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Topology Optimization of Metallic Antennas
Emadeldeen Hassan, Eddie Wadbro, and Martin Berggren

Abstract—We introduce an approach to carry out layout
optimization of metallic antenna parts. An optimization tech-
nique first developed for the optimization of load-bearing elastic
structures is adapted for the purpose of metallic antenna design.
The local conductivity values in a given region are used as
design variables and are iteratively updated by a gradient-based
optimization algorithm. Given a set of time-domain signals from
exterior sources, the design objective is here to maximize the
energy received by the antenna and transmitted to a coaxial cable.
The optimization proceeds through a sequence of coarsely-defined
lossy designs with successively increasing details and less losses as
the iterations proceed. The objective function gradient is derived
based on the FDTD discretization of Maxwell’s equations and
is expressed in terms of field solutions of the original antenna
problem and an adjoint field problem. The same FDTD code,
but with different wave sources, is used for both the original
antenna problem and the adjoint problem. For any number of
design variables, the gradient is evaluated on the basis of only
two FDTD simulations, one for the original antenna problem
and another for the adjoint field problem. We demonstrate
the capability of the method by optimizing the radiating patch
of both UWB monopole and microstrip antennas. The UWB
monopole is designed to radiate over a wide frequency band 1–
10 GHz, while the microstrip patch is designed for single and dual
frequency band operation. In these examples, there are more than
20,000 design variables, and the algorithm typically converges
in less than 150 iterations. The optimization results show a
promising use of the proposed approach as a general method
for conceptual design of near-resonance metallic antennas.

Index Terms—topology optimization, finite-difference time-
domain (FDTD), adjoint field problem, ultrawideband antennas
(UWB), microstrip antennas, coaxial feed model.

I. INTRODUCTION

THE current revolution in wireless systems raises the

interest in the design of complex antenna structures.

Moreover, applications such as microwave imaging and non-

destructive evaluation and testing using electromagnetic waves

benefit from the access to antennas that satisfy specific charac-

teristics [1]. Currently, antenna design often relies on accurate

numerical methods that solve Maxwell’s equations, such as the

method of moments (MoM), the finite element method (FEM),

and the FDTD method [2].

Classical design methods start with an existing geometry

that is found in the literature or inspired by prior knowledge.

Then, various parameter studies are carried out to optimize

certain objectives, such as the reflection coefficient, the di-

rectivity, the polarization, or the mutual coupling between

antennas. Generally, the quality of the optimized designs

depends on how the design domain is parameterized and the

number of design variables used in the parameterization. The

Manuscript received April 3, 2013; revised January 15, 2014; accepted
February 22, 2014. The authors are with the Department of Computing Sci-
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use of a large number of design variables results in a large set

of feasible solutions and increases the possibility to obtain a

high-performance design. The cost of handling a large number

of design variables will depend on the optimization algorithm.

Evolutionary algorithms, such as genetic algorithms and

particle swarm optimization, are extensively used in the lit-

erature to optimize various electromagnetic devices [3]–[6].

Evolutionary algorithms typically make use of objective func-

tion values only, which make them simple to use as black-box

software. However, the small amount of information contained

in only a sampling of objective function values, together with

the random strategies employed to update the design variables,

make these types of algorithms inefficient for optimization

problems with a large number of design variables [7].

The term topology optimization is often used to label the

most general type of design optimization methods, in which

the shapes as well as the connectivity of individual parts of

the device are subject to design. The most common way of

carrying out topology optimization is through the material

distribution approach, in which the design domain is divided

into small elements, which together represent an image of

the device. A design variable is assigned to each element to

indicate presence or absence of a material, and the various

designs are represented as varying coefficients in the governing

equations. The material distribution approach to topology

optimization was originally developed to design load-carrying

elastic structures [8], but the method has been successfully

extended also to other areas of engineering, such as for the

design of acoustics and optics devices [8]–[11]. Instead of

optimizing directly over design variables associated with small

elements, an alternative topology optimization technique relies

on a representation of the geometry through level sets: the

device boundary is defined as the zero-level contour of a

higher-dimensional scalar function [12].

For topology optimization problems, the number of design

variables can easily reach thousands and even millions for

2D and 3D design problems [13]. Gradient-based optimiza-

tion techniques are generally preferred to solve such large

scale problems. A main reason for this choice is that the

gradient of an objective function contains a massive amount

of information, and gradients can in many cases be very

efficiently computed using solutions of associated adjoint

field problems [14]–[20]. In the electromagnetics community,

topology optimization techniques have been introduced for the

design of magnetic devices by Dyck et al. [21], [22] and for

the design of dielectric substrates for bandwidth improvement

of patch antennas by Kiziltas et al. [23]. Further, Nomura et

al. [18] proposed to use topology optimization for the design

of dielectric resonator antennas to operate with enhanced

bandwidth. However, to the best of our knowledge, the use

of topology optimization methods for the design of metallic
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antennas has only been reported by Erentok and Sigmund [24],

who used the material distribution approach, and by Zhou et

al. [25], who used a method based on level sets. Both these

studies used frequency domain methods for a single frequency

design.

In this article, we present a version of the material dis-

tribution approach to topology optimization for the design of

metallic antennas. The problem formulation is based on the 3D

Maxwell’s equations, discretized with the FDTD method [26].

The use of time-domain solutions of Maxwell’s equations

has the advantage of an effective treatment of a band of

frequencies at once. The objective function is formulated as

the energy received by the antenna from a set of far field

sources and transmitted to a coaxial feed line; that is, the

antenna is designed based on its receiving mode. A sensitivity

analysis reveals that the derivative of the objective function

with respect to perturbations of the conductivity distribution

can be expressed in terms of the solution of an adjoint field

problem. For robust performance of gradient-based optimiza-

tion algorithms, the derivative used by the algorithm should

accurately represent the derivative of the discrete objective

function. For this reason, we have derived the adjoint equations

and the expression for the gradient in the fully discrete case,

based on the FDTD equations with the UPML parameters and

the discrete coaxial feed model included. We use the proposed

technique for a complete layout optimization of the metallic

radiating elements of two antenna types, the UWB monopole

antenna and the microstrip antenna. The main novelty of our

contribution is that we, in contrast to standard optimization

methods for antennas, can carry out large scale conceptual

antenna designs with orders of magnitude less iterations than

the number of design variables. To demonstrate the capability

of this new approach, we consider here only near-resonant

radiating structures. Preliminary investigations have revealed

that the use of the proposed method to design electrically small

antennas [27] is still a challenge and would likely need further

methods developments.

The rest of the article is organized into three major sections:

problem formulation in the continuous case (Section II),

specification of the numerical approach we use (Section II),

and presentation of numerical results (Section IV).

II. PROBLEM FORMULATION

A cross section of the domain of interest Ω∞ is depicted in

Fig. 1. Through a hole with radius b in a ground plane located

at z = 0, a coaxial feed is entering the space z > 0 vertically

from below. The coaxial cable has a center core of radius a,

a metallic shield of radius b, and is filled with a material with

dielectric constant ǫc and permeability µc. The domain Ω∞ is

defined as the union of the half space z > 0 and the dielectric

region of the coaxial cable for −d < z ≤ 0, but the center

core of the coaxial feed is excluded from Ω∞. Included in

the half space z > 0 is an Ohmic region (conductivity σ > 0)

that constitutes the antenna. The annular surface, generated by

a cross section at z = −d through the dielectric part of the

coaxial cable is denoted Γcoax. The boundary ∂Ω∞ consists of

two parts: Γcoax, where an incoming signal can be specified,

Γcoax

Γ0 Γ0
ǫc µc

ǫ

b
a

d

σ(x) > 0

Ω∞

xc

y

z

Fig. 1. Cross section in y–z plane around the coaxial feed region. The domain
Ω∞ is the gray and white regions at z > 0 (including the Ohmic region with
σ > 0) and the dielectric region of the coaxial feed. An input signal can be
set at the annular region Γcoax, located a distance d below the ground plane.

and the perfect conductor Γ0, which comprises the ground

plane, the metallic shield, and the surface of the center core

of the coaxial cable for −d < z ≤ 0.

A. Governing equations

We consider the exterior initial-boundary-value problem

∂

∂t
µH +∇×E = 0 in Ω∞, for t > 0, (1a)

∂

∂t
ǫE + σE −∇×H = 0 in Ω∞, for t > 0, (1b)

n×E = 0 on Γ0, for t > 0, (1c)

Et =
V

log b/a

x− xc

|x− xc|2
x ∈ Γcoax, t > 0, (1d)

I =

∫

Cr

H · dl Cr ⊂ Γcoax, for t > 0, (1e)

V + ZcI = g(t) on Γcoax, for t > 0, (1f)

E|t=0 = 0, (1g)

H|t=0 = 0, (1h)

where µ, ǫ, and σ are the permeability, the permittivity, and the

conductivity of the medium, respectively; Zc (defined in the

Appendix) is the characteristic impedance of the coaxial cable;

and Et = E−n(E ·n), where n is the outward unit normal

vector. The system of equations (1) is solved for the electric

field E, the magnetic field H , the potential difference V , and

the core current I . The right-hand side of expression (1d) is the

formula for the electric field in any transversal cross section

in an infinite coaxial cable and will provide an approximation

of the conditions at Γcoax. Expression (1f) specifies a signal

propagating in the positive z direction. Equations (1) need to

be complemented with far field boundary conditions to absorb

the outgoing waves and possibly to impose incoming waves.

B. Energy balance and the optimization problem

We define a bounded sub-domain Ω = Ω∞ ∩ B(Rc,0),
where B(Rc,0) is a ball centered at the origin and with a

radius Rc large enough to encompass all parts of the antenna.

We denote by Γout = Ω∞∩∂B(Rc,0) the boundary inside Ω∞

of the encompassing sphere ∂B(Rc,0). For signals with finite
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Fig. 2. An illustration of the system energy balance, where the sum of the
incoming energies Win,∞ +Win,coax equal the sum of the outgoing energies
Wout,∞ +Wout,coax plus the energy loss WΩ.

extent in time, we derive from the system (1) the following

energy balance

Win,coax +Win,∞ = WΩ +Wout,coax +Wout,∞, (2)

in which

Win,coax =
1

4Zc

∫ T

0

g2 dt , (3a)

Wout,coax =
1

4Zc

∫ T

0

(V − ZcI)
2
dt , (3b)

Win,∞ =
1

4Z0

∫ T

0

∫

Γout

|Et + Z0n×H|2 dS dt , (3c)

Wout,∞ =
1

4Z0

∫ T

0

∫

Γout

|Et − Z0n×H|2 dS dt , (3d)

WΩ =

∫ T

0

∫

Ω

σ|E|2 dV dt , (3e)

where Z0 =
√

µ0/ǫ0 is the free space intrinsic impedance; µ0

and ǫ0 are the free space permeability and the permittivity; and

T is large enough to allow all fields to vanish. Fig. 2 illustrates

the system energy balance; the incoming energy Win,coax +
Win,∞ from the coaxial cable and exterior waves equals the

ohmic losses in the antenna WΩ plus the outgoing energy

Wout,coax through the coaxial cable and the wave energy Wout,∞

exiting the domain.

Inspecting the energy balance (2), we see that there are two

alternatives to set the energy sources for the current problem.

The first is to use the coaxial cable to introduce the energy

Win,coax, and in this case an optimization problem can be

formulated aiming at either maximizing the radiated energy

Wout,∞, as done by Erentok and Sigmund [24], or minimizing

the reflected energy to the coaxial cable Wout,coax, as done

by Nomura [18], where the complete optimization problem

was lossless. However for the current work, we assume a

lossy design medium, and a minimization of the reflected

energy Wout,coax can unfortunately be obtained through a

maximization of the energy loss WΩ inside the design domain.

The second alternative, and the one we choose, is to

introduce the energy to the domain by using a set of external

sources, which supply the incoming energy Win,∞. For this

case, the antenna can be designed based on its receiving mode.

Another motivation for this choice is that the full time history

of the observed signal is needed to calculate the gradient of

the objective function, as will be shown below. Observation

of the received signal in the coaxial cable will require less

memory than observation of the radiated waves Wout,∞.

The optimization problem can conceptually be formulated

as

maximize
σ(x)∈[σmin,σmax]

Wout,coax(σ) (4)

subject to the system of equations (1) with g = 0 and a

set of prescribed external sources that support the incoming

electromagnetic waves. Moreover, σ(x) is the conductivity

distribution over the design domain Ω; x denotes a position

in Ω; σmin and σmax represent the conductivities of a good di-

electric and a good conductor, respectively. For the numerical

experiments in this paper, we observed a very low sensitivity

in the objective function to variations in conductivities below

σmin = 10−4 S/m or above σmax = 105 S/m.

C. Sensitivity analysis

To solve problem (4) using gradient-based optimization

algorithms, we need an expression for the derivatives of

Wout,coax with respect to changes in the conductivity distribu-

tion inside the design domain. Assuming that the conductivity

σ is perturbed by δσ, the corresponding first-order variation

in the objective function Wout,coax is

δWout,coax =
1

2Zc

∫ T

0

(V − ZcI)(δV − Zc δI) dt , (5)

where δI and δV are the first-order variations of the current

and the potential difference inside the coaxial cable, respec-

tively.

To find an explicit relation between δWout,coax and δσ,

we need to know how δI and δV depend on δσ. These

dependencies are resolved using the adjoint field method [17]–

[20]. We use the system of governing equations (1) and apply

the adjoint field method, summarized as follows. First, we

differentiate system (1) with respect to the design variation

δσ. Second, the differentiated equations corresponding to

equation (1a) and equation (1b) are multiplied by the adjoint

field vectors H∗ and E∗, respectively. Third, we integrate

over the whole analysis domain Ω∞ and through the time

interval (0,T ), apply integration by parts, and utilize the

boundary conditions and the far-field condition. Finally, after

manipulating and rearranging the equations, we obtain an

explicit relation between the conductivity perturbation and the

first-order variation of the objective function in the form

δWout,coax = −
∫

Ω

∫ T

0

E(T − t) ·E∗(t) δσ dt dV , (6)
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where E∗ together with H∗, V ∗, and I∗ satisfy the following

adjoint field problem,

∂

∂t
µH∗ +∇×E∗ = 0 in Ω∞, for t > 0, (7a)

∂

∂t
ǫE∗ + σE∗ −∇×H∗ = 0 in Ω∞, for t > 0, (7b)

n×E∗ = 0 on Γ0, for t > 0, (7c)

E∗
t =

V ∗

log b/a

x− xc

|x− xc|2
x ∈ Γcoax, t > 0, (7d)

I∗ =

∫

Cr

H∗ · dl Cr ⊂ Γcoax, for t > 0, (7e)

V ∗(t) + ZcI
∗(t) =

V (T − t)− ZcI(T − t) for t > 0, (7f)

E∗|t=0 = 0, (7g)

H∗|t=0 = 0. (7h)

The adjoint field problem only differs from the forward field

problem (1) in the excitation expression (7f). We note that the

right side of expression (7f) represents the outgoing signal

inside the coaxial cable for the forward problem but reversed

in time, and the left side represents the incoming signal inside

the coaxial cable for the adjoint problem. Moreover, the adjoint

system is excited only at the coaxial feed boundary Γcoax,

instead of through a set of far field sources like the forward

problem.

D. Filtering

To be able to use gradient-based optimization, we allow

the design conductivity σ(x) to attain any value between

σmin and σmax. However, the intermediate values of σ(x),
will introduce energy losses to the system. For a certain

intermediate value σm of the conductivity, which typically

depend on the operating frequency band, the energy loss

attains a maximum. This means that in order to maximize the

outgoing signal Wout,coax, any optimization algorithm will drive

the conductivity values away from σm and toward either σmin

or σmax. Thus, this optimization problem has the property of

being self-penalized towards lossless designs. This property is

in a sense useful, since in the end we want a lossless antenna.

However, since the optimization problem is not convex, the

optimization algorithm might be easily trapped into a poor

local optimum. Moreover, a change of the conductivity at one

point from σmin to σmax or vice versa, which means passing

through σm, will be considered by the optimization algorithm

as a difficult barrier to cross.

To handle the problem of lossy intermediate designs in the

framework of gradient-based optimization, we rely on filtering

of the design variable, an approach that is classic in topology

optimization, but for other reasons [8, §1.3]. Here, the main

purpose of filtering the design conductivity is to regularize

the strong self-penalization of the optimization problem by

enforcing a certain amount of losses during the optimization

process. Let p(x) ∈ [0, 1] be the design variable that is actually

updated by the optimization algorithm. This design variable is

filtered to yield p̃(x) = KR ∗ p(x), where the filtering is

achieved through an integral operator KR with support in a

disk of radius R. The filtered design variable is then mapped

to the physical conductivity that is actually used in Maxwell’s

equations by

σ(x) = 10(9p̃(x)−4). (8)

As long as the filter has nonzero radius, filtering the design

variable p(x) results in a “blurring” of the design conductivity

σ(x), which implies that the filter imposes a certain amount

of energy losses inside the design domain. We start with an

initial filter radius R0 and successively reduce the radius by

setting Rn+1 = γRn, where γ < 1, while performing a

number of iterations of the optimization algorithm for each

radius. We iterate until a selected convergence criterion based

on the first-order necessary conditions is met; this typically

takes about 10–20 iterations. Thus, the algorithm progresses

through a succession of less and less lossy designs until, for

small values of the filter radius, the radiating element will

almost entirely consist of elements with σ being either σmin

or σmax.

III. NUMERICAL APPROACH

As described in Section (II-A), problem (1) needs to be

complemented with far field radiation conditions. For the

numerical simulations, we use the uniaxial perfectly matched

layer (UPML) [28] to simulate the open space radiation

condition. Maxwell’s equations can be written with the UPML

parameters included as
(

∂

∂t
+ σp2

)

B +
1

µ
∇×E = 0, (9a)

(

∂

∂t
+ σp3

)

H −
(

∂

∂t
+ σp1

)

B = 0, (9b)

(

∂

∂t
+

σ

ǫ

)

P − 1

ǫ
∇×H = 0, (9c)

(

∂

∂t
+ σp3

)

Q− ∂

∂t
P = 0, (9d)

(

∂

∂t
+ σp2

)

E −
(

∂

∂t
+ σp1

)

Q = 0, (9e)

with
σp1 = diag(σp

x/ǫ0, σ
p
y/ǫ0, σ

p
z/ǫ0),

σp2 = diag(σp
y/ǫ0, σ

p
z/ǫ0, σ

p
x/ǫ0),

σp3 = diag(σp
z/ǫ0, σ

p
x/ǫ0, σ

p
y/ǫ0),

(10)

where σp
x, σp

y , and σp
z represent fictitious conductivities that

have nonzero values only inside the UPML layer, E and H

are the primal electric and magnetic field vectors, and B,

P , and Q are auxiliary field vectors used for the numerical

implementation of the UPML. In the PML-free region all σpi

are zeros, and equations (9) reduce to Maxwell’s equations in

free space (1a–1b).

We use the FDTD method [26], [29] to solve numerically

the time-domain Maxwell’s equations. Based on the basic Yee

cell, equations (9) are discretized to yield the standard FDTD

update equations. We assume that the electric and magnetic

fields are discretized at full and half time indices (leapfrog

scheme), respectively.
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A. Discrete objective function and Sensitivity analysis

We formulate a discrete version of the objective function in

problem (4) as

W∆
out,coax(σ) =

1

Zm

N
∑

n=0

(V n+1 − ẐcI
n+ 1

2

z )2 ∆t, (11)

where V n+1, I
n+ 1

2

z , and Ẑc are the potential difference,

the current, and the characteristic impedance of the discrete

coaxial cable model (details are given in the Appendix);

Zm =
√

µc/ǫc; N is the total number of time steps required

for the simulation to reach the steady state condition, ∆t
is the time step used in the FDTD method, and σ is the

conductivities located on each Yee edge inside the design

domain. We derive the derivatives of the discrete objective

function (11) with respect to the design conductivities σ. The

whole derivation is done in the fully discrete case by using

the standard FDTD update equations including the UPML

parameters and the feeding model, described in the Appendix.

Since the complete derivation is a lengthy process, we shortly

point out the main steps and give the final expression that is

used in the numerical calculations.

We start by perturbing the design conductivities by δσ. The

corresponding first-order variation of the discrete objective

function is

δW∆
out,coax(σ) =

2

Zm

N
∑

n=0

(δV n+1 − ẐcδI
n+ 1

2

z )(V n+1 − ẐcI
n+ 1

2

z )∆t,

(12)

where δV n+1 and δI
n+ 1

2

z are the first-order variations of the

potential difference and the current inside the discrete coaxial

cable, respectively. We use the adjoint field method to find an

explicit relation between δW∆
out,coax and δσ. We differentiate

the FDTD discretization of equations (9) with respect to the

design variables σ. Then, we form the scalar product of the

differentiated equations with adjoint field vectors B∗, H∗,

P ∗, Q∗, E∗, that correspond to the direct field vectors B, H ,

P , Q, and E, respectively. Next, we sum all equations over

the whole analysis domain and through all time steps. Finally,

applying summation by parts and rearranging the equations

yield the three sets of equations that are described below.

First, we obtain a system of equations that corresponds

to Maxwell’s equations (9) with UPML parameters included;

however, the FDTD discretization of this system has the

adjoint electric and magnetic fields discretized at half and

full time indices, respectively. We call this system the adjoint

Maxwell’s equations, and they constitute a FDTD discretiza-

tion of the equations
(

∂

∂t
+ σp3

)

H∗ +
1

µ
∇× P ∗ = 0, (13a)

(

∂

∂t
+ σp2

)

B∗ −
(

∂

∂t
+ σp1

)

H∗ = 0, (13b)

(

∂

∂t
+ σp2

)

E∗ − 1

ǫ
∇×B∗ = 0, (13c)

(

∂

∂t
+ σp3

)

Q∗ − (
∂

∂t
+ σp1)E∗ = 0, (13d)

(

∂

∂t
+ σ

)

P ∗ − ∂

∂t
Q∗ = 0. (13e)

Second, we obtain an expression for the excitation source to

the adjoint Maxwell’s equations in the form of the following

discrete version of expression (7f),

(V ∗n− 1

2 + ẐcI
∗n−1
z ) =

(V N−n+1 − ẐcI
N−n+ 1

2

z ) n = 1, . . . , N,
(14)

where V ∗n− 1

2 and I∗n−1
z are the discrete potential difference

and the current in the coaxial cable for the adjoint problem,

respectively.

Third, we obtain an expression for the gradient of the

objective function with respect to the conductivity distribution

∂W∆
out,coax

∂σi

= −∆3
N
∑

n=1

EN−n
i

P
∗n− 1

2

i + P
∗n+ 1

2

i

2
∆t, (15)

where i is the index for an arbitrary Yee edge inside the design

domain and ∆ is the spatial discretization step (assuming a

uniform spatial discretization).

Equations (13) can be seen as a version of Maxwell’s

equations in the primal field vectors P ∗ and B∗, where

the auxiliary field vectors H∗, E∗, and Q∗ are used for

the implementation of the UPML. The auxiliary equations

are arranged in a different order compared to the auxiliary

equations of the forward problem (9). Inside the PML-free

region (i.e., when σpi = 0), the discretization of the adjoint

and the forward equations are identical, and the same FDTD

code can be used to update the primal fields.

Expression (15) yields exact derivatives of the objective

function (11), up to roundoff, when solutions to the discrete

form of equations (13) are used. However, a derivative compu-

tation based on these equations requires a separate FDTD code

for the adjoint equations that will be different from the forward

FDTD code only in the implementation of the UPML. To avoid

this complication, we instead used the UPML implementation

of the forward equations also for the adjoint equations. We

verified the derivatives calculated by expression (15), with

the modified treatment of the UPML, against derivatives

approximated with finite differences, exploiting Richardson

extrapolation [30] for improved accuracy. These experiments

achieved 7 digits precision matching between the two methods.

We regarded this accuracy as sufficient for the purpose of

optimization.

B. Discrete optimization problem

Including the filtering and mapping of the design vari-

ables (Section II-D), the discrete version of the optimization

problem (4) can be written as

maximize
p∈A

W∆
out,coax(σ(p̃(p))), (16)

where A = {p ∈ R
M | pi ∈ [0, 1] ∀i} is the set of

admissible design variables.

All design variables are subject to simultaneous updates by

the optimization algorithm. These updates are based on the

derivative expression (15). We use the globally convergent
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method of moving asymptotes (GCMMA) by Svanberg [31],

to update the design variables. By construction, the GCMMA

naturally imposes the box constraints in the definition of

the approximating functions at each iteration. Moreover, the

GCMMA is also in other respects well suited to the mathe-

matical structure of topology optimization problems [8, §1.2].

The complete optimization process is illustrated by the

flowchart in Fig. 3. The process starts with a uniform initial

distribution of the design variables p over the design domain

Ω. We set an initial radius R0, filter the design variables,

and compute the physical conductivities σ as described in

Section II-D. Then, the FDTD method is used to solve the

forward problem. For each time step, we store the forward

electric field Ei for each edge i inside the design domain

and the outgoing signal hn+1
c from the coaxial cable. We also

use the signal hn+1
c to compute the objective function (11).

For the forward problem, only far field sources are used as

excitation sources. Next, the optimization process calls the

FDTD method another time to calculate and store the adjoint

field P ∗
i for each edge i inside the design domain and for each

time step; however, here the problem is excited only at the

coaxial cable port by using expression (14). The stored electric

field Ei and the adjoint field P ∗
i are used to evaluate the

gradient with respect to the conductivity σ by expression (15).

By the chain rule, the gradient with respect to the design

variables p is

∂W∆
out,coax(σ(p̃(p)))

∂p
=

∂p̃

∂p

∂σ

∂p̃

∂W∆
out,coax(σ)

∂σ
. (17)

The first two factors on the right side of expression (17)

are transposes of Jacobians associated with the filter and

the conductivity mapping introduced in Section II-D. Then,

a convergence criterion based on the first-order necessary

condition is tested. The norm of the first-order necessary

condition is compared with a reference value, which is

recorded after a fixed number of iterations (in the numerical

experiments, we use 6 iterations). The iterations are terminated

when the norm of the first-order necessary condition is below

50% of the reference value. If the convergence criterion is

not satisfied, the optimization process continues to a new

cycle where the GCMMA algorithm use the gradient and

the objective function values to update the design variables.

At each cycle, the GCMMA might evaluate the objective

function a few additional times to find a suitable updates that

satisfy a sufficient improvement of the objective function. If

the convergence criterion is reached but the filter radius is

greater than ∆̃ = ∆/
√
2, the minimal distance between two

conductivity components in the Yee cell, the radius is reduced,

Rn+1 = γRn, and a new cycle starts. Finally, the optimization

process terminates if the convergence criterion is satisfied and

the filter radius is smaller than ∆̃. Typically, the final design

consists of conductivities that either have σmin or σmax. In the

numerical experiments, when we evaluate the performance of

the obtained design, physical conductivities below 10−3 S/m

are mapped to σ = 0 S/m while conductivities above that

value are mapped to σ = 5.8× 107 S/m.
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Fig. 3. A flowchart of the optimization process.

IV. NUMERICAL RESULTS AND DISCUSSION

In transmission mode, antennas transmit the incoming en-

ergy from the feed lines to the surrounding space with a certain

directivity. Since the current work is based on designing

antennas based on their receiving mode, the distribution of the

far field sources are expected to have a significant impact on

the solution of problem (16). In the numerical experiments,

we observe that an increase in the number of the far field

sources around the design domain enables the optimization

algorithm to find designs that occupy a smaller design space

and have a better performance, in terms of the antenna

reflection coefficient, over the frequency band of interest. For

the monopole design, we use four plane waves that propagate

parallel to the ground plane and normal to the four sides of

the FDTD cubical grid. For the microstrip case, an additional

plane wave propagates from the top side of the cubical grid

towards the patch area. In both cases, the plane waves are

synchronized to arrive to the feeding point at the same time.

To cover a certain frequency band, we use a truncated sinc

pulse modulated to the center frequency of that band.

In the first announcement of this work [32], we presented

a design of a UWB monopole antenna based on linearly

polarized field excitation. In the current work, the designs

are based on a set of far field sources that essentially radi-

ate circularly polarized plane waves. We use the total-field

scattered-field formulation to implement the wave excitation in

the FDTD method [26], where we use two signals orthogonal

in space and with 90 degree phase shift to modulate the

sinc pulse mentioned above. At the ground plane surface,

the boundary condition does not allow for an implementation

of a circularly polarized plane wave that propagates parallel

to the surface. However, away from the ground plane, this

wave excitation allows both vertical and horizontal polarized
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waves in the design domain, which allows the optimization

algorithm to maximize the received energy regardless of the

signal’s polarization. We emphasize that this objective can

easily be changed to design for specific far field characteristics

by modifying either the wave polarization or the incidence

direction.

For all numerical experiments, we use 10 cells of the

UPML, 10 cells free space separation between the UPML and

the simulated designs, ∆ = 0.75 mm, and ∆t set to 0.95 times

the Courant limit. The FDTD code is implemented to run on

Graphics Processing Units (GPUs), using the parallel comput-

ing platform CUDA (https://developer.nvidia.com/what-cuda).

All numerical experiments are performed on an nVidia

GeForce GTX 285 installed on a node with two AMD

Opteron 8431 running at 2.4 GHz with 32 GB shared memory.

We use double precision floating point arithmetic for all

calculations. The FDTD simulation time, for the forward or the

adjoint field solution, varies between 1–3 minutes depending

on the excitation signal bandwidth and the dimensions of the

computational domain.

To compute the gradient given in expression (15), the

proposed algorithm requires memory that is proportional both

to the number of the Yee edges in the design domain and the

number of time steps used in the simulation. In this work, the

gradient calculation requires 1.5 GB and 3.3 GB of memory

for the UWB monopole and the microstrip patch, respectively.

For design problems that would require even more storage, the

memory requirements can be significantly reduced by using

checkpointing techniques [33].

A. UWB monopole design

In this section, we design the radiating patch of a thin

planar monopole. We consider a design domain with area

75 × 75 mm2, located 0.75 mm above an infinite simulated

ground plane, which is fed by a 50 Ohm coaxial cable at

the center of its bottom side. In the FDTD grid, we model the

design domain as a single layer discretized into 100×100 Yee

cell faces, which gives a design space consisting of 20, 200 de-

sign variables (one conductivity component for each Yee

edge). The design domain is expected to have an effective

mesh-dependent finite thickness τeff ≈ 0.2∆ [34], which in

our case is approximately 0.15 mm. We solve problem (16)

to maximize the received signal from the far field sources,

mentioned above, over the frequency band 1–10 GHz. The

design starts from a uniform distribution of conductivities that

corresponds to a value 0.7 for each element in p. The initial

filter radius R0 is 15 mm, and a filter decrease coefficient

γ = 0.75 is used. To avoid disconnection between the inner

probe of the coaxial cable and the design domain, especially

when the radius of the filter changes, the probe is extended

into the design domain by a length equal to the filter radius.

The progress of the filtered design variables p̃ over a number

of optimization cycles is shown in Fig. 4. The optimization

process starts with a large filter radius that imposes a thick

layer of intermediate values of the design variable. As the

optimization process proceeds, the filter radius decreases and

the thickness of this layer diminishes. By the end of the

(a) cycle 1 (b) cycle 16 (c) cycle 31

(d) cycle 46 (e) cycle 61 (f) cycle 76

(g) cycle 91 (h) cycle 106 (i) cycle 121

Fig. 4. The filtered design variables at a number of optimization cycles for
the design of the UWB monopole based on a circularly polarized plane wave
excitation. Black color means σmax and white color means σmin.
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during the design of the planar monopole.

optimization process, the filtered design variables converge

to values that correspond to σmax (black color) or to σmin

(white color). Fig. 5 shows the progress of the normalized

objective function during the optimization process. As can

be noticed, for a fixed filter radius, there is only a small

increase in the received energy since the filtering process

forces the energy loss to dominate. When the filter radius is

reduced, the optimization algorithm updates the conductivities

away from the lossy intermediate values in order to maximize

the received energy, which leads to a sudden increase in the

received energy.

The optimization algorithm required 126 cycles to converge

to the final optimized design shown in Fig. 6. The final design

uses around 75 × 60 mm2 of the available design domain

75× 75 mm2. When the filter radius decreases to very small

values, tiny groups of isolated pixels containing conductive
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Fig. 6. The final design of the UWB planar monopole. Design domain size
75× 75 mm2 (20, 200 design variables). Coaxial probe connected at (37.5,
0) mm.

material may appear, as can be seen in the upper right corner

of the design domain in Fig. 6. Fortunately, these groups are

typically small, appear far away from the feeding point, and

have negligible effect on the final performance. A remedy to

this issue in a general topology optimization problem is to

keep the filter radius above a certain value [8], however as

mentioned earlier, for topology optimization of lossy media

the final filter radius should be zero to avoid losses.

The reflection coefficient of the final design is calculated by

our FDTD code, and the result is shown in Fig. 7 (solid line).

As a verification of our implementation, we plot in the same

figure the result obtained with the CST Microwave Studio

software (dashed line), employing adaptive mesh refinement

and modelling the monopole as a conductive sheet that has

a thickness 0.15 mm and a conductivity 5.8 × 107 S/m. We

include also the radiation efficiency computed by the CST

package in the same figure. A source for the slight difference

between the two simulation results could be differences in the

geometry description between the two methods. The reflection

coefficient of the final design is below −10 dB over the

frequency band 1.23–9.75 GHz, and the computed radiation

efficiency is on average above 99.6% over the target frequency

band.

Inspecting Fig. 6, we can see that the final design hits

the left boundary of the design domain. This implies that

the design wants to grow to the left but it is bounded by

the physical dimensions of the design domain. We decide

to test a larger design domain with size 135 × 75 mm2,

which is discretized into 180 × 100 Yee cell faces. The

optimization problem has 36, 280 unknowns and is solved by

the optimization algorithm in 130 iterations. The new design,

shown in Fig. 8, consists of two disconnected parts: an outer

loop and a conductive island to the left of the feed point.

The new design grows to the left, utilizes more space, but

still hits the left boundary; however it does not grow at all

to the right side of the design domain. The growth of the

outer loop improves the reflection coefficient at the lower side

of the frequency band, as can be seen in Fig. 9, where the

lower limit of the reflection coefficient has moved to 1.0 GHz,

whereas the upper limit is still at 9.7 GHz. When removing the
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Fig. 7. The reflection coefficient, |S11|, and the radiation efficiency of the
designed UWB planar monopole.
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Fig. 8. The final design of the UWB planar monopole. Design domain size
135×75 mm2 (36, 280 design variables). Coaxial probe connected at (67.5,
0) mm.

disconnected conductive island near the feed, the performance

of the optimized monopole deteriorates somewhat, as can be

seen in Fig. 9. This observation emphasizes the usefulness of

the disconnected conductive island, build by the optimization

algorithm, to improve the overall performance of the monopole

inside the objective frequency band.

B. Microstrip antenna design

To demonstrate the general applicability of the proposed

design approach, we also consider the design of the metallic

radiating patch of a microstrip antenna. First, the patch area is

designed to radiate in a single frequency band centered around

1.5 GHz with 0.2 GHz bandwidth. Second, the same design

domain is used for achieving a dual-band operation with the

frequency bands centered around 1.5 and 2.0 GHz, which

cover the GPS L1 band (1.575 GHz) and the UMTS band

(1.92–2.17 GHz), respectively. As in the monopole case, we

use a design domain of 75 × 75 mm2, and discretize it into

100 × 100 Yee cell faces (i.e., 20, 200 design variables). We

consider a substrate with 6 mm height, 2.62 dielectric constant

and 0.001 loss tangent at 2 GHz. The design space (radiating
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Fig. 9. The reflection coefficient, |S11|, of the designed UWB planar
monopole with and without the conductive island near the feed point.

patch) is positioned on an infinite simulated ground plane and

fed by 50 Ω coaxial cable. The design process uses an initial

conductivity distribution that corresponds to a value 0.5 for

each element in p, an initial filter radius R0 = 15 mm, and a

filter decrease coefficient γ = 0.75.

Fig. 10 shows the final conductivity distribution of two

designs that are designed to maximize the energy received

by the microstrip antenna at 1.5 GHz. In the design to the

left, the coaxial cable is connected at (37.5, 37.5) mm, while

in the design to the right, the coaxial cable is connected at

(18.75, 37.5) mm. The feed position is marked by gray circle

in the figure. The optimization algorithm converged to the

final designs after 155 and 118 iterations, respectively. The

reflection coefficient of the final antennas, calculated by the

FDTD method and verified with the CST package, and the

radiation efficiency (computed with CST package) are shown

in Fig. 11 and Fig. 12, respectively. In the CST computations,

the antennas are assigned a thickness of 0.15 mm and a

conductivity of 5.8×107 S/m. As can be noticed, we chose the

feed positions close to the center of the design domain, which

gives the algorithm more freedom to choose which direction

to distribute the conductivity. In both cases, the optimization

algorithm is able to find designs that maximize the received

energy over the frequency band of interest, 1.4–1.6 GHz;

however the reflection coefficient of the optimized designs are

only below −10 dB in the frequency band 1.46–1.59 GHz for

the first design and 1.49–1.64 GHz for the second design.

We notice that for narrow band designs, like the current

case, the final optimized designs generally tend to have a

better performance (i.e., |S11| < −10 dB) at the higher side

of the frequency band of interest. This observation can be

explained as follows. The optimization algorithm is based on

maximizing the received energy Wout,coax, which is equiva-

lent to minimizing the energy losses WΩ and the reflected

signal Wout,∞ (energy balance (2)). The presence of inter-

mediate conductivities makes the design domain dissipative.

The energy losses (the wave attenuation constant) will be
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Fig. 10. The final conductivity distributions over the patch area that maximize
the energy received over a frequency band 0.2 GHz centered at 1.5 GHz.
The coaxial feed located at (a) (37.5, 37.5) mm and (b) (18.75, 37.5) mm.
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Fig. 11. The reflection coefficient, |S11|, and the radiation efficiency of the
optimized patch area that is connected to the coaxial cable at (37.5, 37.5) mm
inside the design domain.

proportional to the frequency of the incident waves [35]. Thus,

the optimization process will implicitly focus on the higher

frequencies in the incident waves to reduce the energy losses.

This issue becomes more severe later when we optimize for

dual band operation. One way to circumvent this phenomenon

for the single narrow band case, and to obtain a frequency

response closer to the target frequency band, is simply to

lower the center frequency of the incident waves. Fig. 13

shows a different design obtained after 113 iterations by

the optimization algorithm, when the center frequency of the

incident waves is lowered to 1.4 GHz. As can be noted, the

operational frequency band where the reflection coefficient is

below −10 dB (i.e., 1.38–1.51 GHz), is lowered almost with

the same amount as the change in the center frequency of the

excitation signals, that is, 0.1 GHz.

As a final case study, we design the patch area to radiate

in two frequency bands centered around 1.5 GHz and 2 GHz,

respectively, with 0.2 GHz bandwidth for each band. We use

the same settings as for the single frequency experiment with

the coaxial cable connected to the design domain at (18.75,

37.5) mm. To handle the two band operation, a new objective
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Fig. 12. The reflection coefficient, |S11|, and the radiation efficiency of
the optimized patch area that is connected to the coaxial cable at (18.75,
37.5) mm inside the design domain.
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Fig. 13. The conductivity distribution, the reflection coefficient, and the
radiation efficiency of the optimized patch area when the center frequency of
the incident waves is lowered to 1.4 GHz. The coaxial cable is connected at
(18.75, 37.5) mm.

function is formulated based on a combination of the energies

W∆1
out,coax and W∆2

out,coax that are received from the first and

the second frequency band, respectively. We formulate the

objective function in terms of a positive exponent ρ, as follows,

maximize
p∈A

2
∑

i=1

|W∆i
out,coax(σ(p̃(p)))|ρ. (18)

First, we solve the optimization problem (18) with ρ = 1,

which means that the objective function is simply the linear

combination of W∆1
out,coax and W∆2

out,coax. Fig. 14 shows the final

design (obtained after 115 iterations) together with the cor-

responding reflection coefficient and radiation efficiency. The

obtained design has a reflection coefficient below -10 dB over

the frequency band 1.88–2.13 GHz. However, the reflection

coefficient is almost 0 dB around 1.5 GHz. As mentioned

earlier, the dissipative characteristics associated with the in-
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Fig. 14. The conductivity distribution, the reflection coefficient, and the
radiation efficiency of the optimized patch area, when optimizing for two
frequency bands centered around 1.5 GHz and 2 GHz with 0.2 GHz
bandwidth for each band, ρ = 1, and the coaxial feed is located at
(18.75,37.5) mm.

termediate values of the design variables implicitly drive the

optimization algorithm to focus on the higher frequency band,

and the lower band is almost neglected.

The optimization problem (18) can be modified to obtain a

balance between the two frequency bands by using ρ < 1; that

is, by using nonlinear combinations of W∆1
out,coax and W∆2

out,coax.

In this case, term i in the gradient of the objective function

in (18) will be scaled by (W∆i
out,coax)

ρ−1, which means that

the lower received energy will have more contribution to

the total gradient, and as the value of ρ decreases, the bias

towards the lower received energy increases. Fig. 15 shows

the conductivity distribution, the reflection coefficient, and the

radiation efficiency of the final design obtained by the opti-

mization algorithm (after 117 iterations) when we set ρ = 1/2.

The reflection coefficient of the obtained design satisfies the

dual band operation, where the reflection coefficient is below

−10 dB in the frequency bands 1.51–1.55 GHz and 1.98–

2.10 GHz. As can be noted, inside each frequency band, the

performance is still biased toward the higher frequency edge,

as in the single band design case.

V. SUMMARY AND CONCLUSION

We propose an approach to carry out gradient-based topol-

ogy optimization for the design of metallic antennas based on

the distribution of the material conductivity in a given domain.

The antenna model is formulated using the 3D Maxwell’s

equations in time domain. In addition, we introduce a simple

and efficient way to model a coaxial cable feed. The FDTD

method is used to numerically solve the problem. The conduc-

tivities associated with each Yee edge in the design domain are

considered as design variables, which implies a very detailed

parameterization of the complete design domain. Solving

Maxwell’s equations in time domain enables a simultaneous

design over frequency bands. The design conductivities are

assumed to vary continuously between two extreme values.
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Fig. 15. The conductivity distribution, the reflection coefficient, and the
radiation efficiency of the optimized patch area that radiates over two
frequency band centered around 1.5 GHz and 2 GHz with 0.2 GHz bandwidth
for each band, ρ = 1/2, and the coaxial feed is located at (18.75,37.5) mm.

The intermediate values introduce energy losses to the design

problem. To handle these losses, the design is based on the

antenna receiving mode and a filtering approach is introduced.

The technique is utilized to design the radiating patch of both

planar monopole antennas and microstrip antennas. The tech-

nique gives fascinating shapes without any prior assumptions

about details in the designs. We present results that focus

on improving the antenna reflection coefficient. However, the

approach can be modified for other objectives, such as the

control of the directivity and the field polarizations.

APPENDIX

DISCRETE COAXIAL CABLE MODEL

A common approach to model a coaxial feed line with the

FDTD method is either to fully model the coaxial cable, to use

a separate 1D grid, or to use some quasi-static approximations

[36]–[38]. Here, we propose a simple and efficient model of

the coaxial cable feed that can be used with the FDTD method.

This model has the advantage of satisfying a similar symmetry

property as the coaxial feeds in equations (1) and (7): the dis-

crete Maxwell’s and the discretely-derived adjoint Maxwell’s

equations will have precisely the same feeding models.

To motivate our feeding model, recall that inside the coaxial

cable, assuming that only TEM waves are supported, the

transverse electric and magnetic fields Ẽ and H̃ satisfy

∂

∂t

(√
ǫcẼ ∓√

µck × H̃
)

±c
∂

∂z

(√
ǫcẼ ∓√

µck × H̃
)

= 0,

(19)

where k is a unit vector in the positive z direction; µc and ǫc
are the permeability and the permittivity inside the coaxial

cable; and c = 1/
√
µcǫc. Expression (19) is a transport

equation for

W̃
±

c =
√
ǫcẼ ∓√

µck × H̃. (20)

The characteristic variables W̃
+

c and W̃
−

c represent waves

propagating in the positive and negative z directions, respec-

Hx2 Hx1

Hy2

Hy1

Ey2 Ey1

Ex2

Ex1

x
yz

∆x

∆y

∆z

Ground plane

Fig. 16. Four Yee cells that model a z directed discrete coaxial cable.

tively. Integrating over the annular surface Γcoax (Fig. 1), we

find that

1

2π
√
ǫc

∫ b

a

∫

Cr

r · W̃±

c

1

r
dldr = V ± ZcIz, (21)

where Iz is the current in the core (positive in the z-direction),

V is the potential difference between the inner and the outer

conductor, and

Zc = Zmκ, Zm =
√

µc/ǫc, κ =
log b/a

2π
. (22)

Expression (21) allows equation (19) to be rewritten in terms

of the potential difference and the current as

∂

∂t
(V ± ZcIz)± c

∂

∂z
(V ± ZcIz) = 0, (23)

with V ± ZcIz represent signals propagating in the positive

(+) and negative (-) z directions.

Consider four neighboring Yee cells whose upper faces

reside on the same level as the ground plane (Fig. 16). To

impose a TEM mode in these cells, the electric and magnetic

field components in the z direction, Ez and Hz , should vanish.

The value of Ez can be set directly to zero by setting high

conductivity values, σz , at the center and the outer perimeter

of the four Yee cells. Moreover, applying Faraday’s law

µ

∫

S

∂Hz

∂t
= −

∮

∂S

Ẽ · dl, (24)

to each bottom face in Fig. 16, we see that ∂Hz/∂t and thus

Hz (since the initial condition is zero) can be made to vanish

by requiring

En+1
x1 ∆ = −En+1

x2 ∆ = En+1
y1 ∆ = −En+1

y2 ∆
def
= V n+1,

(25)

where we have chosen ∆x = ∆y = ∆z = ∆ and defined

V n+1 as the discrete potential difference between the inner and

the outer conductor of the cylindrical coaxial cable, located as

illustrated in Fig. 17. Further, by a four point quadrature rule

applied to Ampere’s law, the current in the cylindrical coaxial

cable evaluates to

I
n+ 1

2

z =
π∆

4
(H

n+ 1

2

y1 −H
n+ 1

2

y2 +H
n+ 1

2

x2 −H
n+ 1

2

x1 ). (26)
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Fig. 17. A cross section through the cavity in Fig. 16, where for discrete
impedance calculation, we assume a discrete cylindrical coaxial cable that
has an outer shield (the thick dashed line) with radius equal to ∆. is located
as illustrated.

In the Yee grid, a discrete approximation of expression (20)

yields

W̃
∆±

c =
√
ǫcẼ

n+1 ∓√
µck × H̃

n+ 1

2 , (27)

where the field values of Fig. 16 define W̃
∆±

c,1 , W̃
∆±

c,2 , W̃
∆±

c,3 ,

and W̃
∆±

c,4 , associated with the four inner vertical planes.

Let r1, r2, r3, and r4 be unit vectors in the x-y plane

pointing from the center core towards the evaluation points of

each W̃
∆±

c,i . Summing ri · W̃
∆±

c,i over the evaluation points,

substituting equations (25) and (26), and rearranging the terms,

yield

∆

4
√
ǫc

4
∑

i=1

ri · W̃
∆±

c,i = V n+1 ± ẐcI
n+ 1

2

z , (28)

where Ẑc = Zmκ̂, with κ̂ = 1/π. Expression (28) constitutes

a discrete version of expression (21). We note the different

values of the geometric coefficients κ and κ̂.
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puting at Umeå University. He received his Ph.D.
in Computational and Applied Mathematics at Rice
University in 1996. Previously, he held a lectureship
position at Uppsala University and research positions
at FOI, the Swedish Defence Research Agency, and
at Sandia National Laboratories, Albuquerque.

His research interests concern numerical methods
for partial differential equations, and in particular
computational design optimization for acoustic and
electromagnetic wave propagation problems.

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TAP.2014.2309112

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.


