,80]. SIMP has been accepted as an alternative, or an obvious substitute
to HBTO, especially for problems where the microstructure is not of a major concern.
In SIMP, the material density in every finite element of the structure is treated as the
design variable and intermediate density variables are penalized during the optimization
process. A review on the origin, theoretical background, history, range of validity and
major advantages of SIMP is provided in [73].

Unlike the homogenization method, in SIMP individual elements are considered to be
isotropic and thus only one design variable is required for each element to characterize
the design problem. Consequently, it is a powerful design method especially for multi-
physics multi-material /composite problems with unknown microstructure details. More
details will be discussed when presenting this design procedure. A comparison of SIMP
and HBTO [72,79] as well as other approaches can also be found [73,81]. A different
approach was proposed by Sankaranarayanan et al. [82] and their method is referred to as
the simultaneous analysis and design method. This method has been used to determine the
topology of two dimensional truss problems.

The principles of optimal layout theory were generalized considerably in the eighties
and nineties [81]. Up to now, the most popular problem in topology optimization of linear
elastic continua is that of minimizing compliance/stiffness for linear elastic structures. This
problem has inherent attractive features that can be taken advantage of [81]. The underly-
ing design principles are also extended to non-linear constitutive models [83]. In addition
to elastic structures, the problem of designing compliant mechanisms was introduced by
Ananthasuresh et al. [84]. The compliance topology designs have become popular challeng-
ing problems. The main objective for a compliant mechanism is to perform useful work on
the workpiece, an objective that has resulted in different mathematical formulations in the
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literature [85].

Early efforts in structural topology optimization were focused on a conceptual design
with emphasis on global structural responses, such as stiffness, displacement and frequency
only. However, later studies showed that the same topology optimization concept could
be also powerful in other engineering applications such as automotive design. The concept
is therefore used for problems relating to optimal weld/adhesive patterns or reinforcement
patches for improving structural performance, and designing lightening holes for weight
reduction [80]. It is also extended and proven to be useful in providing insight information
for selecting better manufacturing processes.

Besides the more classical static problems, topology optimization methods are also ap-
plied to dynamic/frequency dependent problems to design structures such as car bodies,
and to find optimal designs for minimizing vibration and noise, maximizing safety and min-
imizing product costs. Unlike the standard static mean compliance problems, in optimizing
dynamic structures several different problems need be considered. The eigenvalue prob-
lem to find the optimal reinforcement of a plate-like structure [75], the frequency response
problem [86] for optimum layout and optimum reinforcement problem and the transient
response problem are some of them.

In short, the field of structural topology optimization has expanded significantly, ad-
dressing many practical engineering problems including maximum stiffness, maximum eigen-
value, optimum compliant mechanisms or piezoelectric actuators and extreme material
properties. Moreover, design optimization has been accepted in industry, (with several com-
mercial software packages now incorporating optimizations [87]). Comprehensive reviews
from mechanical, structural and computational aspects have been given in the monographs
by Bendsoe [79] and Hassani and Hinton [88] (see also the review article by Rozvany et
al. [73]). The mathematical aspects of the concept are provided in [88]. Till very recent
years, the majority of topology optimization methods were employed to solve linear, ’sin-
gle physics’ problems with a single constraint, such as the maximum stiffness optimization
problem with the only constraint that of structural weight. However, recent developments in
theory, computational speed and large-scale optimization algorithms allow us to extend this
powerful method to problems involving multi-physics problems with multiple constraints
and large number of elements. Nevertheless, existing studies are still limited to the design of
thermally loaded structures, thermally/electrothermally actuated micro-devices, material
microstructures with extreme thermo-elastic, piezoelectric or mechanical/electrical proper-
ties [89], and magneto-static applications [90]. Topology optimization problems involving
geometrical non-linearities present another challenge. The recent extension of topology
optimization to designing magnetostatic devices is largely due to the emergence of design
sensitivity analysis and the availability of fast and rigorous numerical analysis codes. These
will be reviewed in the next section.

2.3 Topology Optimization in EM

Gitosusastro introduced the concept of sensitivity for finite element analysis and its use in
the optimization process for magnetic problems in 1988 [91]. More specifically, the “adjoint
variable approach” was introduced [92] based on the method of sensitivity analysis used
earlier in circuit theory, derived using Tellegen’s theorem for electronic circuits. Since
then, design sensitivity analysis using the adjoint variable method has been applied almost
routinely to the optimization of magnetic devices. Applications include linear [93], non-
linear magnetic systems [94] and also linear electrostatic systems [95].

Optimization problems relying on the sensitivity information using the adjoint variable
method (AVM) have been restricted to designing the shape of specific features of an oth-
erwise complete device design. Examples are the pole shape of an electromagnet [96], slot
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shape in the rotor of an induction motor [97] or the shape of a defect in an aluminum block
[93].

To better exploit topology optimization algorithms in structural mechanics, the concept
of parameterization to represent magnetic devices and perform topology optimization via
the Optimum Material Distribution (OMD) approach was introduced by Dyck and Lowther
et al. [98,92]. Topology optimization followed the same exact approach as in structural
mechanics and was thereby introduced to the EM community using SIMP [90]. In these
pioneering studies, gradients were evaluated efficiently via the adjoint variable method. For
instance, SIMP was applied to the design of a “jumping ring” (or equivalently jumping
bearing), a typical simple magneto-static problem. The study was the first to demonstrate
the possibility for a 2D multi-material design with the permeability and the source current
as the design attributes. Although the application was restricted to simple magnetostatic
problems, the concept of automated topology design was introduced to the EM community.
In the same study, fabrication challenges and the need to use manual intuitive filtering for
solidification of the design were also addressed. In his PhD work, H. B. Lee, applied the
same procedure to obtain a matched load in a waveguide structure [99].

Most of the later work on this topic are similar contributions by Dyck and Lowther.
They interpreted the resulting gray-scale material distribution of the design by relating it to
composites of available materials [100]. More specifically, they proposed to relate interme-
diate materials at the early stages of the design cycle to composite materials, which might
be constructed from a number of solid materials to speed up the process of general shape
optimization. In another study, the application of threshold image processing techniques
was introduced to determine boundary shapes of optimized magnetic permeable material
[101]. The focus was on image processing techniques to solidify gray scale images resulting
from topology design of an induction furnace. Common to a series of similar works was the
design of a magnetostatic system and a simple solution of decoupled FE system equations.
Another characteristic of the model that led to a simplified design process in similar studies
was the presence of real valued matrix equations instead of system equations with usual
complex variables. The same concept was applied for a few more similar magnetostatic
applications [102].

Byun et al. [93] applied the SIMP method for the topology optimization in EM focusing
on the design of a transformer coil. The problem was to solve an eddy current problem, (a
simplified version of an EM application) requiring more complex analysis procedures. Later,
the same authors extended the design method to a specific class of inverse problems, where
the goal was to find the shape and location of the dielectric material embedded in different
permittivity background [95]. With this study, topology optimization in EM was expanded
from magneto-static or eddy current systems to 3D linear electrostatic problems. The
applicability of the sensitivity method and the idea of OMD have recently been tested on
inverse scattering problems using FDTD for 2D scattering problems [103] and a 2D dielectric
lens [104]. The most recent SIMP example in the literature is the topology optimization of
a non-linear magneto-static device taking saturation effects into account [94]. This was a
numerical study demonstrating the effect of saturation by comparing linear and non-linear
topology optimization [105].

Besides SIMP, the application of the HDM method for topology optimization of linear
magnetic devices has also been studied. The design focus, similar to earlier SIMP based
studies, was a typical magnetostatic application: To design the shape of an H magnet by
using an energy formulation [9]. The method was applied to two dimensional small-scale
design problems, demonstrating the applicability of HDM to magnetic problems.

It is noted that the theoretical homogenization of electromagnetic system equations was
pursued before it was actually applied to magnet design problems. The homogenized equa-
tions were derived for a heterogeneous elastic conductor in a magnetic field and later for
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Maxwell’s equations by Bossavit [106]. It was clearly demonstrated that the homogeniza-
tion process for EM application is a frequency dependent process with the homogenized
equations being cross-coupled following similar characteristics as chiral materials.

3 DESIGN PROCEDURE

In any automated optimum design approach (AOD) the goal is to identify in some auto-
matic process the device structure and material composition subject to some prescribed
performance. In this section, one such design process for the topology optimization of
electromagnetic devices will be presented.

There are several different modules involved in the proposed design. Each of these has
a particular function as will be discussed within the framework of the algorithm.

3.1 Analysis Method: Fast Spectral Domain Algorithm (FSDA)

As is the case with all numerical design optimization loops, the design process must incor-
porate a flexible and fast analysis module. It is of crucial importance that this module be
fast without compromising the generality of the geometry and material composition of the
device. The proposed design optimization procedure is based on the integration of such
an analysis module (based on the hybrid finite-element boundary-integral method) with
an optimization tool. Application of hybrid methods to infinite periodic structures allows
for full 3-D modeling flexibility and allows for designing arbitrary geometrical and material
details. More specifically, by virtue of the finite element method, the simulator is suitable
for complex structures such as those involving inhomogeneous dielectrics, resistive patches,
conducting patches and blocks, feed probes, impedance loads, and so on. This makes the
simulator an ideal candidate for integrating with an optimizer.

The simulator employs the finite element method to model a unit cell (Figure 1) rep-
resenting the doubly periodic array, whereas the boundary integral (BI) provides for a
rigorous mesh truncation at the top and bottom surfaces of the discretized unit cell.

Multilayer

Superstrate

FE BI

Volume [Multilayer
Green’s

Multilayer ~ Function]
—'i/ Substrate

V
PBC

Example Geometry Periodic Unit Cell

Figure 1. Doubly periodic array configuration and unit cell with BI termination on top and
bottom surfaces and periodic boundary conditions at vertical sides in the FSDA

A key aspect of the periodic array model is the use of periodic boundary conditions
(PBC’s) to reduce the computational domain down to a single unit cell to significantly
speed up analysis and reduce memory resources. More specifically, a fast integral equation
algorithm is used for an efficient evaluation of the boundary integral termination referred
to as the fast spectral domain algorithm (FSDA). The FSDA avoids explicit generation
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of the usual fully populated method of moments matrix. Instead, at each iteration, the
actual current distribution is summed up in the spectral domain, and the spectral Floquet
mode series (for the BI) is then summed only once per testing function. Thus, for a fixed
number of Floquet modes, the overall analysis method has O(N) memory demand and CPU
complexity. Accurate results have already been obtained for scattering and radiation by
cavities, slots, multilayer patch antennas and frequency selective surfaces, demonstrating
the method’s capability [55,107].

3.1.1 FE-BI formulation

The goal in any EM simulator is to solve the wave equation:

= 1 =d — — = h=d ]. -
V x <u—v X E) —kierE = —jkoZoJ' — V x (M—MZ> (1)

for the total electric field E throughout the computational volume V subject to a given
set of boundary conditions on the surface enclosing the volume V. A representative com-
putational volume is depicted in Figure 2 where

€r, Uy ¢ relative constitutive parameters of the material filling
ko : free space wavenumber
Z0 - free space intrinsic impedance

J',M": impressed electric/equivalent magnetic source

In its most general state, the computational domain is a three dimensional inhomoge-
neous body that may include embedded resistive card (R-card) surfaces, metallic elements,
loads, feeds and substrates with different permittivity and permeablhty The source com-
ponents J¢ and M permit modeling of possible excitations (feeding sources) for antennas
and vanish for scattering applications. For our specific analysis tool the computational
domain is the unit cell for cascaded periodic layers with possible resistive and metallic ele-
ments. As discussed earlier, at the volume and surface boundaries (except the top surface
Sot and bottom surface Sgp,) of the computational volume, periodic boundary conditions are
applied. For more details on the implementation of the FE/BI method for cavity-backed
antennas the reader is referred to [108] (see also Gong et al. [107] and [109]). Below we
briefly present the general formulation to allow an understanding for its incorporation into
an optimization loop.

The “heat” of any FEM-based code is the solution of the weak form of the vector wave
equation (1) obtained using mathematical identities and the Green’s divergence theorem.
From [110], it follows that (1) can be cast in the form in conjunction with a weighting

function T [110],

///(M (VxE)- (9xT) - koerET>dV+]k:OZO/ /;ﬁ.[ﬁxﬁ]ds+
+/V//T‘<jkozofi+ﬁx<iﬂi>>dV:O (2)

In this, the aperture surface Sy (all surfaces = Sp, + Sop, in Figure 2) encloses the
computational volume V', and 7 is the unit outward normal to Sy where the magnetic field
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Figure 2. Representative computational domain (V) for finite element formulation

H exists. Basically, the first term in (2) is the volumetric contribution and the second term
corresponds to the boundary integral contribution where the PBCs are explicitly enforced
on the vertical walls. It is noted that it is necessary to enforce all boundary conditions
within V' and on Sy, implying the elimination of the magnetic field H by relating it to
the electric field E. On metallic surfaces we simply need to set the tangential components
of E to zero. We remark that if the relation between E and H is a simple 15t or 20d
order boundary condition, the resulting matrix from equation (2) is sparse. However, if
the relation between E and H is an integral equation, as required for exactness, then the
resulting matrix is partly sparse and partly dense.

The exact details about the boundary conditions in the BI part via the spectral domain
formulation were presented elsewhere and are not discussed here. The last term in (2)
represents the excitation term due to antenna sources. It is remarked that the presence of
resistive cards, coaxial cables, and lumped loads/conducting posts is easily accounted for
by adding specific terms to (2).

To construct a system of equations for the solution of (2), the computational domain V'
is first subdivided into a number of finite elements (for example triangular prisms could
be used and these naturally reduce to triangular elements on the top and bottom aperture
surfaces). Each of these small elements occupies a volume V. (e = 1,NFE) where NFE
denotes the total number of elements in V. The field in each element is then approximated
with a linear or a higher order expansion as follows:

Be =Y WY = (WeH{E) (3)
j=1

where VT/je denotes the edge based (vector) expansion basis functions. With this represen-
tation the expansion coefficients EY are the unknowns at the 5t edge of the e element

with m sides/edges.

Finally, Galerkin’s method is applied and after the element matrices are assembled the
conventional implementation of the hybrid FE/BI method for doubly periodic arrays leads
to a linear algebraic system of the form:

[A{E} + [Z{E} = {/} (4)
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Here, [A] is a complex valued square sparse matrix and is associated with the volumetric
finite element portion of the hybrid method. Contributions of dielectric blocks or volumes
and resistive cards or metallic edges in the unit cell are embedded in the [A] matrix. The
[Z] matrix is associated with the edges on the top and bottom surfaces (Soy and Spp) of
the discretized unit cell and is fully populated, i.e. it represents the BI part. The right
hand side vector {f} contains the excitations in the FE volume or BI apertures. The linear
system is solved for the vector of unknown expansion coefficients { E'} representing the field
unknowns.

3.2 Design via Topology Optimization

Simply stated, design via topology optimization implies the determination of the best ar-
rangement given a limited volume of available (electromagnetic) material to the part of
the domain so as to obtain an optimal (electromagnetic) performance. The optimization
process systematically and iteratively eliminates and re-distributes material throughout the
domain to obtain a concept structure. An attractive aspect of topology optimization is that
it can be applied to the design of both materials and the geometry of devices.

When compared with more conventional size and shape optimization, where the topol-
ogy of the device is assumed a priori and remains fixed, topology optimization offers much
more degrees of freedom. Consequently, it is reasonable to expect that designs resulting
from topology optimization have novel configurations with much higher performance. This
optimization process has now reached a level of maturity and is consequently applied to
many industrial problems for almost 20 years as discussed earlier in Section 2.

3.2.1 Density method

The design method employed here is based on the Density/Solid Isotropic Material with
Penalization (SIMP) method. The SIMP method was proposed under the terms “direct
approach” or “artificial density” approach by Bendsoe [79] over a decade ago; it was derived
independently and used extensively by Rozvany et al. and others since 1990 [72,80]. The
term “SIMP” was also introduced by the same author in 1992 [72]. After being out of
favor with most other topology optimization researchers until recently, SIMP is nowadays
accepted as a design technique of considerable advantages. For non-compliance problems
and coupled field problems the optimal microstructures are not known. Therefore, either
sub-optimal microstructures or other interpolation schemes must be used. Hence, SIMP
is an ideal choice for our design problems. It is also very attractive to the engineering
community because of its simplicity and efficiency [80,87].

SIMP synthesizes the device starting from any arbitrary topology. A key aspect of the
design method is that any device, not known a priori, is represented by specifying the mate-
rial properties at every point of the fixed design domain. For electromagnetic applications,
these properties may be the permittivity and permeability of the dielectric material and
conductivity /resistance of the metallic patches, etc. In practice, to specify material proper-
ties in the design region, the design space is discretized into material cells/finite elements.
Actually, the most straightforward image-based geometry representation is the “0/1” in-
teger choice, where the design domain is represented by either a void (no material) or a
filled /solid material. Unfortunately, this class of optimization problems is ill-posed leading
to non-convergent minimizing sequences of admissible designs [81].

It can be well posed via “relaxation” by incorporating microstructures into the ex-
tended design domain or allowing for material design with intermediate properties or con-
tinuous/graded properties. That is, the geometric representation of a device is similar to a
gray-scale rendering of an image, in discrete form corresponding to a raster representation
of the geometry. This is the essence of SIMP in which material grading is achieved during
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design by introducing only a single density variable, p, and relating it to the actual mate-
rial property of each finite element thru a continuous functional relationship. This material
“law” models an artificial isotropic meta-material, mathematically manifested in the form
of an empirical function, called the density function and represents the relationship between
the material property (the relative permittivity (e,) and p. This scalar variable p can be
physically interpreted as the density of the material whose properties are in proportion
to p™. A suitable density function, for the real permittivity (and possibly resistance of a
metallic patch) would be:

o= ’

where n is a penalization factor; €in¢ and e4rig are intermediate and original solid material
permittivities, respectively.

The factor n is introduced to penalize the intermediate value of the density function.
High values of the penalization factor decreases the permittivity of intermediate density
elements, making such elements uneconomical if the volume is constrained and possibly
active. That is, as n increases, intermediate values for the permittivity are less likely
to occur, and hence the term penalization for intermediate material. However, this also
increases the possibility of having different solutions that could be partially avoided by
continuation methods [81,111]. The selection of n depends heavily on the problem type
and is most of the time determined empirically.

The on/off nature of the problem formulation is avoided thru the material “law”, i.e.
the introduction of a normalized density with p = 0 corresponding to a void (air with &g,
), p =1 to solid (original material eqrig) and 0 < p < 1 to a graded intermediate dielec-
tric material (eint). This parameterization allows to formulate the problem in a general
non-linear optimization framework. More specifically, the normalized density within each
finite element is used as the design variable to formulate the topology/material optimiza-
tion problem. The goal is to arrive at the optimum distribution of material (densities)
such that the desired performance merit of a device is optimized subject to certain design
constraints. This is achieved by assigning different density values from 0 to 1 in each design
cell to represent the material variation from cell to cell. Unlike conventional optimization
methods, such as the boundary variation or 0/1 representation of the design domain, the
density method arrives at the optimum topology by distributing the material in the form of
a gray scale image and updating it using standard gradient-based mathematical program-
ming techniques. The density design method is then used in conjunction with standard
optimization algorithms to achieve optimal material distribution designs for dielectric sub-
strates such as those used in constructing band-pass frequency selective volumes or high
bandwidth antennas as will be presented in Section 4.1. It is important to note that the
permittivity of the material is assumed to be lossless, and hence the density function re-
lates the real part of the actual complex permittivity to the real density variable. The
construction of the optimization model will be discussed in the next section.

3.3 Optimization Model

The goal of the proposed design method is to establish a general formulation setting, which
allows the determination of shape and topology/material distributions of EM devices within
pre-specified performance requirements. The first step is to translate the design goals into a
mathematical optimization model. This corresponds to the minimization of a cost function
subject to design constraints. A standard formulation for optimization problems is to find
the set of design variables z; that will minimize/maximize the objective function

f (i) (6)
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subject to
h(z;) =0 (7)
g(x;) <0 (8)
and side constraints:
ah <ap < ¥ i=1,...,N 9)

where f(z;) is the objective function, h(z;) is the equality constraint and g(z;) is the
inequality constraint. Also, xi and xj are the lower and upper bounds, respectively on the
i*h design variable of N total design variables. The objective and constraint functions can
be multiple functions in a more general problem formulation setting.

The material distribution paradigm for the topology design problem is defined in a
fixed design domain. In this domain, we seek the optimum distribution of material, with
the term optimal being defined for the specific choice of the optimization model. An ap-
propriate model for the proposed topology design procedure of electromagnetic material
distribution/design problems employing the SIMP method would be to find the design
variables p; to minimize the cost function:

f(pi(ei)) (10)
subject to a volume constraint:
N
Y Vi<V (11)
i=1
and side constraints:
0 < pmin < pi < Pmax i=1,...,N (12)

with the following variable/parameter descriptions:

Di: normalized density variable of i*!design cell/FE

€' permittivity of i**design cell/FE

Vi: volume of i** design cell/FE

V* .  upper limit for material volume of the design domain
N: total number of design variables

Pmin : lower bound on normalized density value
Pmax : upper bound on normalized density value

The selection of the objective function and additional constraints may vary from problem
to problem. Two specific design examples will be studied in Section 4 for which the details
of each problem will be explained. However, the above formulation is versatile and allows for
any post-processed performance metric function f (e.g. the bandwidth of a patch antenna
or the transmission coefficient of a spectral filter). In its most general form, it is a function of
the permittivity which is linked to design variables via the density function (5) and problem
specific design parameters. Among possible design parameters are: geometrical, physical
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and excitation details such as patch shape, dielectric thickness, and the presence of a
feed /incoming wave. It is important to also note that the objective/constraint functions are
usually frequency dependent quantities and require evaluations at each sampled frequency
of the design spectrum.

The volume constraint is basically imposed to limit material usage. That is, a maxi-
mum volume V* of the material is allowed within the design domain. The actual material
volume is equal to the LHS function of the volume constraint, i.e. the sum of densities p;
and volume V; of each design cell in the FE domain. Other reasons to include the volume
constraint in the optimization model are as follows: First, for problems where the volume
constraint is active, evidence in literature shows that optimization does actually result in
a “black and white” design (if one chooses n sufficiently large). Without the volume con-
straint, islands of material that are disconnected from the actual device may appear. These
superfluous islands may prevent the realization of the structure. Furthermore, without the
volume constraint, the idea of the density function is lost and there is risk of ending up with
structures with large gray regions. Second, for specific problems the volume constraint is
associated with competing tradeoffs as is the case for the patch antenna design in achieving
miniaturization.

The side constraints are needed to allow for material usage within prescribed limits of
chosen (typically available) materials where pmin and ppax refer to the normalized lower
and upper bound vector (unity), respectively.

The design formulation given in (10)—(12) is easily recognized as a general non-linear
optimization problem with several thousands of design variables associated with the FE
cells. This makes the use of gradient-based optimization techniques such as Sequential
Linear Programming (SLP) a must for the solution of the optimization problem. The
mathematical programming method for the solution is addressed next.

3.4 Mathematical Programming Method

Topology optimization problems with only one constraint can often be solved by more or
less theoretically well-founded optimization algorithms. Examples are optimality criteria,
evolutionary algorithms, hard-kill /soft-kill methods, etc. Many of these methods are based
on intuition and make little or no use of sensitivity information that can be obtained com-
putationally in an effective way. However, when considering more complicated objective
functions and multiple constraints, none of these methods will be able to do a good job.
Indeed, optimizations problems for EM systems in their most general form often require
several constraints and many thousands of variables. Therefore, they fall within the “ad-
vanced” class of topology optimization problems and must be solved with theoretically
well-founded mathematical programming methods making use of sensitivity analysis ap-
proximation concepts, and possibly, information from prior iterations. Example algorithms
include the Sequential Linear Programming (SLP), CONLIN or the method of moving
asymptotes (MMA). The iterative optimization scheme implemented here is the sequential
linear programming (SLP) method employing the DSPLP computational package in the
SLATEC library [112] for the numerical solution of the optimization problem.

The SLP method was successfully used in the optimization of truss structures [111]. It
is also considered as a robust, efficient, and easy to use optimization algorithm in a review
by Schittkowski and has been used for large-scale topology optimization problems in [113].

SLP consists of the sequential solution of an approximate linear sub-problem. More
specifically, in each optimization iteration, the objective function and constraints are re-
placed by linear approximations obtained from the Taylor series expansion about the current
design points (design vector), i.e. x; = & = {p} . The linear programming sub-problem is
then posed to find optimal design change vector AZ from the current design point at each
iteration k. The SLP can be mathematically stated as follows.
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Minimize the linearized objective function:

FE) + 3 (A (52) (13)
=T\ Owi ) |
for N design variables, i.e. the optimal design change vector:
Az = g0 — gk (14)
subject to the linearized volume constraint:
VG - v ) < im (8;5")) L SVER VO )
and subject to the ;' linearized constraint g:
min (k) al ( 99
and
(AZi)min < (Az;) < (AZ4)max (17)

Additional constraints can be included as well. In any case, these last set of constraints
stand for move limits, with (Az;)min and (Ax;)max being the lower and upper bounds on the
allowable change in the design variables. The applied move-limit strategy is important for
stable convergence of the algorithm. Here we use a move limit strategy originally proposed
by Thomas et al. [114]. This technique is known to avoid locking of move limits in the
case of exceedingly small design variables. The basic principle is to set the value for the
max/min change in the i*" design variable Az; such that:

Az; = max(Cz;, (Az;)min) (18)

where C is a constant defining the max change as a percent of the variable, and (Ax;)min
is the minimum move limit in (17). For our design problems, C is set to 0.1 and (Az;)min
is set to approximately 1% of the upper bound of the design variable, i.e. 0.001. When the
objective function reaches the proximity of the optimal value, the constant move ratio is
decreased to half of the original value.

Upon optimization of a sub-problem, a new set of design variables, i.e. gt = zk) 4
AZ is obtained and updated in each design cell/finite element. As a result, the design
domain has a new topology with an effective dielectric permittivity yielding a performance
closer to the specified targets. The iterations proceed until convergence in the objective
function is achieved. Substantial computational time can, of course, be saved if the starting
guess is close to the optimal topology. More details about specific values and functions of
optimization models will be provided for corresponding design problems.

To solve the linearized sub-problem above (13-17), the sensitivities of electromagnetic
performance metrics (with respect to changes in the design variables ;) are needed. This
is discussed next.
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3.5 Overview of Sensitivity Analysis

As mentioned earlier, the iterative process towards the minimum of the objective function
may be accomplished by either derivative-free approaches or by gradient-based approaches.
Using a gradient-based approach, the sensitivity analysis (which refers to the evaluation of
derivatives of the objective function with respect to design variables) is the most critical
and tedious step in the numerical solution procedure. In the early stages of its development,
the sensitivity analysis was performed by finite difference techniques. That is, every design
variable x; was varied infinitesimally at a time and f(x;) was recomputed through a field
computation for the new set of parameters. The ratio of the changes in f(z;) and x;
corresponded to the gradient with respect to each parameter x;. However, this process was
costly since for a problem with N design variables, the electromagnetic fields need to be
computed N 4+ 1 times at each iteration of the design cycle. An alternative was whereby the
gradients were computed without a second field solution [16, 91]. This was accomplished
using the differentiability of the finite element and boundary element matrices [44].

There are two basic approaches for deriving the sensitivity. The first approach amounts
to differentiating the discretized equations [49,91]. The second method, known as the con-
tinuous method, operates on the variational governing equations before they are discretized
for the finite-element method [97] or the boundary-element method [96]. For the evaluation
of the shape design sensitivity another method based on the material-derivative concept of
continuum mechanics has also been used.

A standard and efficient way of calculating the design sensitivity expressions for the non-
linear electromagnetic radiation and scattering problems is the adjoint variable method. In
the EM community, Director and Rohrer [115] are usually cited for the adjoint circuit ap-
proach for the sensitivity evaluation based on Tellegen’s theorem. The essential feature of
the method is the simple relation between the original circuit and the auxiliary or “adjoint”
circuit (e.g., transpose of the nodal admittance matrix). As a result, the computational
effort to evaluate the first-order derivatives of any response with respect to all design pa-
rameters is reduced to the analysis of a circuit pair.

The microwave literature abounds with techniques and applications using generalized
scattering parameters, voltage-current variables, and branched cascaded topologies (for
waveguide multiplexers). Sensitivities have been extracted for nonlinear magnetic analyses,
and approximations based on the feasible adjoint sensitivity technique have been intro-
duced. In the 1990s, the application of the adjoint network method to full-wave modeling
of microwave structures was also employed. The adjoint variable method facilitates the
analysis of non-linear circuits and their optimization using gradient based optimizers.

We will adopt herewith this adjoint variable technique for the derivation of the sen-
sitivity to be used in connection with complex valued electromagnetic response functions
(the transmission coefficient and return loss). The process will be discussed briefly in the
next section and is based on the discrete form of the adjoint variable method. That is,
the finite element formulation is used to perform analytical differentiation because of its
computational efficiency and high accuracy. Specific details in deriving the transmission
coefficient and return loss sensitivities are given in [116].

3.5.1 Derivation of sensitivity terms

Computation of the objective function derivatives with respect to the design variables is
referred to as the “sensitivity analysis” and is of great importance to any gradient-based
optimization technique. In a general EM design problem, the objective function (return loss,
|s11] magnitude or transmission coefficient, |7| etc.) is a post processed real-valued quantity
based on the results of the FEM analysis module. More specifically, the performance metric
depends on the unknowns solved via the FE simulator and can be expressed mathematically
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by the function:

f=IF|= f(E;ji(pi),eilpi)) i=1,...,N (19)

where |F| refers to the post processed real-valued quantity (e.g. |s11], |7]) and &; represent
the relative dielectric permittivities for the i*" discrete element, i.e. the material property
of the device to be optimized. The permittivity of a material is a complex valued quantity
but if the material is assumed lossless in the design process, then €; denotes a real quantity
with no loss (imaginary part). As defined earlier, p; represents the set of element densities
and Ej; is the set of the complex valued unknown field coefficients solved by the hybrid
FE-BI method using (4).

It is important to note that for most EM design problems, the objective function f is
a real valued function of both complex (FE;) and real variables (p;, €;, etc.). It must also
be computed for the whole frequency spectrum of interest. Since in numerical analysis the
spectrum is defined at a set of frequency points, the sensitivity analysis must be carried
out for each frequency point and consists of the following steps:

1. The derivatives of |F'| (a real-valued function in 19) with respect to the output vari-
able F' (complex) is evaluated via an approximation [92], which resembles the classical
chain rule of differentiation. Using this approximation, the derivative of the function
of interest, f, with respect to the i*" permittivity, ; is given by:

= {oma™ ]+ o™ (32 2

2. The chain rule differentiation is subsequently applied to evaluate the desired sensitiv-
ity term with respect to the actual design variables, p;. This gives,

d|F| O|F| oF O|F| oF Oe;
= Re | — I —_— 21
dp; {8Re(F) “loe] T o) ™ 95 ] S \ O 1)
3. The last term gzz in (21) is easily evaluated by differentiating the density function (5).

To evaluate the derivative term g—g, chain rule differentiation is again applied to obtain

OF _ OF OF,
861' - 8Ej 861'

(22)

Next, the derivative of the field coefficients F; is obtained using the stiffness matrix
[A] of the FE-BI system. We have

0l4)
B+ (A

oy _ oif}

2
661 86@ ( 3)

Rearranging, gives:

oL} 1 (o{f}  O[4]
05 (A7 (6—e, - G—ei{E}> (24)
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4. Substituting (24) into (22) results in

OF  OF | (0{f} 04
% = o7 ( iy —8—Q{E}) (25)

5. Denoting term %[A]_l as A:
OF

A} = m[fl]_l (26)

allows us to generate the expression
oF T
A0y = {55} (27)

Equation (27) is now recognized as the system matrix for the solution of the adjoint
variable {\}T and is rearranged in the following form:

T
T = (4] {%} (28)

The above expression corresponds to the transpose solution (adjoint variable) of the
original FE-BI matrix system (4). More specifically, the coefficient matrix [A] is the

T
same but the RHS vector {f} is replaced with the derivative expression {%} . In

fact, due to the symmetric nature of [A], the transpose of (28) is equal to:

0 = {50 f = {55 (29)

and thus an iterative solution of (27) is equal to the desired first term A in (25).
94]

6. To evaluate the term in the parantheses of (25), the derivative % and - are
computed on the local element level only and this allows for substantial CPU savings
(only the local element matrices within the FE analysis formulation need to be dif-
ferentiated). Finally, the resulting % expression is multiplied with edge expansion
coefficients { E'} to complete the evaluation for the derivative expression in (25).

7. At each iteration step, the actual sensitivity term % in (21) needed for each design

variable at the sampled frequency is obtained by inserting the real and imaginary
parts of the expression evaluated in step 7 into (25).

3.6 Computational Algorithm

The proposed design procedure as given above involves several algorithms and related in-
terface modules. The resulting design algorithm was implemented in a custom-made code
written in FORTRAN90. A simple in-data file allows for simplified entering of the design
problem, material data and constraints. A separate user-interface is then used to pass the
data between the FE-BI solver and the optimization routine. The final outputs are the in-
put impedance and/or return loss. However, the actual distribution of the €; values are of



374 G. Kiziltas, N. Kikuchi, J.L. Volakis and J. Halloran

nitial design Al;ield .| Sensitivity y| Optimization Solver Converge?
variables A Computation (SLP)
(FE code)
NO
Variable change [
Via density method vES

v
Optimal
topology

Figure 3. Design optimization flowchart

most interest and these can be displayed in 3D using SDRC IDEAS or other post-processing
packages.

The algorithm for the proposed design cycle is shown in Figure 3. The design cycle
starts with the initialization of design variables (set to represent a uniform dielectric). The
design parameters are also specified at this step and do not change during the design cycle.
These include patch geometry and material characterization such as the (1) dielectric block
dimensions, (2) the feed location and its amplitude and, (3) the frequency range of opera-
tion. Optimization related parameters correspond to (1) penalization factor, (2) constraints
on available material, (3) move limits, etc. The next step is to discretize the design domain
into finite elements and to distribute the available dielectric material throughout the do-
main. Consequently, the design proceeds with the following iteration steps till convergence
is achieved:

Simulation of device performance using the FE-BI solver and initial data.
Solution of adjoint system equations (27) and computation of related sensitivity terms.

Solution of the optimum material distribution problem using an SLP algorithm.

= W o=

Update of design variables (densities/permittivities of design cells) via the SIMP
interpolation scheme and move-limit strategy.

Convergence is achieved when the changes in the objective function value drop below a
certain value (typically 1073). One can get a general idea of the final topology in less than
50 iterations depending on the complexity of the design problem. As can be expected, the
whole design process may take from a few minutes to several hours on a modern workstation
(1 GHz to 2.4 GHz processors). Computational time can be minimized if the starting
guess is close to the optimal topology. Thus, as a rule, we begin with a rough/coarse mesh
design, which must nevertheless still satisfy FE modeling accuracy requirement. The design
domain may be subsequently divided into finer elements to form a refined model for the
later optimization steps.
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Figure 4. Probe fed rectangular patch on a grounded substrate

4 DESIGN EXAMPLES

4.1 Miniaturized Printed Antenna with Bandwidth Enhancements

Microstrip patch radiators (schematically shown in Figure 4) are attractive, low-weight, low-
profile antennas but suffer from low bandwidth [117]. Moreover, their bandwidths are fur-
ther reduced as the substrate dielectric constant is increased for miniaturization. The need
for design, preferably design optimization (routines) is pertinent to the competing physics
of these metrics and has been in focus for the past two decades [118,119]. However, most
conventional methods to overcome these problems dealt with pure geometry/metallization
design [4,120] and with predefined topologies. In this section, we demonstrate the capability
of the proposed topology design method to develop a small patch antenna subject to pre-
specified bandwidth criteria. The goal is to improve the bandwidth performance of a chosen
simple patch antenna by introducing a 3D high-contrast dielectric material composition via
SIMP.

An initial homogenous substrate with ¢ = 42 is chosen to operate in the frequency
range of interest (1-2 GHz sampled over 21 frequency points). The details of the initial
design are displayed in Figure 5. An appropriate objective function for the described
topology optimization problem would be to find the design variables p that minimizes the
cost function:

f(p) = min[max([s11[;)] J=1,..., Nireq (30)

Minimization of the highest return loss (s11) among sampled frequency points Ngeq is known
to maximize the return loss bandwidth [4]. A volume constraint was set to 70% to limit
the use of materials and to avoid trivial bandwidth improvement via lowering the dielectric
constant. With each design cell being updated via the SIMP method and the SLP routine as
discussed above, a graded volumetric design is obtained in 20 iterations. The computation
time for the entire design process (with 4000 finite elements and 21 frequency points per
iteration) was 17 hours on a Pentium 3 Processor. The converged material distribution is
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Figure 5. Initial patch antenna on homogeneous substrate (dimensions are in c¢m)
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Figure 6. Optimized graded dielectric substrate (left) and return loss behaviour for initial,
optimized and fabricated substrates (right)

displayed in Figure 6 as a 3D color-coded block with each color pixel corresponding to a
certain permittivity value (density in scale bar). The corresponding return loss behaviors
of the optimized and initial dielectric substrates are compared in Figure 6. Given the poor
bandwidth at the starting point of the design, the attained bandwidth performance (with
material design only) is truly remarkable.

To fabricate the design, certain post processing/image processing is necessary to trans-
form the 3D gray-scale design into a solid two-material composite substrate. Due to its sim-
plicity, image processing with a simple filtering strategy based on a cut-off value of 0.64 (for
the densities) was adapted to solidify the design. The 3D composite substrate (Figure 7)
is then fabricated using Thermoplastic Green Machining [121]. More specifically, first a
thermoplastic compound is prepared by mixing commercially available Low-Temperature
Cofirable Ceramic (LTCC- ULF 101) [121] powder with melted binder systems. Once com-
pounded, it is warm-pressed and the dielectric block in its “green body” state is obtained.
The material is machinable at this stage and has slightly larger dimensions than the ex-
pected design. After machining the substrate via computer-controlled drilling (Modela;
Roland DG Corp., Japan), the substrate is sintered. To attain a smooth surface, the in-
tricate holes are filled with a polymer stycast and a dielectric constant of 3 as depicted
by the transparent material in Figure 7. The return loss behavior of the final fabricated
substrate (dashed line) is compared to the initial substrate (solid line) and the optimized
volumetric gray-scale design (dotted line) in Figure 6. As expected (due to filtering, man-
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Figure 7. Fabricated two material composite substrate (left) (LTCC with € = 100 filled with
stycast polymer of ¢ = 3) and measured return loss behaviour with a probe fed
patch antenna (Figure 5)

ufacturing alterations and stycast filling) the attained bandwidth for the fabricated design
is different than its gray scale version obtained via topology optimization. In any case,
the final attained bandwidth still exceeds design expectations by providing a threefold im-
proved bandwidth performance with respect to the initial design. This demonstrates the
power of integrating robust optimization techniques with simple filtering for manufacturable
substrates for improved performance.

To validate the performance of the fabricated composite substrate, a square 1.25 x
1.25 cm conductor patch was painted on top of the final substrate using ECCOCOAT®
C-110-5 silver. A coaxial probe feed was used to excite the patch as shown in Figure 5.
The return loss measurements are depicted in Figure 7. It is noted that the bandwidth and
the nulls of the fabricated composite substrate agree very well with the simulations except
for a frequency shift of about 100 MHz. This small shift is attributed to the inherent feed
and patch location imperfections as well as the unavoidable manufacturing flaws.

4.2 Frequency Selective Structure with Inhomogeneous Substrates for a Thermo-
Photovoltaic Filter

Frequency Selective Structures (FSS) find widespread applications as filters in microwaves
and optics [122]. They comprise periodically arranged metallic patch elements or apertures
within multiple layers of cascaded dielectrics and are primarily used to enhance the fre-
quency selectivity of spatial filters [123]. In addition to the more traditional applications,
emerging applications are low band-gap materials for spectral control filters [124]. An ap-
plication relates to Thermo-Photovoltaic (TPV) cell panels [125] used in the production of
small lightweight portable generators. In this case, need exists to protect the TPV panels
from broadband radiation by employing high efficiency spectral control filters. However,
these filters often lack compactness, good band-pass behavior or desired efficiency. Here,
we present the design of such a TPV filter with band-pass characteristics in the form of a
FSS and cascaded inhomogeneous dielectric substrates. The goal is to allow for more design
flexibility adopting the outlined design method and using dielectric periodic structures to
deliver a sharper filter response. The desirable passband is 1-2.4 ym with a sharp transition
in power transmission at the band-gap wavelength of 2.4 pm . The key requirement is that
the filter transmits more than 90% up to 2.4 pm and less than 10% beyond that range.
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Figure 8. Illustration of the preliminary spectral filter design with double layer FSS sand-
wiched between &, = 1.1 substrates. Dimensions are in pum

Following basic design guidelines [126], primarily based on the FSS resonance behavior
and the well-known quarter-wavelength transformer (A/4) characteristics, we obtain the pre-
liminary design configuration shown in Figure 8. This is a double layer non-commensurate
FSS structure with wire loop shaped conductors (red crossing). However, the attained re-
sponse using surface optimization required further refinement to improve the response by
modifying the material /volume distribution.

Based on the design specifications and the proposed design procedure, a general non-
linear optimization problem with the following objective function was formulated:

Minimize
2.4 4.6
> =17+ D (I, —0.1))? (31)
Ai=1 Ai=2.4

Here, 7y, is the power transmission coefficient at wavelength A;. A minimum of the objective
function corresponds to a performance with a high transmission (7 ~ 1.0) for wavelengths
1-2.4 pm and a vanishing one (7 ~ 0.1) for wavelengths out of that range (2.4-10 pm).
Therefore, evenly spaced frequency points are chosen to ensure accurate capturing of the
transmission response especially at the high frequency spectrum. To avoid high CPU costs
for the simulation, only up to 4.6 um (65 THz) instead of the entire spectrum were con-
sidered since the transmission behavior is not as affected by material variations at higher
wavelengths.

The entire volumetric substrate of the F'SS is discretized into 16 slabs resulting in a total
of 3048 finite elements each with their own individual dielectric permittivity. The surface
mesh details are given in Figure 8. Specifically, the substrates below FSS1 and above FSS2
are each discretized into 4 thickness layers with a surface mesh comprised of 162 (9 x 9 x 2)
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and 200 (10 x 2 x 2) triangular surface elements, respectively. The substrate sandwiched
between FSS1 and FSS2 is discretized into 8 layers, with each layer discretization into 200
(10 x 10 x 2) triangular surface elements.

For our design, the penalization factor was set to n = 2 and the volume fraction is
set to n = 60%. Validity of the simple mixture averaging formula was assured since the
dimensions of the structure are much smaller as compared to the resonance wavelengths in
the required pass-band region. Consequently, to achieve smooth mathematical convergence
and to prevent intermediate material properties in the final design, a volume constraint
was necessary. More specifically, sharper topologies with improved performance may be
obtained if the volume constraint is active (satisfied as an equality) with the volume fraction
yielding an approximate effective dielectric constant of around 3.3. This value corresponds
to an average central resonance wavelength of the desired pass-band region. The solid
material chosen for the design was Zinc Sulfide with ego1iq = 4.84. This would allow for 60%
of solid material allocation via the active volume constraint and permit a feasible effective
dielectric substrate to retain the required pass band behavior of 1-2.4 pm. This 60% of
solid material was preferred in order to simplify the fabrication of the designed filter. With
a volume fraction of (n = 60% and an initial air-like structure (giyitia1 = 1.1), the resulting
effective dielectric constant would be 4.84 % 0.6 + 1.1 % 0.4 ~ 3.3.

The standard design algorithm was applied and convergence was achieved in 23 itera-
tions as depicted in Figure 9. Remarkable improvement was achieved for the transmission
response as compared to the initial performance (Figure 10). Key to achieving this per-
formance was the optimal distribution of the available material within the 16 layers of the
design domain (as illustrated by the density distribution in Figure 10). Figure 11 is actually
a gray-scale cross section image of each layer with each grey-shade level corresponding to a
specific range of ¢, values.

3.5+ 1

2.5¢ + 1

1.51 + .

Objective function
i
+

0 ‘ ‘ ) ++++++++++++++++++++ .
5 10 15 20 25 30 35 40
Iteration

Figure 9. Optimization history for the spectral filter design with double layer FSS geom-
etry (Figure 8). Design parameters: n = 2, n = 60%, €sotia = 4.84 (ZiS) and
Einitial = 1.1



380 G. Kiziltas, N. Kikuchi, J.L. Volakis and J. Halloran

— optimum ]
----- initial

0.8

Transmission
o
D

0.4r

0.2r

01 2 3 4 5 6 7 8 9 10

Wavelength (um)

Figure 10. Transmission response for the initial (¢ = 1.1) vs. the optimized material dis-
tribution of the TPV filter employing the double layer FSS geometry (Figure 8).
Design parameters: n =2, n = 60%, solia = 4.84 (ZnS) and €initial = 1.1

Manufacturing of the above material distribution presents us with several challenges.
The distorted shapes at the outer edges of the solid (dark) material would present difficulties
during the manufacturing stage. Also, the presence of a subtle amount of intermediate
material within the light shade pixels (g is not equal to 1.1 but larger than 1.34) presents
a manufacturing challenge. The former is attributed to the meshing approach, which is
restricted to triangular surface elements only. The latter is a typical issue encountered in
topology optimization problems using SIMP. Several options are proposed to overcome these
issues. Increasing the penalization factor is one such approach and more details relating to
these approaches can be found in [13,25,26] but is not pursued here. The actual fabrication
for the double layer F'SS filter is a challenge to be explored. However, more recently success
has been reported on manufacturing layers with the designed submicron dimensions [127].

5 CONCLUSIONS AND REMARKS

Two critical issues must be addressed in topology/material design. First, a general math-
ematical framework must be developed and adopted to conduct rigorous analysis of the
composite materials without imposing any geometric and material restrictions. Second,
a flexible design method is needed to find the best possible geometric configuration and
material composition of the device. In this paper we adopted an extension of the Solid
Isotropic Material with Penalization Method (SIMP) as the mathematical framework and
integrated it with a fast hybrid finite-element boundary integral for EM analysis. The
resulting design problem was solved using SLP. Like in any design approach, the goal in
design is to allow for sufficient flexibility in geometry and materials choices so that novel
devices can be generated. Summarizing, the design method must:

1. allow for shape and material design without a-priori information on the initial shape
or topology,

2. incorporate versatile non-linear optimization methods based on well-defined optimiza-
tion algorithms such as SLP,
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Figure 11. Optimized material distribution across each layer (counted from bottom) for TPV
filter with double layer FSS geometry (Figure 8). Design parameters: n = 2,
n= 60%, Esolid = 4.84 (ZHS) and Einitial = 1.1

3. employ a simple continuous function to relate the actual material property to the
introduced density variable (and is hence well-posed and computationally efficient),

4. update the design variables thru a sensitivity analysis via the adjoint variable method
and permit full interface with the FE-BI electromagnetic solver.

To demonstrate the capability of the proposed design method, two design examples were
used: a patch antenna and a spectral filter. For both design cases, significant performance
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improvement was attained via optimization of the dielectric material topology. For manu-
facturing purposes, the resulting gray scale design for the antenna substrate was however
altered via image processing/filtering to achieve a realizable/manufacturable solid design.
Solidification of the dielectric substrate for the spectral filter design was still needed pos-
sibly through gradual penalization and continuation techniques. For applications based on
more advanced materials, the SIMP model as well as the analysis module need be revised
for improved accuracy and meshing capability.

Material compositions (topology) developed from ’scratch’ (and possibility to include
metallizations, 3D periodic or aperiodic, multilayers, etc.) is at the heart of design to
realize not only bandpass filters or broadband antennas, but also materials which have other
unique properties (including magnetic, impedance or specific value) and anisotropies that
lead to designs never imagined or expected based on the existing portfolio of structures.
The simplicity and low number of iterations needed to reach convergence motivate the
application of the proposed method for other radiation and scattering applications.
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