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Abstract

Stiffness topology optimization is usually based on a state
problem of linear elasticity, and there seems to be little discus-
sion on what is the limit for such a small rotation-displacement
assumption. We show that even for gross rotations that are in
all practical aspects small (< 3 deg), topology optimization based
on a large deformation theory might generate different design
concepts compared to what is obtained when small displacement
linear elasticity is used. Furthermore, in large rotations, the
choice of stiffness objective (potential energy or compliance), can
be crucial for the optimal design concept. The paper considers
topology optimization of hyperelastic bodies subjected simultane-
ously to external forces and prescribed non-zero displacements.
In that respect it generalizes a recent contribution of ours to large
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deformations, but we note that the objectives of potential energy
and compliance are no longer equivalent in the non-linear case.
We use seven different hyperelastic strain energy functions and
find that the numerical performance of the Kirchhoff-St.Venant
model is in general significantly worse than the performance of
the other six models, which are all modifications of this classical
law that are equivalent in the limit of infinitesimal strains, but do
not contain the well-known collapse in compression. Numerical
results are presented for two different problem settings.

Keywords: Hyperelasticity, Potential energy, Compliance, Op-

timality criteria

1 Introduction

The majority of works on topology optimization of structures concerns
linear elastic bodies, and stiffness optimization is performed for a sit-
uation where prescribed displacements are set to zero. Topology op-
timization studies of linear elastic bodies subjected to both external
forces and prescribed non-zero displacements are more rare. Recently,
however, this was studied by optimizing (minimizing/maximizing) the
compliance in Niu et al. [1] and a discussion on the topic was also con-
tributed by Pedersen and Pedersen [2]. Moreover, in a recent publication
[3], we show how maximizing potential energy is the natural objective
in stiffness optimization of structures and unifies the situation of si-
multaneously applied external forces and non-zero displacements. In
the present paper we deal with large displacement problems, where the
situation of non-zero prescribed displacements is even more important
than in the small displacement case. We are concerned with comparing
objectives of potential energy and compliance, and therefore of didactic
reasons we begin this introduction by a short discussion of the small
displacement case.

Consider a discrete linear elastic body subjected to external forces
F and a prescribed displacement δ, which can be related to a vector
of nodal displacements d such that, for a prescribed column vector
e, eT d = δ. The state of equilibrium is obtained by minimizing the
potential energy

Π(ρ, d) =
1

2
dT K(ρ)d − F T d

with respect to the admissible displacements. Here, K(ρ) is a stiffness
matrix that depends on design variables ρ. The optimality condition
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associated with this minimization problem is

K(ρ)d = F + λe. (1)

In this state equation, the Lagrange multiplier λ can be interpreted
as the reaction force needed to satisfy the kinematic constraint eT d =
δ. Solving the optimality condition (1) together with the kinematic
constraint gives d = d(ρ) and λ = λ(ρ). As an objective function
in stiffness optimization we now take the equilibrium potential energy
Π(ρ, d(ρ)) and maximize this with respect to the design. It is also
shown, by using (1), that

Π(ρ, d(ρ)) = −
1

2
F T d(ρ) +

1

2
λ(ρ)δ. (2)

Thus, maximizing the potential energy is equivalent to simultaneously
minimizing the compliance of the external forces and maximizing the
compliance of the prescribed displacement. If only the external forces
are included, then this is also equivalent to minimizing the elastic en-
ergy. On the contrary, when only the prescribed displacement is in-
cluded, then maximizing the elastic energy is equivalent to (2). How-
ever, in the general case involving both external forces and the non-zero
prescribed displacement, (2) means neither maximizing nor minimizing
the elastic energy. Now, for a hyperelastic body undergoing large dis-
placements, the equivalences given in (2) does not hold. Furthermore,
the compliance problem, i.e. the right hand side of (2), does not have
the familiar property that no adjoint equation is needed to calculate
sensitivities, while this is still true for the problem of maximizing the
potential energy. In this work, these two objectives are compared and
studied for non-linear hyperelastic bodies and the performance of seven
different hyperelastic strain energy potentials is investigated.

Buhl et al. [4] is an early work on topology optimization of struc-
tures formulated in a setting of large displacements. They used a total
Lagrangian formulation and coupled the Green-Lagrange strain and
the second Piola-Kirchhoff stress via the Kirchhoff-St.Venant law of
elasticity. Different objectives were studied by adjoint sensitivity anal-
ysis. Similar works were presented by Gea and Luo [5], and Bruns and
Tortelli [6]. In the latter work compliant mechanisms were also stud-
ied by using the Kirchhoff-St.Venant model. Topology synthesis of large
displacement compliant mechanisms were at the same time investigated
by Pedersen et al. [7]. Jung and Gea [8] considered non-linear structures
by coupling the effective strain to the effective stress by using a power
law. Bruns et al. [9] solved topology optimization problems of structures
that exhibit snap-through by using an arc-length method. This work
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was extended by Bruns and Sigmund [10] to also incorporate mecha-
nisms. Large deformations and stability in topology optimizations were
also investigated by Kemmler et al. [11]. Instead of using a total La-
grangian formulation, Pajot and Maute [12] used a co-rotational for-
mulation for studying topology optimization of non-linear structures.
An example of an applied work is Lee and Youn [13], who optimized
rubbber isolaters by using the Mooney-Rivlin model.

In this work a total Lagrangian formulation is adopted. The Green-
Lagrange strain and the second Piola-Kirchhoff stress are coupled via
seven different hyperelastic potentials. The Kirchhoff-St.Venant law is
compared to three different augmentations of this classical law and
three compressible Neo-Hookean materials. Presentations of different
hyperelastic materials can e.g. be found in the excellent textbooks by
Curnier [14], Holzapfel [15], and Bonet and Wood [16]. It is well-known
that the Kirchhoff-St.Venant law fails in compression. Therefore, this
standard choice of hyperelastic potential might be improper, especially
for topology optimization where it is an obvious risk that this material
model might fail for elements with low densities. It is studied in this
work if the optimization can be made more robust and efficient by using
any of the other six potentials. The optimization is performed for both
external forces and prescribed displacements. Topology optimization of
non-linear structures for prescribed displacements can be found in Cho
and Jung [17] and in the recent work by Huang and Xie [18].

The SIMP-model suggested by Bendsøe [19] is adopted for the de-
sign parametrization of the hyperelastic body. In another early work,
the SIMP-model was developed and implemented independently by
Zhou and Rozvany [20]. The state problem is treated by minimizing
the potential energy. In such manner the prescribed displacements are
introduced via the Lagrangian function. The corresponding optimality
conditions are then solved by using Newton’s method. The Jacobian
appearing in this step is also used to define the adjoint equation in
the sensitivity analysis of the second objective. This is, however, not
needed when the potential energy is maximized because of a property
resembling the self-adjointness of linear problems, i.e. the sensitivities
can be calculated without the need for an adjoint variable. Both opti-
mization problems are solved by the optimality criteria approach (OC).
This is derived by linearizing in intervening exponential variables. In
such manner one obtains convex and separable approximating problems
which can be solved easily by dual solution methods. This approach is
also known as sequential convex programming. In this paper we derive
the method by solving the necessary optimality conditions. By taking
the intermediate variable to be the reciprocal one, we obtain the convex
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linearization approach introduced by Fleury [21] and later developed in
the work by Fleury and Braibant [22]. The equivalence between sequen-
tial convex programming and OC was discussed recently in Groenwold
and Etman [23]. Similar discussions can also be found in the textbooks
by Haftka and Gürdal [24], and Christensen and Klarbring [26].

The outline of this paper is as follow: in section 2 we introduce the
hyperelastic body and present seven different hyperelastic potentials;
in section 3 the state equations are derived by minimizing the poten-
tial energy; in section 4 our two structural optimization problems are
presented; in section 5 the optimality criteria method is derived; and
in section 6 two problem settings are studied. Finally, we give some
conclusions in section 7.

e1

e2
xiei

Xiei

dA
i ei

F

F

δ

Ωe

Figure 1: A hyperelastic body subjected to an external force vector F

and a prescribed displacement δ.

2 A hyperelastic body

Let us consider a hyperelastic body, of which a two-dimensional version
is given in Figure 1. Position vectors of material points in the reference
configuration are denoted X = Xiei, where {e1, e2, e3} is an orthonor-
mal base. When the body deforms these points are mapped to spatial
positions x = x(X) = xiei. We use a SIMP-interpolation in order
to achieve the design parametrization, and the total elastic energy is
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written as

V = V (ρe, Eij) =

nel
∑

e=1

ρn
e

∫

Ωe

Ψ(Eij) dX1X2X3, (3)

where nel is the number of finite elements, ρe is the design parameter for
each element e, n is the SIMP-factor, Ωe is the reference configuration
of element e and Ψ = Ψ(Eij) is the hyperelastic strain energy function,
which is a function of the Green-Lagrange strain tensor

Eij =
1

2
(FkiFkj − δij) . (4)

Here,

Fij =
∂xi

∂Xj

(5)

denotes the deformation gradient.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

500

1000

1500

 

 

γ

Ψ

Kirchhoff-St.Venant

Ψ2

Ψ3

Ψ4

Ψ5

Ψ6

Ψ7

Figure 2: The strain energy Ψ as a function of γ (E=1000 units and
µ=0.3).

We consider the following explicit functional forms for the strain
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energy function Ψ:

Ψ1 =
1

2
λ(Ekk)

2 + µEijEij, (6a)

Ψ2 =
1

2
λ(lnJ)2 + µEijEij , (6b)

Ψ3 = λ(J − ln J − 1) + µEijEij , (6c)

Ψ4 =
1

2
λ(J − 1)2 + µEijEij , (6d)

Ψ5 =
1

2
λ(lnJ)2 +

µ

2
(Cii − 3) − µ lnJ, (6e)

Ψ6 = λ(J − ln J − 1) +
µ

2
(Cii − 3) − µ ln J, (6f)

Ψ7 =
1

2
λ(J − 1)2 +

µ

2
(Cii − 3) − µ lnJ. (6g)

Here, J = det(Fij), Cij = 2Eij + δij is the right Cauchy-Green defor-
mation tensor, and λ and µ are Lame’s material parameters, which are
related to Young’s modulus E and Poisson’s ratio ν via

λ =
νE

(1 + ν)(1 − 2ν)
, µ =

E

2(1 + ν)
. (7)

The first strain energy Ψ1 represents the classical Kirchhoff-St.Venant
strain energy, and Ψ2-Ψ4 are augmentations of Ψ1 in order to circum-
vent the well-known draw-backs of the Kirchhoff-St.Venant model ob-
tained in compression at large strains. The final energies Ψ5-Ψ7 are
compressible Neo-Hookean materials. Ψ5 and Ψ7 appear frequently in
the literature, while Ψ6 is a new Neo-Hookean material inspired by the
potential Ψ3 which is a suggestion by Curnier [14]. For the homoge-
nous uniaxial deformation x1 = γX1, x2 = X2 and x3 = X3 (γ > 0),
the corresponding strain energies Ψi as a function of γ are plotted in
Figure 2.

The second Piola-Kirchhoff stress Sij is defined by

Sij =
∂Ψ

∂Eij

(8)
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and such stresses corresponding to the strain energies in (6) become

S1
ij = λEkkδij + 2µEij, (9a)

S2
ij = λ ln(J)C−1

ij + 2µEij, (9b)

S3
ij = λ(J − 1)C−1

ij + 2µEij, (9c)

S4
ij = λ(J − 1)JC−1

ij + 2µEij, (9d)

S5
ij = λ ln(J)C−1

ij + µ(δij − C−1
ij ), (9e)

S6
ij = λ(J − 1)C−1

ij + µ(δij − C−1
ij ), (9f)

S7
ij = λ(J − 1)JC−1

ij + µ(δij − C−1
ij ). (9g)

In the derivation of the stresses above, the following relationship has
been utilized:

∂J

∂Eij

= JC−1
ij . (10)

The Cauchy stress σij is given by

σij =
1

det(Fmn)
FikSklFjl. (11)

For the homogenous uniaxial deformation defined previously, the uni-
axial Cauchy stresses σi

11 as a function of γ are plotted in Figure 3. The
plots clearly show that the stiffness kσ=∂σ/∂γ has the same value for all
models at γ=1. Furthermore, the softening behavior for the Kirchhoff-
St.Venant model in compression is also depicted clearly (σ1

11 = 0 when
γ → 0, k1

σ = 0 when γ =
√

1/3), see also Figure 4.
For later use in the development of the Newton method, we also

derive explicit expressions for the material elasticity tensor

Cijkl =
∂2Ψ

∂Eij∂Ekl

. (12)

This results in the following expressions:

C1
ijkl = λδijδkl + µ(δikδjl + δilδjk), (13a)

C2
ijkl = λC−1

ij C−1
kl − λ ln(J)Dijkl + µ(δikδjl + δilδjk), (13b)

C3
ijkl = λJC−1

ij C−1
kl − λ(J − 1)Dijkl + µ(δikδjl + δilδjk), (13c)

C4
ijkl = λ(2J − 1)JC−1

ij C−1
kl − λ(J − 1)JDijkl + µ(δikδjl + δilδjk),

(13d)

C5
ijkl = λC−1

ij C−1
kl − λ ln(J)Dijkl + µDijkl, (13e)

C6
ijkl = λJC−1

ij C−1
kl − λ(J − 1)Dijkl + µDijkl, (13f)

C7
ijkl = λ(2J − 1)JC−1

ij C−1
kl − λ(J − 1)JDijkl + µDijkl. (13g)
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Figure 3: The uniaxial Cauchy stress σ11 as a function of γ.

Here,

Dijkl = −
∂C−1

ij

∂Ekl

=
(

C−1
ik C−1

jl + C−1
il C−1

jk

)

(14)

has been introduced. At x = X, we have that Fij = δij , Cij = δij,
C−1

ij = δij and J = 1. If this is inserted in (13), then all of the elasticity
tensors take the form of (13a). The corresponding stiffness coefficients
ki

σ for the uniaxial deformation are plotted in Figure 4.

3 The state problem

A total Lagrangian formulation is adopted, i.e. the kinematics is ap-
proximated according to

xi = Xi + NAdA
i , (15)

where NA = NA(X) are the finite element interpolation functions and
dA

i are the nodal displacements that are collected in the vector d. In a
similar way we collect all densities ρe in a vector ρ.

By inserting (15) into (4), the Green-Lagrange strain tensor becomes

Eij = Eij(d) =
1

2

(

∂NA

∂Xj

dA
i +

∂NA

∂Xi

dA
j +

∂NA

∂Xi

∂NB

∂Xj

dA
k dB

k

)

. (16)
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Figure 4: The stiffness kσ as a function of γ.

Taking the derivative of (16) with respect to dA
i results in

∂Eij

∂dA
k

=
∂NA

∂Xj

(

δik +
∂NB

∂Xi

dB
k

)

. (17)

This gradient will be useful below when the consistent stiffness matrix
is derived, see (25).

For a given density distribution ρ = ρ̂, our state problem is defined
by minimizing the potential energy

Π = Π(d) = V (ρ̂, Eij(d)) − F T d (18)

under satisfaction of the kinematic constraint imposed by the prescribed
displacement δ, i.e.

{

min
d

Π(d)

s.t. δ − eT d = 0
(19)

where e is a unit vector representing the direction of the prescribed
displacement δ, and F represents the external forces, see Figure 1. The
corresponding Lagrangian function is

L = L(ρ, d, λ) = V (ρ, Eij(d)) − F T d + λ(δ − eT d), (20)

when ρ is taken to be constant. Here, λ is the Lagrange multiplier,
which will be identified in (21) as the reaction force required to satisfy
δ − eT d = 0.
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The necessary optimality conditions of the problem in Box (19) read

h = h(d, λ) =

{

∂V

∂d
− F − λe

δ − eT d

}

= 0. (21)

Here,

f = f (ρ, d) =
∂V

∂d
(22)

represents the internal elastic forces. A typical member of f is obtained
by the following assembly procedure:

fA
i =

nel
⋂

e=1

ρn
e

∫

Ωe

∂NA

∂Xk

(

δij +
∂NB

∂Xj

dB
i

)

Sjk dX1dX2dX3, (23)

where
⋂

represents the assembly operator.
By taking the derivative of f with respect to d yields the consistent

stiffness matrix

K = K(ρ, d) =
∂f

∂d
=

∂2V

∂d2 . (24)

A typical member of K can be written as

KAC
iq =

∂fA
i

∂dC
q

=

nel
⋂

e=1

ρn
e

∫

Ω0

∂NA

∂Xk

∂NC

∂Xj

δiqSjk + . . .

∂NA

∂Xk

(

δij +
∂NB

∂Xj

dB
i

)

Cjkmn

∂Emn

∂dC
q

dX1dX2dX3. (25)

The equation system in (21) is solved by using Newton’s method
with an inexact line-search. The Jacobian used for determining the
search direction is

J =

[

∂h

∂d

∂h

∂λ

]

=

[

K(ρ̂, d) −e

−eT 0

]

. (26)

This Jacobian is also used in the sensitivity analysis of the compliance,
see equation (33).

4 The optimization problems

Two different objectives are studied in this work. We will maximize
the Lagrangian1 in (20), and minimize/maximize the compliance of the

1For the nested formulation, the last term disappears and the Lagrangian be-
comes the potential energy.
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external forces and the prescribed displacement. Thus, letting d=d(ρ)
and λ=λ(ρ) be defined implicitly by (19), our two objectives read

c1 = c1(ρ) = −L(ρ, d(ρ), λ(ρ)), (27a)

c2 = c2(ρ) =
1

2
F T d(ρ) −

1

2
λ(ρ)δ. (27b)

In the case of linear elasticity these two objectives are equivalent. How-
ever, this is not true when non-linear elasticity is considered.

Thus, we consider the following nested optimization problems:











min
ρ

ci(ρ)

s.t.

{

Vvol(ρ) ≤ V̂vol

ǫ ≤ ρ ≤ 1

(28)

Here, we have introduced

Vvol(ρ) =

nel
∑

e=1

Veρe, Ve =

∫

Ωe

dX1dX2dX3, (29)

which we constrain by V̂vol. Furthermore, singular design domains are
prevented by representing zero element densities by ǫ={ǫ, . . . , ǫ}T ,
where ǫ > 0 is a small number, and 1={1, . . . , 1}T .

A nice feature of the first objective is that the sensitivities

s1
e =

∂c1

∂ρe

=
∂L

∂ρe

+

(

∂L

∂d

)T
∂d

∂ρe

+
∂L

∂λ

∂λ

∂ρe

(30)

are easily evaluated without introducing any extra adjoint equation.
The optimality conditions in (21) imply that the two latter terms of
(30) disappear and we obtain

s1
e =

∂L

∂ρe

=
∂V

∂ρe

. (31)

Furthermore, by taking the derivative of (3) with respect to ρe, one
arrives at

s1
e = nρ(n−1)

e

∫

Ωe

Ψ(Eij) dX1X2X3. (32)

The sensitivity of the second objective is derived by the adjoint
approach. This is done by introducing the following adjoint equation:

Jγ =
1

2

(

F

−δ

)

. (33)
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The sensitivity is then obtained as

s2
e = −γT ∂h

∂ρe

, (34)

where

∂h

∂ρe

=







nρn−1
e

∫

Ωe

∂NA

∂Xk

(

δij +
∂NB

∂Xj

dB
i

)

Sjk dX1dX2dX3

0







. (35)

Both sensitivities, (32) and (34), are filtered by using Sigmund’s ap-
proach [25] before these are inserted in the optimality criteria algorithm
presented in the next section.

5 The optimality criteria approach

The problem in Box (28) is solved by an optimality criteria method.
This is derived by introducing intervening exponential variables and
performing the sensitivity analysis using these variables. In such man-
ner, one obtains a separable approximation which can be treated effi-
ciently by solving the necessary optimality conditions. The outline of
the method is presented in this section.

We perform the linearization of the objectives ci in the intervening
variables

ξe = ρ−α
e , (36)

which are collected in ξ. Sequential convex programming by using this
intervening variable was studied by Groenwald and Etman in [23]. α > 0
is a parameter which was set to one in the works by Fleury [21], and by
Fleury and Braibant [22]. In this work we have found α = 0.25 to be
an efficient choice, which corresponds to a damping factor of 0.8 in a
standard heuristic OC approach, see e.g. [26, 27]. By considering ci as
functions of ξ, i.e. ci(ξ) = ci(ρ(ξ)) where ρ(ξ) is defined by (36), the
Taylor expansion of ci at an iterate ξ̂ becomes

ci(ξ) ≈ ci(ξ̂) +

(

∂ci

∂ξ

)T
(

ξ − ξ̂
)

, (37)

The components of the gradient ∂ci/∂ξ can be expressed as

ζ i
e =

∂ci

∂ξe

=
∂ci

∂ρe

(

−
1

α
ξ̂
−

1

α
−1

e

)

= si
e

(

−
1

α
ρ̂1+α

e

)

, (38)
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where the sensitivities si
e were determined in the previous section, see

(32) and (34).
By utilizing ζ i

e, an approximating sub-problem at a given state
(ρ̂, d̂ = d(ρ̂), λ̂ = λ(ρ̂)) becomes



















min
ρ

nel
∑

e=1

ζ i
eρ

−α
e

s.t.

{

Vvol(ρ) − V̂vol = 0
ρ̂ + ρl ≤ ρ ≤ ρ̂ + ρu

(39)

Notice that, without lack of generality, the volume constraint is writ-
ten on equality form instead as an inequality in order to simplify the
derivation of the OC algorithm. Here, ρl and ρu represent lower and
upper move limits, respectively.

The corresponding Lagrangian function for each problem (i=1 or 2)
in (39) is

M(ρ, τ) =

nel
∑

e=1

ζ i
eρ

−α
e + τ(

nel
∑

e=1

Veρe − V̂vol), (40)

where τ is a Lagrangian multiplier. For ρ̂e + ρl
e < ρe < ρ̂e + ρu

e , the
corresponding optimality conditions read

∂M

∂ρe

= −αζ i
eρ

−α−1
e + τVe = 0, (41a)

∂M

∂ρe

=

nel
∑

e=1

Veρe − V̂vol = 0. (41b)

By solving (41a), one gets

ρsol
e = ρsol

e (τ) =

(

αζ i
e

τVe

)
1

1+α

. (42)

This solution must of course also be checked such that ρ̂e + ρl
e ≤ ρe ≤

ρ̂e+ρu
e is satisfied. Otherwise, the solution is taken to be the lower or the

upper limit, respectively. In conclusion, for given Lagrangian multiplier
τ the minimum point of M(ρ, τ) is given by

ρe(τ) =







ρl
e if ρsol

e < ρ̂e + ρl
e

ρsol
e (τ) if ρ̂e + ρl

e ≤ ρsol
e ≤ ρ̂e + ρu

e

ρu
e if ρsol

e > ρ̂e + ρu
e .

(43)

The unknown multiplier τ is found by inserting (43) into (41b) and
solving the resulting nonlinear equation, e.g. by using Newton’s method
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as done in this work. At an iterate τk, the search direction is then given
by

s = −
h(τk)

h′(τk)
, (44)

where

h(τ) =

nel
∑

e=1

Veρe(τ) − V̂vol = 0 (45)

and

h′(τ) =

nel
∑

e=1















0 if ρsol
e < ρ̂e + ρl

e

−
Ve

1 + α

(

αζ i
e

Ve

)
1

1+α

(

1

τ

)
2+α

1+α

if ρ̂e + ρl
e ≤ ρsol

e ≤ ρ̂e + ρu
e

0 if ρsol
e > ρ̂e + ρu

e .
(46)

When a solution τ̂ is found the next iteration point, where a new sub-
problem such as (39) is formulated, is given by equation (43) as ρe(τ̂ ).
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Figure 5: Two problem settings. All dimensions are given in [mm].

6 Numerical examples

The two general problem settings presented in Figure 5 are studied
for both of our presented optimization problems and the seven hyper-
elastic material models as well as linear elasticity. Thus, 16 different
combinations of objective and elasticity model for each problem setting
are solved and evaluated. Since the second problem is solved for two
differen values of the prescribed displacement, 48 optimization problems
are considered in this section. The theory presented in the previous
sections is implemented by using Matlab and Intel Fortran, where the
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Fortran code is linked to Matlab as mex-files. The problems are solved
using this implementation on a laptop with an Intel Core i7 2.67 GHz
processor. The linear equation systems are solved by using the sparse
Cholesky solver of Matlab.

The first problem setting concerns a beam with dimensions 100×10
[mm] and is inspired by study in Niu et al. [1]. The beam is fixed
vertically at the right end and it is fixed in both directions at the other
end. An external force F is applied at the center and at the right end
a displacement δ is prescribed.

(a) Linear elasticity.

(b) Ψ6 and c1.

(c) Ψ6 and c2.

Figure 6: The first problem setting solved for both linear and non-linear
elasticity. There is a clear difference between these two cases, while the
choice of stiffness objective does not influence the concept.

The second problem setting concerns a square plate with dimen-
sions 20×20 [mm2]. The reference configuration of the plate is rotated
10 degrees counter-clockwise. The lower left end is then fixed in both
directions, and the lower right end is fixed horizontally. The upper right
corner is subjected to a displacement δ vertically and, finally, an exter-
nal force F is applied horizontally at the upper left corner.

Both structures are modeled by using fully integrated bilinear ele-
ments where the plain strain assumption is adopted. Young’s modulus
and Poison’s ratio are set to 21000 [N/mm2] and 0.3, respectively. The
number of elements for the beam is 4000 and for the square plate 6400
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elements are used.

(a) Linear elasticity

(b) Ψ6, c1, δ=0.1 mm

(c) Ψ6, c1, δ=1 mm

(d) Ψ6, c1, δ=2 mm

Figure 7: The MBB-benchmark solved with linear and non-linear elastic-
ity. The force is represented by a prescribed displacement δ downwards.

The first problem is studied for a force F=1000 [N] and δ=2 [mm].
The optimal solutions are obtained after 150 OC loops. This number
of loops is a conservative choice in order to guarantee convergence in
the objectives. The filter radius is 0.8 [mm] and the move limits are
set to ±0.0125. The admissible volume of material is constrained by a
volume fraction of 50%. The problem is solved for the standard small
displacement linear elasticity setting as well as for our large displace-
ment setting using the seven elastic energies Ψi. The optimal solutions
for the linear case and when Ψ6 is chosen are plotted in Figure 6. Even
if the displacements are moderately large in this particular case, one
might assume from an engineering point of view that these are still so
small that a small displacement theory is sufficient. However, this is
not the case. It is obvious that the linear and non-linear solutions dif-
fer. Now, one might assume that the choice of strain energy Ψi might
influence the solution. However, this is not the case in this problem.
Moreover, we obtain very similar solutions for the two different objec-
tives ci, see Figure 6.

If one neglects the prescribed displacement in the first problem,
then the established MBB-benchmark is recovered, see e.g. [26, 27].
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(a) Linear elasticity, δ=1 mm. (b) Linear elasticity, δ=3 mm.

(c) Ψ6, c1, δ=1 mm. (d) Ψ6, c1, δ=3 mm.

(e) Ψ6, c2, δ=1 mm. (f) Ψ6, c2, δ=3 mm.

Figure 8: The second problem setting solved for both large and small
displacements and different stiffness objectives. The difference between
small and large displacement theory is pronounced. When δ = 3 [mm]
the difference in solutions for different objectives is also large.
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The differences between the linear and non-linear solutions also ap-
pear for this situation. This is shown in Figure 7, where the linear
solution is compared to a sequence of non-linear solutions obtained for
different magnitudes of the force. The problem is treated by applying a
prescribed displacement at the center with different magnitudes down-
wards. The linear and non-linear solutions begin to diverge already at
δ=1 [mm], and for δ=2 [mm] a clear difference in the solutions can be
noticed. From an engineering point of view, this displacement might be
regarded as small.

(a) Lin. elast., δ=0.7 mm (b) Lin. elast., δ=0.8 mm (c) Lin. elast., δ=0.9 mm

(d) Ψ6, c1, δ=0.7 mm (e) Ψ6, c1, δ=0.8 mm (f) Ψ6, c1, δ=0.9 mm

Figure 9: For δ <0.7 [mm], the linear and non-linear models generate
the same optimal topology. But for larger displacements the solutions
begin to diverge and a clear difference is apparent for δ >1 [mm].

The second problem is also studied for a constant force F of 1000
[N] but for a varying displacement δ. Initially, the prescribed displace-
ment is taken to be 1 and 3 [mm], respectively. We use again 150 OC
loops with move limits equal to ±0.0125. The filter radius is slightly
smaller and set to 0.5 [mm]. The admissible volume of material is again
constrained by a volume fraction of 50%. The optimal solutions depend
on the deformations. This is illustrated in Figure 8, where the optimal
solutions for linear elasticity and Ψ6 are presented. A clear difference is
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apparent between the linear case and the non-linear model. One might
be surprised that this difference appears in the case of small rotations,
i.e. when δ=1 [mm]. This is somewhat in contrast to the statement in
[4] where it is concluded that the importance of non-linear modeling in
stiffness design is marginal. It is obvious that the box concept generated
by the hyperelastic formulation is to prefer over the concept generated
by the linear elasticity model. Of course, for sufficiently small displace-
ments, the linear and non-linear models will produce the same solution.
In fact, for δ <0.7 [mm], the same solution is generated by the linear
and the non-linear models. The divergence in solution begins for δ >0.7
[mm] and clearly appears for δ >1 [mm] (i.e. for rotations less than 3 deg
as announced in the abstract). This is shown in Figure 9, where one
can see how the stiffener at the top is removed and the box concept
is destroyed in the linear case, but remains in the non-linear models.
Furthermore, the solutions obtained for different objectives are more or
less identical when δ=1 [mm]. However, when δ equals 3 [mm], one ob-
tains different solutions. In our opinion, the box concept generated by
maximizing the Lagrangian is to prefer over the concept generated by
minimizing/maximizing the compliance. The solutions obtained for the
other energies are very similar when δ=1 [mm]. But, when δ=3 [mm],
the Kirchhoff-St.Venant model produces a solution which is different
from the solutions obtained by the other energies, see Figure 10.

The major difference between different strain energies is obtained
in the numerical performance. In general, the convergence of the
Kirchhoff-St.Venant model is remarkable slower than the other energies
which are very similar in performance. In average 3-5 Newton iterations
are needed per OC loop for the problems presented in this section when
Ψ2-Ψ7 are used. However, this number is doubled for the Kirchhoff-
St.Venant model. The CPU-time per OC loop is approximately 3-4 [s]
for Ψ2-Ψ7 (including the assembly procedure). The bottle-neck of the
algorithm is to solve the linear system of equations. Therefore, using
c1 is preferable since no adjoint problem needs to be solved and the
CPU-time will be approximately 20% shorter than the time we obtain
when using c2.

The values of the move limits (±0.0125) are a most conservative
choice in order to make all optimizations robust for all possible settings.
In particular, we need these conservative limits in order to obtain ro-
bustness in the Newton algorithm for solving the state problem. If too
large move limits are taken, then the Newton algorithm might fail when
the Kirchhoff-St.Venant model is solved. However, for the other hyper-
elastic materials, these conservative values are typically not needed and
we can instead use move limits of ±0.1.
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7 Concluding remarks

In this work topology optimization of hyperelastic bodies are studied
for seven different elastic potentials by maximizing the potential energy
and optimizing the compliance. The following remarks and conclusions
can be made:

• Rotations that would typically be regarded as small, and treatable
by linear theory in standard stress analysis, might not be seen
as small in topology optimization: even for such small rotations
topologies generated by using a linear state problem may differ
from those produced by a non-linear formulation valid for large
displacements. In the problems shown in this paper it is only in
the limit of very small rotations that the two topologies coincide.

• The choice of stiffness objective is not obvious in optimization
based on large deformation theory, and if non-zero prescribed
displacements is included it is an issue even for linear elasticity.
However, in a recent publication [3], we showed that potential en-
ergy is the natural objective that includes both types of loading.
In the present paper it becomes clear that for large deformation
theory a further reason to choose the potential energy objective
(27a), instead of the direct generalization of the classical com-
pliance objective (27b), is that the sensitivity analysis becomes
simple: no adjoint equation needs to be solved in the first case,
which in large deformations is needed for the second objective. It
is also rather obvious, since the two objectives are not mathemat-
ically equivalent, that they may in some cases produce different
topologies which is shown for the second problem setting in this
paper.

• The Kirchhoff-St.Venant model is known to have unphysical be-
havior in compression but despite this is usually considered to be
a reasonable choice in stress analysis including somehow small
strains but large displacements. However, we note in this pa-
per that in topology optimization the numerical performance of
the Kirchhoff-St.Venant model is always significantly worse than
the performance obtained for models including a generally more
physical behavior in compression. The reason for this fact could
be traced to elements with low densities that are interpreted as
void parts of the structure. Note that we do not discuss which of
the different strain energy potentials that is somehow the most
physically correct in a large deformation problem: in the range of

21



loadings we are considering they are essentially equivalent. How-
ever, in a practical problem involving large strains, this would
obviously be an issue.

(a) Ψ1 (b) Ψ2 (c) Ψ3

(d) Ψ4 (e) Ψ5 (f) Ψ7

Figure 10: The second problem setting solved when δ=3 [mm] for Ψ1

through Ψ7. Optimal solutions are plotted on the reference configuration.
It is clear that the Kirchhoff-St.Venant model gives a different solution
compared to the solutions obtained when using the other hyperelastic
potentials.
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