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Abstract Topology optimization of mechanical struc-
tures often leads to efficient designs which resem-

ble statically determinate structures. These economi-

cal structures are especially vulnerable to local loss of

stiffness due to material failure. This paper therefore

addresses local failure of continuum structures in topol-
ogy optimization in order to design fail-safe structures

which remain operable in a damaged state.

A simplified model for local failure in continuum struc-

tures is adopted in the robust approach. The complex
phenomenon of local failure is modeled by removal of

material stiffness in patches with a fixed shape. The

damage scenarios are taken into account by means of

a minimax formulation of the optimization problem

which minimizes the worst case performance.
The detrimental influence of local failure on the nominal

design is demonstrated in two representative examples:

a cantilever beam optimized for minimum compliance
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and a compliant mechanism. The robust approach is ap-
plied successfully in the design of fail-safe alternatives

for the structures in these examples.

Keywords Topology optimization · Robustness ·
Redundancy · Fail-safe design

1 Introduction

Topology optimization (Bendsøe and Sigmund, 2004)

has become a popular tool for designing civil and me-
chanical structures. In many cases, the optimized design

constitutes an efficient and economical solution for the

application at hand, however, its topology also often re-

sembles a statically determinate structure. Due to the
lack of redundancy, these structures are very sensitive

to a local failure of material. Every member in a stati-

cally determinate structure is a critical member which

can not be removed without transforming the structure

into an unstable mechanism and thus strongly deterio-
rating its performance. In civil engineering, recent work

on structural safety is increasingly concerned with the

consequences of local damage on the structural behav-

ior in risk analysis (Sørensen et al., 2012; Vrouwenvelder
et al., 2012). Therefore, this paper investigates how con-

tinuum topology optimization can be adopted for the

design of fail-safe structures.

Two types of local failure are generally distinguished

(Feng, 1988). When the loads on the structure exceed
the design load, yielding of material causes local loss

of stiffness or complete failure of material strength de-

pending on the material type, i.e. ductile or brittle

behavior. Failure due to material yielding is avoided
by correctly dimensioning the design for the material

strength and loads applicable to the structure under

consideration. This paper focuses on the second type
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where local failure is generated by accidental events.

In practice various incidents can cause local failure in

a structure. Common sources in civil applications in-

clude corrosion, fatigue failure or calamities such as an

explosion or collision. In micro-mechanical applications
such as compliant mechanism, errors during the manu-

facturing process can also cause unexpected removal of

material.

The problem of local failure and its relation to struc-
tural redundancy for truss structures has been subject

of research in the past (Frangopol and Curley, 1987).

Several authors (Arora et al., 1980; Feng and Moses,

1986; Marhadi et al., 2011) have also investigated the

consequences of local failure on the optimal design of
trusses. Marhadi and Venkataraman (2009) included

nonlinear progressive failure analysis in the optimiza-

tion of truss structures.

This paper is concerned with local failure in con-

tinuum topology optimization. The various scenarios
of local failure are taken into account by means of a

worst case formulation of the optimization problem. In

a truss, local failure can be modeled straightforwardly

by removing one bar from the truss. In a continuum
setting, a clear distinction between structural mem-

bers can not be made and local failure is manifested

by cracks and voids with varying shape and size. This

work, however, focuses on preventing failure of struc-
tures without actually specifying the cause of the local

failure. Therefore, this complex phenomenon is approx-

imated in a pragmatic way by considering a number of

patches with a fixed shape where material is removed

from the structure.

Modeling the effect of local failure poses serious

challenges from a computational point of view, es-

pecially when included in a structural optimization

scheme. Even the optimization of very simple trusses of-

ten forms computationally challenging problems when
local failure is included. Bendsøe and Dı́az (1998) and

Achtziger and Bendsøe (1999) investigated problems re-

lated to damage and degradation of material proper-

ties in topology optimization of truss and continuum
problems. Degradation of material is accounted for by

a continuous damage field in the design domain and the

worst distribution of damage is taken into account in

the optimization. The parametrization of the damage

is chosen such that the worst case degradation can be
found by solving a convex optimization problem. The

worst case consists of a uniformly distributed degra-

dation. The present work is concerned with localized

damaging of structures which does not admit such a
convex formulation. Therefore, damage is limited to a

small subset of the design domain where all material is

removed. This enforces local removal of bars which is

compensated for in the robust optimization by intro-

ducing redundant bars into the design.

Although the problems are not fully equivalent, im-

posing a maximum length scale on the design can al-

ternatively increase the redundancy of the optimized
structures and, in this way, increase the robustness of

the designs towards local failure. Several methods have

been proposed for incorporating a maximum length

scale in topology optimization. Kim et al. (2004) ap-

plied a low-pass filter on the design sensitivities in or-
der to control the member sizes. Similar to the mono-

tonicity based minimum length scale (MOLE) method

(Poulsen, 2003), a maximum length scale in the mate-

rial phase can be ensured by adding local constraints to
the optimization problem which impose a minimum vol-

ume of voids in every element’s neighborhood (Guest,

2009). In general, however, the degree of static indeter-

minacy of a truss (i.e. the number of redundant bars) is

a poor indicator for the overall robustness of the struc-
ture with respect to local failure (Frangopol and Curley,

1987; Sebastian, 2004; Kanno and Ben-Haim, 2011). For

the same reason, the robustness of a continuum struc-

ture is not guaranteed to improve when the number of
connecting members is simply increased.

This paper is organized as follows. First, topology

optimization of continuum mechanical structures is re-

capitulated. Afterwards, the catastrophic effect of lo-

cal failure on topology optimized designs is illustrated
in two examples. Section 3 proposes a methodology

for taking into account local material failure in topol-

ogy optimization. The presented approach is employed

for designing robust alternatives for the structures dis-

cussed in the previous examples. Finally, Section 4 dis-
cusses some measures for reducing the high computa-

tional cost of the presented robust optimization scheme.

2 Deterministic topology optimization

This paper adopts the density based approach in order

to describe the material distribution in the topology op-
timization problem (Bendsøe and Sigmund, 2004). The

design domain is discretized by means of ne finite el-

ements and the distribution of material is represented

by a physical density ρ̄e per element. The volume densi-
ties are allowed to vary in the interval ρ̄e ∈ [0; 1] where

0 and 1 indicate the absence or presence of material,

respectively.

The physical densities ρ̄e are typically derived from

the actual optimization variables ρe by means of a den-
sity filter in order to restrict the complexity of the fi-

nal design. The density filter first averages the design

variables ρe with a suitable weighting function w(x) in
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order to obtain the smoothed intermediate densities ρ̃e
(Bourdin, 2001; Bruns and Tortorelli, 2001):

ρ̃e =

∑ne

i=1 w(xi − xe)viρi
∑ne

i=1 w(xi − xe)vi
(1)

where xi are the coordinates of the elements’ centers

and vi are the element volumes. A conic weighting func-

tion w(x) = max(R − ‖x‖, 0) with filter radius R is
commonly adopted. In order to remove the gray tran-

sition zones between material and void phase which re-

sult from the smoothing effect of the density filter, the

intermediate variables ρ̃e are projected by a regular-
ized Heaviside function (Guest et al., 2004; Wang et al.,

2011):

ρ̄e =
tanh(βη) + tanh(β(ρ̃e − η))

tanh(βη) + tanh(β(1 − η))
(2)

where β is a steepness parameter and η ∈ [0; 1] is

the threshold value of the projection. In order to im-

prove the convergence of the optimization algorithm,
the steepness parameter β is increased during the it-

erations according to a continuation scheme (Sigmund,

2007).

In the optimization of linear elastic structures, the

local elements’ Young’s moduli Ee are expressed as

function of the physical densities ρ̄e by means of the

Solid Isotropic Material with Penalization (SIMP) in-
terpolation (Bendsøe, 1989; Zhou and Rozvany, 1991):

Ee = Emin + (E0 − Emin) ρ̄
p
e (3)

where E0 and Emin are the Young’s moduli of the mate-

rial and void phase, respectively. The penalization pa-

rameter is typically chosen p = 3 in order to make in-
termediate densities inefficient in the optimization and

drive the densities ρ̄e to a discrete {0; 1} design. The

elements’ Young’s moduli Ee are used in the construc-

tion of the global stiffness matrix K in the finite element

analysis of the problem:

K(ρ)u(ρ) = f (4)

where u and f are the nodal displacements and load

vector, respectively, and the vector ρ ∈ R
ne collects the

design variables ρe.

In the following, local material failure is illustrated

in the minimum compliance optimization of a cantilever

beam and the design of a compliant mechanism. Both

optimization problems can be formulated as follows:

min
ρ

f0 = bTu(ρ)

s.t. V (ρ)− Vmax ≤ 0 (5)

0 ≤ ρ ≤ 1

where the volume fraction of the design V (ρ) is lim-

ited to a certain fraction Vmax of the total volume of

the design domain and b is a problem-specific vector.

The optimization problems in the examples are solved

numerically by means of the Method of Moving Asymp-
totes (MMA) (Svanberg, 1987).

2.1 Cantilever beam

Local failure is first investigated in a cantilever beam

optimized for minimum compliance (Fig 1(a)). The

minimum compliance problem searches the stiffest

structure by minimizing the work done by the exter-
nal forces. This objective is obtained by setting b = f

in the optimization problem (5). A rectangular design

domain is discretized by means of 60 × 180 unit size

square finite elements. The Young’s moduli of material
and void phase are equal to E0 = 1 and Emin = 10−9,

respectively. A unit load is applied in the middle of

the right edge of the design domain, while the volume

fraction of the design is limited to Vmax = 40 %. The

density filter uses a filter radius R = 3.2, a threshold
value η = 0.5 and a maximum steepness β = 16 in the

continuation scheme. Figure 1(b) shows the design ob-

tained by the deterministic topology optimization. The

nominal compliance of the design is equal to f0 = 203.

The influence of local failure is illustrated by remov-

ing the upper left bar of the design (Fig 1(c)). In this
case, the structure behaves as an unstable mechanism

as shown in figures 1(d-e) where the displacements of

the nominal and damaged structures are compared. The

sensitivity of the nominal design with respect to local
failure is also demonstrated by the increase in compli-

ance: when the upper bar is removed the compliance

increases from f0 = 203 to fmax = 9 166.

2.2 Compliant inverter

Compliant mechanisms form a second type of mechan-

ical structures that can be strongly influenced by local
failure. For this reason, the effect of local failure on

the benchmark problem of the force inverter (Sigmund,

1997) is considered. Figure 2 specifies the boundary

conditions of the problem. The goal is to maximize the

output displacement uout when the input force fin is
applied to the mechanism. This objective is recovered

by choosing the vector b such that the displacement

component uout is selected from the vector u in opti-

mization problem (5). The maximum volume fraction
of the design is equal to Vmax = 25 %. The input force

is equal to fin = 2 and the spring stiffness coefficients

are kin = 2 and kout = 0.002. The design domain is
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(a) (b) (c)

L

L/3

(d) (e)

Fig. 1 (a) Design domain and boundary conditions for the cantilever problem, (b) the nominal design and (c) the design
subjected to local failure of the upper bar. Figures (d) and (e) show the relative displacements of the intact and damaged
structure, respectively.

(a) (b) (c)

Ω

L/2

L/2

L

fin uoutkin kout

(d) (e)

Fig. 2 (a) Design domain and boundary conditions for the compliant mechanism problem, (b) the nominal design and (c) the
design exposed to local failure. Relative displacements of (d) the intact inverter and (e) the broken inverter.

discretized with 240× 240 unit sized finite elements. A
filter radius R = 5.6, a threshold value η = 0.5 and a

maximum steepness parameter β = 16 are used in the

density filter. The nominal design has a performance

uout = 2.24 and is shown in figure 2(b). This design
is clearly very sensitive to local material removal and

there are several critical parts such as the hinges in the

structure where the mechanism would completely fail in
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case material would be removed locally. Figures 2(d-e),

for example, compare the displacements of the nominal

design and a broken design. The design is broken by

local material failure close to the lower support which

results in a complete loss of performance as the output
displacement uout = −0.05 becomes negative, i.e. the

displacement inversion capability is lost.

3 Local material failure

In practice, material failure introduces cracks and holes

of varying shape and size depending on factors such
as the accidental event, the material type, the applica-

tion and manufacturing process. A simplified model of

material removal is adopted here in order to account

for this complex process in the optimization problem.
Furthermore, a robust approach to local failure could

consist of including the worst case crack for a given

volume or amount of damage in the optimization. How-

ever, the maximization problem corresponding to find-

ing the worst case damage configuration has multiple
local maxima and the solution is mesh-dependent. For

example in the cantilever beam problem (Fig. 1), it is

easy to see that for a limited amount of damage, a pos-

sible worst case crack would consist of very thin cracks
along the height of the domain which could completely

disconnect the structure from its supports. Therefore

it is assumed that the damage, caused by e.g. an acci-

dent, is limited to a single location in the structure and

material can only be removed in the form of a number
of patches (i.e. subsets of the design domain) with a

prescribed size. Since the shape of the failure mode is

unknown a priori, simple rectangles will be used in the

following. This patch approach can be interpreted as a
model for collisions with finite-sized objects.

Local failure is modeled by changing the stiffness of
the material phase E0e in the SIMP interpolation (3).

Let N represent the index set of all elements in the de-

sign domain, then in case there is a patch of elements

P (i) ⊂ N where material failure occurs, the SIMP in-
terpolation becomes:

E(i)
e = Emin +

(

E
(i)
0e − Emin

)

ρ̄pe (6)

where E
(i)
0e is equal to:

E
(i)
0e =

{

Emat if e ∈ N \ P (i)

Emin if e ∈ P (i)
(7)

Figure 3 illustrates this approach for a rectangular

patch.

The goal of the present work is to obtain designs

which are insensitive to the occurrence of a crack or

E0e = Emin

E0e = Emat

Fig. 3 Removal of a rectangular patch of material.

hole in the structure by including the failure model in
the optimization. The size of the patches should be re-

lated to the expected hole size which could occur in the

structure. The influence of the patch size is investigated

further in the examples.

It is assumed that the uncertainty related to the

occurrence of local failure can be represented by an ap-

propriate set of m patch removal scenarios. In this case,
the robust optimization problem can be formulated as

a scenario-based problem (Ben-Tal et al., 2009; Tempo

et al., 2013) where every instance of local failure is in-

cluded separately by means of a worst case formulation:

min
ρ

fr(ρ) = max
i=1,...,m

f (i)(ρ)

s.t. V (ρ)− Vmax ≤ 0 (8)

0 ≤ ρ ≤ 1

where f (i) = bTu(i) is the performance related to the

(i)-th patch removal scenario and the displacements

u(i) solve the corresponding finite element system:

K(ρ|E(i))u(i)(ρ) = f i = 1, . . . ,m (9)

In robust optimization, the non-differentiable optimiza-

tion problem (8) is typically transformed into an equiv-

alent bound formulation by introducing a slack variable
t:

min
ρ,t

t

s.t. f (i)(ρ)− t ≤ 0 i = 1, . . . ,m (10)

V (ρ)− Vmax ≤ 0

0 ≤ ρ ≤ 1

However, if the number of scenarios m is very large,

the computational cost of gradient-based algorithms
such as MMA increases significantly since the Jaco-

bian of the corresponding constraint equations that is

taken into account by the optimization algorithm, is

a full m × ne matrix. Therefore, an alternative ap-
proach is followed here by approximating the non-

differentiable max-operator in the objective function

by the Kreisselmeier-Steinhauser (KS) function (Kreis-
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selmeier and Steinhauser, 1983):

min
ρ

f̃r(ρ) = log

(

m
∑

i=1

exp
(

γf (i)(ρ)
)

)

/γ

s.t. V (ρ)− Vmax ≤ 0 (11)

0 ≤ ρ ≤ 1

where γ is a chosen regularization parameter in the KS

function. Higher values of γ lead to better approxima-
tions of the maximum operator, but also causes rapid

variations of the gradient of f̃r which can jeopardize

the convergence of the optimization algorithm. A value

between 1 and 100 for the arguments of the exponen-

tial is recommended in literature (Martins and Poon,
2005; Arnout et al., 2012). For this reason, γ = 50/f̂0 is

adopted in the examples, where f̂0 should have the same

order of magnitude as the maximum function value fr.

Since the performance of the designs changes strongly
during the optimization, f̂0 is updated every ten iter-

ations and set equal to the current worst case perfor-

mance. It should be emphasized that in the scenario-

based formulation the complexity of the optimization

problem increases with the number of patches m since
every damage scenario i requires an additional finite el-

ement analysis. Since the location where local failure

will occur in the structure is unknown in advance, it is

necessary to take into account a large number of pos-
sible patches in the optimization. In order to account

for all possible damage scenarios, the grid spacing of

the patches is set equal to the grid spacing of the fi-

nite element mesh. Although the computational cost

of this approach is very high, it ensures robustness of
the solution with respect to local failure. Section 4 pro-

poses some measures for increasing the computational

efficiency.

3.1 Cantilever beam

The cantilever beam is optimized for three different

patch sizes, l = 5, l = 10 and l = 22, which corre-
spond to approximately 0.23 %, 1 % and 4.5 % of the

volume of the design domain being affected by local

failure, respectively. It is assumed that material close to

the location of the load can not be removed since this

would be impossible to circumvent by the structure. An
inactive zone with a width equal to 20 is therefore in-

troduced at the right hand side of domain. The spacing

between the centers of neighboring patches is equal to

the size of the finite elements, while patches which fall
partially outside the design are not included. This leads

to a total number of patches m = 8736 for patch size

l = 5, m = 7701 for l = 10 and m = 5421 for l = 22.

The robust designs are shown in figure 4. The de-

sign optimized for the patch size l = 5 is similar to the

nominal design (Fig. 1) since the patches are smaller

than the width of the main bars in the nominal design.

When comparing the robust designs for the patch sizes
l = 10 and l = 22 to the nominal design, the main

horizontal bars are divided into two thinner bars which

improves the robustness of the designs with respect to

the removal of a single bar. Furthermore, there are sig-
nificant topological differences between the robust de-

signs. The horizontal bars are separated in such a way

that both bars can never be removed entirely by a sin-

gle patch. The distance between these bars is therefore

closely related to the size of the patches which explains
the main differences between the designs in figures 4(b)-

(c). In this sense, the current approach also differs from

a maximum length scale constraint where the distance

between members is independent of the applied length
scale.

(a)

(b)

(c)

Fig. 4 Robust cantilever designs obtained for different sizes
l of square patches (dashed blue squares). The blue line in-
dicates the boundary of the zone close to the location of the
load where no local failure occurs.

The results for the designs are summarized in ta-

ble 1. The patch size l = 10 for the nominal design

indicates the size which was used to determine the per-

formance fmax after patch removal. As expected, the
robust designs have a worse nominal performance f0
than the nominal design. Furthermore, the nominal per-

formance f0 increases for larger patch sizes leading to

more conservative structures. Due to the increased re-
dundancy in the robust designs, their worst case per-

formance fmax is much smaller than the worst case per-

formance fmax = 9 166 of the nominal design.
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Table 1 Results for the deterministic and robust designs of
the cantilever beam.

Design Active patches Figure l f0 fmax

Nominal n/a 1 10 203 9 166

Robust

all 4(a) 5 215 257
all 4(b) 10 239 352
all 4(c) 22 304 714

non-empty 8(a) 10 239 340
non-monotonic 8(b) 10 243 353

With respect to the selection of an appropriate

patch size, it should be noted that a design optimized
for a particular patch size, will also be robust for smaller

patch sizes since compliance is a monotonic function

of the material stiffness. The previous results however

show that overestimating the required patch size could
lead to unnecessarily conservative designs.

It can be seen that the increased redundancy in the

robust designs also encompasses an increased number of

joints and smaller features in the design. The present

failure model serves to model accidental failures at a
single location in the structure and the robust opti-

mization gives rise to designs which are more robust

with respect to this specific damage model. The designs

are therefore also robust to failure of a single connec-
tion or joint, but due to the presence of smaller features

the design can become more vulnerable to uniform im-

perfections at multiple locations. The robust projection

filter (Wang et al., 2011; Schevenels et al., 2011) can be

adopted in case the sensitivity of the design with respect
to uniform imperfections becomes important. Geomet-

ric imperfections are modeled by varying the projec-

tion threshold in the projection step (2). In the worst

case approach, the robust filter additionally considers
an eroded version ρ̄

(e) = ρ̄(ρ|η(e)) and dilated version

ρ̄
(d) = ρ̄(ρ|η(d)) of the nominal design with the projec-

tion thresholds η(e) = η(n) +∆η and η(d) = η(n) −∆η

where η(n) is the original nominal threshold and ∆η

some positive shift. In general, the robust filter requires
a separate finite element analysis for the three instances

of the design. Due to the monotonicity of the compli-

ance, however, it suffices to consider the eroded design

in the evaluation of the objective function, i.e. the ro-
bust projection filter is incorporated by modifying op-

timization problem (8) as follows:

min
ρ

fr(ρ) = max
i=1,...,m

f (i)(ρ|η(e))

s.t. V (ρ|η(n))− Vmax ≤ 0 (12)

0 ≤ ρ ≤ 1

With compliance as the objective, incorporating the ro-

bust projection filter requires the same number of finite

element analyses in the evaluation of the objective func-

tion as the original optimization problem.

(a)

(b)

(c)

Fig. 5 Robust cantilever designs using a combined robust
filter and patch removal approach with different sizes l of
square patches (dashed blue squares).

Figure 5 shows the designs obtained by combining

the local failure model and the robust projection filter
with ∆η = 0.2. The nominal performance and the per-

formance after removing the worst case patch shown in

table 2 are all higher than for the original robust de-

signs with the same patch size in table 1. The designs

however clearly contain less joints and small features
compared to the original designs in figure 4.

Table 2 Results for the robust designs of the cantilever beam
optimized using different patch sizes and the robust projec-
tion filter.

Figure l f0 fmax

5(a) 5 229 288
5(b) 10 256 393
5(c) 22 343 922

3.2 Compliant inverter

The goal of this example is to find the optimal inverter

design which is robust with respect to patches with a

size l = 20. Again, two inactive zones are assumed on
the left and right side of the design domain in order

to avoid removal of material close to the input or out-

put of the mechanism. The robust design is shown in
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figure 6: not only are most bars duplicated, but addi-

tional hinges appear in the design as well. Due to this

increased redundancy in the robust design, the nomi-

nal performance is only uout = 1.70 compared to 2.24

for the deterministic case. However, the mechanism will
keep functioning after locally removing material as the

worst case performance is equal to uout = 1.10.

Fig. 6 The robust inverter design. The dashed blue square
represents the patch size and the blue lines indicate the inac-
tive zones close to the boundary conditions.

4 Computational efficiency

The aim of this paper is to show the importance of lo-

cal failure in topology optimized structures and obtain

designs which are fail-safe by taking into account all

possible damage scenarios for a certain patch size in the
optimization. Nevertheless, it is clear that the computa-

tional cost of this approach is very high due to the large

number of scenarios which all require a separate finite

element analysis including a factorization of a stiffness

matrix K. Although the formulation of the optimization
problem (11) enables a straightforward parallelization

of these finite element analyses, it is necessary to inves-

tigate how the computational time of the problem could

be reduced further. Several options were investigated in
this respect.

Sequential formulation In every iteration of the design

optimization, an topology anti-optimization could be

performed by means of a gradient-based algorithm in
order to find the worst case damage scenario. However,

taking into account only one damage scenario in the ro-

bust optimization problem turned out to be insufficient

due to the non-convexity of the maximization problem.

Perturbation techniques The effect of local failure could

be taken into account in an approximate way by means

of a first or second order Taylor expansion based on

a sensitivity analysis for patch removal. In the prob-

abilistic approach to robust optimization, this is of-

ten referred to as the perturbation method (Beyer

and Sendhoff, 2007; Lazarov et al., 2012). Linear and

quadratic approximations are adopted in a similar way
in worst case approaches to robust optimization (Ma

and Braatz, 2001; Diehl et al., 2006). In case of local

failure, however, the damage scenarios can strongly al-

ter the mechanical behavior of the structure which are
often not predicted by first or second order sensitivities.

This can be illustrated by the following physical argu-

ment. The sensitivities of the compliance with respect

to a change in material stiffness are closely related to

the deformation energy stored in the design (Bendsøe
and Sigmund, 2004):

∂f0
∂E0e

= −ρ̄peu
T
K
0
eu (13)

where K
0
e is the element stiffness matrix for unit-

stiffness. The sensitivity with respect to stiffness
changes in a patch of elements is equal to a summa-

tion of the sensitivities (13) over all elements in the

patch and is therefore related to the total deformation

energy stored in the patch of material.
Figure 7 shows a simple beam example originally

conceived by Rozvany (2009) to illustrate the inapti-

tude of the deformation energy in predicting the effect

of material removal: the horizontal beam is loaded by

a vertical distributed force per unit length p and a hor-
izontal distributed force per unit length 2p. Although

the deformation energy density (and hence the sensi-

tivities) in the supporting vertical element is relatively

small, it is crucial for the structural performance of the
beam with a sufficiently large horizontal length L un-

der the given load. Therefore, it can be concluded that

the corresponding sensitivities are also not able to in-

dicate the worst location for local failure to occur in a
structure.

2p

p

L

Fig. 7 Rozvany (2009) beam example where the deformation
energy is not able to predict the importance of a structural
element

Reanalysis techniques Akgün et al. (2001) showed

that the Sherman-Morrison-Woodbury (SMW) formu-
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las provide an exact reanalysis for the displacements

after a low rank modification of the stiffness matrix has

occurred. This approach, however, is only computation-

ally advantageous when the rank of the modification is

small compared to the bandwidth of the stiffness ma-
trix. This means the SHW formulas could be very useful

to evaluate local failure in trusses where the removal of

a bar corresponds to a rank one modification of the

stiffness matrix. In the continuum setting, however, the
rank of the stiffness matrix related to one patch is much

larger and the computational gain is lost.

Therefore, approximate reanalysis techniques (Amir

et al., 2010, 2012) are more appropriate to reduce

the computational cost in this case. Amir and Sig-

mund (2011) used the preconditioned conjugate gra-
dient (PCG) method to efficiently approximate the

change in displacement due to patch removal. If the

factorization of the stiffness matrix of the nominal de-

sign is used as a preconditioner in every iteration, only

a few PCG iterations (< 10) are usually necessary for
an accurate solution for the damaged designs. For ex-

ample, following the recommendations given by Amir

and Sigmund (2011), a reduction in computational time

of approximately 20 % was achieved in the cantilever
beam problem. Relaxing the convergence criteria of the

PCG method can reduce the required number of iter-

ations and the computational time even further, how-

ever, at the risk of underestimating the effect of local

failure. The interested reader is referred to Amir et al.
(2012) for an extensive convergence analysis of reanal-

ysis techniques in robust topology optimization prob-

lems and a detailed discussion on the expected compu-

tational gains.

Active set strategies The main problem of the present

formulation remains the large number of active patches

included in the optimization. It is clear, however, that
a large fraction of these patches will not be critical dur-

ing one or more iteration steps of the optimization al-

gorithm. Therefore, an active set strategy can be de-

veloped which estimates the set of potentially critical
patches in every iteration of the optimization. Two rela-

tively conservative selection criteria based on the mate-

rial distribution are investigated here. First, every patch

which does not contain material, can obviously be re-

moved from the active set of patches. Second, it can be
assumed that the patches which completely cut through

a bar or node of the structure will be critical. This

means the active set of patches can be limited to those

patches in which non-monotonic density variations oc-
cur. For every patch, the monotonicity is checked in an

extended patch which consists of the patch itself plus a

small layer of adjacent elements in order to ensure that

some material remains when the patch is removed. The

measure of monotonicity proposed by Poulsen (2003) is

adopted for this purpose. The monotonicity is checked

along four lines in the extended patch, i.e. the hori-

zontal and vertical lines through the patch center and
the two diagonals. Selecting the non-monotonic patches

leads to a larger reduction of the number of active

patches than removing the empty patches from the ac-

tive set, since emptiness also implies a monotonic den-
sity variation.

Both approaches are applied to the cantilever beam

for the patch size l = 10. When the optimization is ini-

tiated with a uniform material distribution, removing

the empty patches leads to reduction of the size of the
active set which ranges from 0% of the total number of

patches in the first steps of the optimization to approx-

imately 10% for the final design. For the monotonicity

based approach the reduction is initially 100% of the
total number of patches to approximately 20% for the

final design. The computational gain of the active set

strategies is assessed by comparing the mean number of

finite element analyses n̂FE per iteration during the first

250 iterations of the optimization algorithm. Without
the application of an active set strategy the number of

finite element analyses per iteration is equal to the total

number of patch removal scenarios n̂FE = m = 7701.

Removing the empty patches from the active set re-
duces the mean number of finite element analyses to

n̂FE = 7190 per iteration. The monotonicity based ap-

proach leads to a stronger reduction with n̂FE = 5874.

The designs obtained by both approaches are shown

in figure 8(a)-(b). In this example, removing the empty
patches has a minor influence on the results as the

topology is very similar to the original design obtained

by including all patches (fig. 4(b)). The design of the

monotonicity based approach 8(b) differs more strongly

from the original design. The worst-case performance of
both designs however is very similar to the result for the

original design as shown in table 1. The corresponding

worst-case damage scenarios are shown in figures 8(c)-

(d). It is important to note that the worst-case patch
in figure 8(d) actually has a monotonic density varia-

tion and was therefore not present in the active set of

patches during the optimization. The worst case patch

in the set of non-monotonic patches results in a compli-

ance f̃max = 352. Due to the small difference between
the estimated worst case f̃max and fmax (Table 1), the

selection of active patches based on the monotonicity

criteria can still be justified for this example. It can be

concluded that both strategies can successfully reduce
the number of active patches in the optimization with-

out much loss of accuracy. However, a reduction of 20%

of the total number of patches will still lead to a compu-
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tationally expensive algorithm when the initial number

of patches is very large (i.e. m = 6215 compared to

m = 7701 in the present case).

5 Conclusions

This paper shows that topology optimized designs are

often very sensitive with respect to local failure as they

resemble statically determinate structures. Therefore,

it is investigated how local failure can be included in

the optimization problem. As opposed to truss topol-
ogy optimization where a clear definition of a structural

member exists, there is no real notion of a structural

member in a continuum and cracks and holes of varying

shape and size can occur. A simplified model of local
failure is therefore used to simulate local material fail-

ure where a number of patches with predefined shape

can be removed from the design.

The worst case local failure scenarios are taken into

account in the robust optimization by means of a differ-

entiable approximation of the maximum operator. The

designs obtained in this way contain a number of re-
dundant bars which leads to an increased robustness

with respect to local removal of material. Although the

final topologies are similar, the patch size does have a

significant influence on the robust design. The results of
the cantilever beam example show that a larger patch

size leads to more conservative designs with a reduced

nominal performance.

The present robust formulation is demanding from

a computational point of view. Although paralleliza-

tion of the finite element analyses and the application
of reanalysis techniques are able to reduce the compu-

tational time, the problem remains relatively costly for

a large number of patches.
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