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Metamaterials are defined as a family of rationally designed artificial materials which can provide extraordinary 

effective properties compared with their nature counterparts. This paper proposes a level set based method for 

topology optimization of both single and multiple-material Negative Poisson‘s Ratio (NPR) metamaterials. For 

multi-material topology optimization, the conventional level set method is advanced with a new approach exploiting 

the reconciled level set (RLS) method. The proposed method simplifies the multi-material topology optimization by 

evolving each individual material with a single level set function and reconciling the result level set field with the 

Merriman-Bence-Osher (MBO) operator. The NPR metamaterial design problem is recast as a variational problem, 

where the effective elastic properties of the spatially periodic microstructure are formulated as the strain energy 

functionals under uniform displacement boundary conditions. The adjoint variable method is utilized to derive the 

shape sensitivities by combining the general linear elastic equation with a weak imposition of Dirichlet boundary 

conditions. The design velocity field is constructed using the steepest descent method and integrated with the level 

set method. Both single and multiple-material mechanical metamaterials are achieved in 2D and 3D with different 

Poisson‘s ratios and volumes. Benchmark designs are fabricated with multi-material 3D printing at high resolution. 

The effective auxetic properties of the achieved designs are verified through finite element simulations and 

characterized using experimental tests as well. 

Keywords: Topology optimization, Multi-material, Negative Poisson’s Ratio, Metamaterial, Reconciled Level 

Set Method 

I. INTRODUCTION 
Metamaterials gain extraordinary effective properties from rationally designed structures rather than their 

composition, and thus the layout of the microstructure has a significant impact on their properties. This paper 

focuses on designing mechanical metamaterials with negative Poisson’s ratios (NPR), which are also known as 

auxetics or auxetic materials. When an NPR material is compressed along a particular axis, it is observed to contract 

in the perpendicular directions, as demonstrated in Figure 1. This counter-intuitive property can be utilized to 

strengthen mechanical properties for the purpose of improving the crack resistance [1], increasing the fracture 

toughness [2, 3], or providing higher sound absorption capacity [4]. Since Lakes first developed NPR foam 

structures in 1987 [5], the research work on NPR metamaterials modeling, design and manufacturing as well as their 

potential applications has advanced considerably [6-14]. In 1985, Kolpakov proposed a method for approximating 

the average elastic characteristics of framework structures of periodic configuration, and constructed fine-celled 

framework structures with negative Poisson‘s ratios [15]. Almgren presented a strategy to make a structure of rods, 

hinges and springs to achieve a negative Poisson‘s ratio equal to -1 [16]. Theocaris et al. employed the numerical 

homogenization theory for the investigation of composite structures with star-shaped inclusions, which are able to 

exhibit a negative Poisson‘s ratio [17]. 

 

FIG. 1. 3D auxetic mechanical metamaterial with a negative Poisson‘s ratio 

 

Conventional design practice for metamaterials relies heavily on 
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designers‘ intuition or analogy to existing design solutions, which is limited by a small design space. Topology 

optimization (TO) [18] is a powerful computational tool which recasts the design problem as an optimal material 

distribution problem so that the system will find an optimal material layout to fulfill the functional requirements 

quantified by the objective and constraint functions in the optimization scheme. During the past three decades, 

topology optimization of lightweight load-carrying structures with linear elastic behaviors has been well established 

[19-21], and was naturally extended to systematical design of metamaterials with highly nonlinear behavior and 

multi-physics coupling characteristics. To the authors‘ best knowledge, the first engineered microstructures with 
prescribed constitutive parameters was designed by Sigmund using inverse homogenization theory in 1994 [22]. 

Sigmund [23] successfully applied inverse homogenization to obtain truss frame microstructures with negative 

Poisson‘s ratios both in 2D and 3D. Wang et al. [24] and Allaire et al. [25] both applied a level-set based 

optimization method to 2D NPR designs. Zhang et al. [26] employed the strain energy-based method to predict 

effective elastic properties and applied a dual optimization algorithm to the design of microstructure with tailored 

elastic properties. Even though 2D NPR designs can be extruded in order to get manufacturable 3D geometries [27], 

interests in 3D microstructures have led to some recent developments in NPR structure design. Schwerdtfeger et al. 

[28] using solid isotropic material with penalization (SIMP) method obtained a 3D NPR microstructure. In another 

recent contribution, Andreassen et al. [29] designed a manufacturable 3D extremal elastic microstructure using a 

modified SIMP method. More recently, Shan et al. [30] developed 2D isotropic NPR structures by embedding 

periodic arrays of cuts in elastomeric sheets. Moreover, Clausen et al. [31] designed microstructures with 

programmable Poisson‘s ratios over large deformations. 

This paper is concerned with an improved level set method for the rational design of 2D and 3D NPR metamaterials, 

multi-phase NPR metamaterials. Level set methods, originally developed for tracking free fluid boundaries [32], 

have grown to be an attractive tool for topology optimization [33, 34]. The key idea of the level set methods is to 

implicitly represent a moving boundary as the zero level set of a function with one higher dimension. The motion of 

the boundary is numerically described using the Hamilton-Jacobi partial differential equation (H-J PDE) [32]. The 

design velocity field, which is usually obtained via shape sensitivity analysis, will drive the boundary to evolve 

during the design process. Further technical details about the level set method will be provided in Section 3. 

The paper begins by explaining how to evaluate the effective properties of the unit cell with the strain energy-based 

method. The problem settings for designing NPR microstructures is provided in section 3, followed by numerical 

examples to demonstrate the performance of the proposed method in Section 4. In section 5, auxetic effects are 

verified through finite element simulations and validated through experimental tests with 2D NPR metamaterials. 

Concluding remarks are provided in section 6. 

 

II. PREDICTION OF EFFECTIVE ELASTIC MODULUS TENSORS OF A UNIT CELL 

Metamaterials are characterized by the spatially periodic arrangement of the microstructures, as shown in Figure 2. 

The effective elastic properties of a continuous medium directly depend on its microstructure. A key issue here is 

how to link field variables at microscopic length scale to field variables at macroscopic length scale. In 

micromechanics, this relation can be formulated using two basic theories: the homogenization theory [35-42] and 

the strain energy based method [26]. A quantitative comparison of the two methods was provided by Hollister and 

Kikuchi [43]. 
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FIG. 2. Periodically assembled unit cell 

Strain Energy-Based Method  

The strain energy-based method originates from the standard mechanics analysis, which formulates the effective 

modulus tensors of the unit cell as the strain energy functionals under different boundary conditions. Compared with 

the homogenization theory, the strain energy-based method provides a relatively simple and efficient way [26] in the 

estimation of the homogenized properties and the sensitivity analysis as well. There are three loading cases for 2D 

problems with kl =11, 22, 12 and six loading cases for 3D problems with kl =11, 22, 33, 12, 23, 13. 

For linear elastic problems, the average stress and average strain of the homogeneous medium are equivalent to the 

domain integration of the local stress and local strain in the microstructure, which can be mathematically expressed 

as
1

ij ij
dV

V
   and 

1
klkl
dV

V
   . The constitutive law between average stress and average strain can be 

characterized by the generalized Hooke‘s Law as: 

 σ C εH
ij klijkl  (1) 

In the above equation, C
H

ijkl
is the homogenized elastic modulus tensor, which depends on the layout of the materials 

of the unit cell. For a 2D orthotropic medium, equation (1) can be rewritten as follows: 
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The multiscale structure-property relation can be constructed according to the fact that the strain energy of the 

homogeneous medium, which is defined as 
1

2

H

ij kl
U V   , and the strain energy of the unit cell, which is defined 

as 
1

2
ij kl

V
U dV   , are equivalent. This multiscale structure-property relation can be formulated as follows: 

 
1 1

2 2
ij kl ij kl

V
V dV      . (3) 

Substitute equation (1) into equation (3), the effective elastic stiffness constants
1111

H
C , 

2222

H
C  and 

1122

H
C can be 

determined by applying the following three unit strain fields respectively: 
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The uniform strain boundary condition is replaced with equivalent Dirichlet boundary condition in numerical 

implementation. For example, the effective elastic stiffness constant
1111

H
C  can be derived from loading case 1, shown 

in Figure 3(a), with the corresponding Dirichlet boundary conditions as follow: 

 1 2 4 31, 0, 0u v v u    , (5)             where the 
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  (6) 

The total strain energy can also be expressed using the domain integration of the local strain energy density in the 

unit cell, as equation (7) shows: 

1111 11 11

1

2 
  ε D εT

ijkl
U d .                                                                             (7) 

Assuming the volume of the unit cell is equal to 1 and keeping in mind that
1111 1111H

U U , the expression of the 

effective elastic stiffness constant 
1111

H
C  can be further simplified to 

1111 11112H
C U , and similarly 

2222 22222H
C U . The 

effective elastic stiffness constant 
1122

H
C can be formulated as a function of the strain energy by setting the boundary 

conditions as: 

 
1 2 3 41, 1, 0, 0u v u v      (8)  

The corresponding strain energy becomes: 
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By substituting 
1111 11112H

C U  and 
2222 22222H

C U  into equation (9), it can be derived that 
1122 1122 1111 2222  H

C U U U . 

When it comes to 3D unit cells with orthotropic material, there are 9 independent elastic stiffness constants: 
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 (10) 

The same calculations are made for the 3D case and the results are summarized in Table I. 
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TABLE I. Effective elastic stiffness constants for 3D case 
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FIG. 3. Boundary conditions for unit cell: a) Loading case 1, b) Loading case 2, and c) Loading case 3. 

 

III. MULTI-PHASE TOPOLOGY OPTIMIZATION OF MICROSTRUCTURES 

A. Level Set Methods 

Level set methods, introduced by Osher and Sethian [32], have become an attractive approach in topology 

optimization [33, 34], which provide smooth boundaries, crisp interfaces, high shape fidelity and great topological 

flexibility. Sethian and Wiengmann [44] employed level set approach along with immersed interface method for 

structural boundary design. Osher and Santosa [45] introduced a shape sensitivity analysis using gradient method to 

obtain a velocity field, and later Allaire et al. [34, 46] proposed a method where the velocity field is derived from 

shape sensitivity analysis by employing the adjoint variable method. Wang et al. [47] established a link between the 

general structural optimization and the level set method through a design velocity field calculated using the material 

derivative in continuum mechanics. Belytschko et al. [48] developed a method with implicit function and 

regularization enabling sensitivity evaluations. Radial Basis Functions (RBFs) were proposed by Wang et al. [49-51] 

to parameterize the level set function and transform the Hamilton-Jacobi equation into a system of ordinary 

differential equations, which not only increased the efficiency of level set method but also improved its robustness 

in handling multiple constraints. 

As its name implies, in level set methods, the boundary is implicitly represented by an isosurface of a surface (level 

set function) with one higher dimension, which divides the design domain into three parts according to the signs of 

the level set function, as shown in Figure 4. 
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 (11) 
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FIG. 4. Representation of a 2D geometry with a 3D level set function 

By differentiating  ( ), 0 x t t  with respect to the pseudo time, the Hamilton-Jacobi equation [32, 52] is obtained:
   

,
,

x t
x t

t





  



where (x) /V dx dt is the velocity field on the boundary. Equation (12) can be equivalently reformulated as: 
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 (13) 

where 
 
 

,
(x) (x) (x)

,
n

x t
V V n V

x t





   


 is the normal velocity field. 

In this way, the optimization problem can be transformed into a problem of finding the steady-state solution of 

equation (13). The shape sensitivity analysis and the construction of the design velocity field is presented in 

subsection E. 

B. Reconciled Level Set Method for Multi-Material Shape and Topology Optimization 

Multi-material optimization schemes have been developed based on the classical single material optimization 

methods. Sigmund [53] employed SIMP with a modified interpolation scheme, based on Hashin-Shtrikman bounds, 

for a two-material Multiphysics actuator. Gao et al. [54, 55] proposed a multiphase optimization based on a mass 

constraint, instead of volume constraint. Wang and Wang [56] developed the ‗Color‘ level set method (CLSM) [56-

58] which separates the materials by using the different sign combinations of n level set functions. In this way, those 

n level set functions can be utilized to represent at most 2n materials. An alternative method is the Piecewise 

constant level set method [59-61], in which different values of the level set functions split the design domain into 

different areas. In this work, the Reconciled level set method is employed for topology optimization of NPR 

metamaterials. The RLSM was first introduced by Merriman, Bence and Osher [62, 63] for modeling multi-phase 

flow and was first employed by the author for multi-material topology optimization of smart energy harvesters [64]. 

RLSM retains the features of CLSM in multi-material representation and the convenience in the specification of 

arbitrary design velocities on each level set function. In addition, RLSM offers a more straightforward and 

convenient way to implement multi-material topology optimization than CLSM, since each individual material is 

uniquely represented by an independent level set function. 

A critical issue in evolving multiple level set functions is that the independent evolution of the different level set 

functions may lead to overlaps or voids. In order to avoid such problems, the Merriman-Bence-Osher (MBO) 

operator [62, 63] is employed to reconcile the level set function of each material i in relation to the rest of the 

materials j: 

 
11 max
2

temp temp
i i ji j
      

 (14) 

where  temp

i
 stands for the level set function after the evolution and the 1

i
 denotes the final level set function after 

applying the MBO operator. The subscripts i and j refer to the different materials. The RLSM is a predictor-
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corrector computational procedure. The impact of the MBO operator on the boundary evolution process is illustrated 

in Figure 5, which demonstrates the evolution process of two materials in two consecutive iterations, 0 and 1, with 

each individual material represented using a level set function independently. At iteration 0, the circles are located in 

a distance of each other, as shown in Figure 5(a). Without the use of the MBO operator, the evolution of the 

independent level set functions may result in an overlap intersected between the two materials as shown in Figure 

5(b). The MBO operator will correct the coupled level set functions, as shown in Figure 5(c). A comparison of the 

pros and cons between RLSM and CLSM is summarized in Table II. 

                       

FIG. 5. Multi-material level set evolution. a) Before evolution (iteration 0); b) intermediate state (temp); c) with MBO operator 

applied (iteration 1). 

TABLE II. Summary comparison between RLSM and CLSM 

Reconciled Level set method ‘Color’ level set method 

1. n level set functions represent n material 

phase 

1. n level set functions represent 2n material phase 

2. One-to-one relationship between level set 

function and material 

2. Different sign combinations of the level set 

functions identify different materials 

3. MBO operator to avoid overlaps 3. No overlaps 

4. Straightforward and convenient for 

implementation 

4. Not straightforward to construct initial design 

5. The level set function for each material is a 

signed distance function 

5. The combined level set function for each material 

is no longer a signed distance function 

 

C. Problem Settings for NPR Metamaterial Design 

The NPR materials design problem can be formulated as a least square optimization problem to minimize the 

difference between the homogenized elastic stiffness constant 
H

ijkl
C  and the design targets


ijkl

C : 
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 
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 
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 (15) 

where d is 2 for 2D and 3 for 3D studies, 
ijkl

w  is the weighting factor associated with the corresponding elasticity 

tensors,  V   is the volume of the unit cell and V  is the volume target. The bilinear energy form  ,a u v , the 

linear load form  l v  and the volume of the unit cell are described by: 

(a) (b) (c) 
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where H(ϕ) is the Heaviside function and D denotes the computational domain. In the numerical implementation, the 

level set function (LSF) is regularized to be a signed-distance function which does not only avoid too steep or too 

flat LSFs but also results in a smooth tensor field [58]. Moreover, the Courant-Friedrichs-Lewy (CFL) condition 

must be satisfied to improve the numerical stability while solving the H-J PDE [32]. 

D. Numerical Implementation 

In numerical implementation, the unit strain field and periodic boundary condition can be equivalently replaced by 

symmetric and Dirichlet boundary conditions [65]. The 2D boundary value problem is solved using the commercial 

software COMSOL under plane stress assumption, where the elastic modulus tensor is provided in equation. 

Similarly, for the 3D cases the elastic tensor is provided in equation (10). This formulation gives the flexibility of 

creating microstructure with different behavior in different directions. In the current implementation, 
1111C  and 

2222C  have the same prescribed, and the expected Poison‘s ratio are 
12 1122 1111/ C C  for 2D and 

12 1122 1111 1122/ ( )H H H
C C C    for 3D. The flowchart of the optimization process is described Figure 6. 

 

FIG. 6. Optimization flowchart 
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E. Shape Sensitivity Analysis 

To minimize the least square objective functional formulated in equation (15), we need to calculate the variation of 

the objective functional with respect to a variation of the boundary. In the current work, this process is done by 

using the material time derivative approach [66-68]. The Lagrange multiplier method is applied to couple the 

objective function with the governing equation. The design velocity field will be identified by taking the derivative 

of the Lagrange equation with respect to a pseudo-time t, which will be further integrated with the method of 

steepest descent to minimize the objective function. 

The Lagrange equation is given by: 

 L J g    (17) 

The derivative of the objective function with respect to the pseudo-time t is obtained as: 

  *

, , , 1

Hd
ijklH

ijkl ijkl ijkl

i j k l

dCdJ
w C C

dt dt

   (18) 

Since the effective properties are essentially the strain energy of the unit cell, the optimization problem of 

metamaterial design can be transformed to a series of mean compliance optimization problems under different 

Dirichlet boundary conditions. In each mean compliance optimization subproblem, the complete weak form of the 

governing equation with a weak imposition of Dirichlet boundary conditions can be rewritten as follows: 

      0
D

T

ij ijkl kl
g u C v d u u vds  

 
     . (19) 

In equation (19),   is the Lagrange multiplier and 
0u  is the prescribed displacement on the boundary. 

For the cases that ij=kl (1111, 2222 and, 3333 for 3D), the effective elastic modulus can be expressed by the strain 

energy-based method as described in Section 2: 

    H T

ijkl ij ijkl kl
C u C u d 


   (20)  

The derivative of the Lagrangian is expressed as: 
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 
. (21) 

The first bracketed term is called the adjoint equation and the field variable v  is called the adjoint variable. The 

adjoint equation will vanish when the adjoint variable v  is set to be the following values: 

 
 2 ,
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v
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By substituting v  into the convection terms in the second bracket, the shape sensitivity can be simplified as: 
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With the steepest-descent method, the design velocity field can be constructed as: 
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      H T

n ijkl ijkl ijkl ij ijkl kl
V w C C u C u   , (24) 

which is essentially the strain energy density of the unit cell under different loading cases. 

In a similar way, the sensitivity analysis for the cases where ij≠kl (1122, and 1133 and 2233 for 3D) the velocity 

can be obtained as: 

              1122 1122 1122 12 1122 12 11 1111 11 22 2222 22

1

2

H T T T

n
V w C C u C u u C u u C u             (25) 

By adding the mean curvature flow κ for smoothing the boundaries and the contribution of the volume constraint to 

the sum of the velocities for each case, the whole design velocity field for the Lagrangian is defined as: 

  
3 6

1 2

1

or

case

n n

case

V V l V V l 



    , (26) 

where 1l and 2l are the fixed Lagrangian multipliers for the volume and perimeter constraints respectively. 

IV. NUMERICAL EXAMPLES 

In this section, the optimization procedure described above is applied to several benchmark examples. The following 

parameters are applied to all these examples, unless otherwise specified: the Young‘s modulus for the solid material 

is E=0.91GPa and for the dummy material EV=10-6 GPa; both with same Poisson’s ratio equal to 0.3; the unit cell is 

discretized with 50-by-50 four-node quadrilateral elements. 

This section begins with a demonstration of the optimization on a 2D design with specific prescribed elastic 

properties. Then, a parametric study is carried out with different volume constraints and Poisson‘s ratio targets, 

which aims to provide a complete overview of the potential designs. The effects of the initial designs as well as the 

Poisson‘s ratio targets are studied. Moreover, the optimization is applied in a multi-material problem with two 

material phases. At the end of this section, the procedure has also been extended to 3D problems, presenting unique 

single and multi-material designs of microstructures with negative Poisson‘s ratios. 

A. Designing 2D NPR Metamaterials with One Material 

The first example presents the topology optimization of a 2D unit cell with a target Poisson‘s ratio equal to 0.4v   . 

The evolution history of the geometry along with the resulted Poisson‘s ratio is provided with the plot of the 

objective function, as shown in Figure 7. The optimization starts with an initial design with multiple holes of void. 

The prescribed elastic properties targets are set as follows: 
1111 1122 22220.2GPa, 0.08GPa and 0.2GPaC C C
      , 

which lead to a desired negative Poisson‘s ratio equal to -0.4. The weight factors of the optimization problem are set 

to be
1111 0.5w , 

2222 0.5w , and 
1122 5w  and the volume constraint is 60%. Table III shows the optimal design of 

the unit cell, a 3-by-3 assembled periodic microstructure, and the corresponding effective properties. The iteration 

history, as well as selected intermediate results, are presented in Figure 7. The change of the elastic properties with 

the iteration number is plotted in Figure 8. During the optimization process, it can be seen that the least-square 

objective function is minimized gradually and finally reached zero in Figure 7. The elastic stiffness constants reach 

the targets after approximately 65 iterations as shown in Figure 8. The value of the Poisson‘s ratio for the optimal 

design becomes      as it was set to be. The result will be validated through experiment tests provided in Section 5. 
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FIG. 7. The optimization history curve for the design with ν=-0.4 

 

 

FIG. 8. The history curves of elastic properties during optimization (ν=-0.4) 
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TABLE III ν=-0.4: unit cell (left), 3×3 array (middle) and effective elastic properties (right) of the optimized design 

                Unit cell                                       3×3 structure  Elasticity Matrix [GPa] 

                                       

 

 

0.194 0.078 0

0.078 0.194 0

0 0 0.036

H
C

 
   
  

 

Due to the limitations of steepest descent method and the fact that conventional level set methods do not provide 

nucleation mechanism for new holes, the design results strongly depend on the initial guess. A parametric study is 

carried out with same problem setting but different initial designs. In each of the following cases (Table IV), all the 

parameters were fixed, apart from the initial design, for better comparison. The results are shown in Table V, VI and 

VII. 

 

TABLE IV Parameters for different cases 

Case 
1111


C (GPa) 

2222


C (GPa) 

1122


C (GPa)   

f
V  

1 0.2 0.2 -0.04 -0.2 50% 

2 0.2 0.2 -0.1 -0.5 40% 

3 0.2 0.2 -0.1 -0.5 50% 
 

TABLE V Case 1: Optimal results from different initial designs with 0.2   and 50%
f

V   

Initial design Unit cell 3×3 structure Elasticity Matrix [GPa] 

    

 

0.196 0.039 0

0.039 0.196 0

0 0 0.010

 
   
  

H
C  

 

   

 

0.182 0.040 0

0.040 0.182 0

0 0 0.018

 
   
  

H
C  
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TABLE VI Case 2: Optimal results from different initial designs with 0.5   and 40%
f

V   

Initial design Unit cell 3×3 structure Elasticity Matrix [GPa] 

   

 

 

 

0.093 0.034 0

0.034 0.144 0

0 0 0.005

 
   
  

H
C  

 

 

    

 

 

0.128 0.062 0

0.062 0.128 0

0 0 0.009

 
   
  

H
C  

 

TABLE VII. Case 3: Optimal results from different initial designs with 0.5   and 50%
f

V   

Initial design Unit cell 3×3 structure Elasticity Matrix [GPa] 

    

 

 

0.167 0.069 0

0.069 0.164 0

0 0 0.015

 
   
  

H
C  

    

 

 

0.176 0.073 0

0.073 0.177 0

0 0 0.018

 
   
  

H
C  

 

The resulted design will not always have the desired elastic properties. Since the material that is used for the current 

investigation has a specific Young‘s modulus of 0.91GPa and ν=0.3, a design full of material will show

1111 1C GPa . 
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If target stiffness constant is set to be
1111 1C GPa
  , the optimization will be able to offer such a behavior only if no 

volume constraint has been applied and the result would be full of material. But generally, it is not always possible 

to know a priori whether the elastic stiffness constant will be able to hit the specified targets in the least square 

objective function. In addition to that, an optimization with prescribed properties for the 3 elastic entries and a 

volume constraint usually result in a trade-off design without getting the desired effective properties. In case of not 

hitting the targets, one can get important feedback from the resulted geometry and change the problem settings 

accordingly. Having all the parameters along with the initial design constant, changing only the targets will drive to 

different designs and elastic tensors. In this section, two unit cells will be optimized to have the same Poisson’s ratio 

-0.5 and same volume fraction but with different target for the elasticity tensors. The target elastic stiffness constants 

are set to be 
1111 0.2GPa,C
   

1122 0.1GPa,C
    and 

2222 0.2GPaC
   for unit cell 1, and for unit cell 2, the targets 

would be
1111 0.1GPa,C
  1122 0.05GPa,C

    and
2222 0.1GPa.C
  The results are shown in Table VIII. 

 

TABLE VIII. Optimal designs for the same Poisson’s ratio -0.5 and volume fraction but different targets for the elasticity tensors 

Unit cell 1 3×3 structure Elasticity Matrix [GPa] 

           

 

 

0.149 0.072 0

0.072 0.150 0

0 0 0.012

 
   
  

H
C  

Unit cell 2 3×3 structure Elasticity Matrix [GPa] 

                                         

 

 

0.109 0.038 0

0.038 0.118 0

0 0 0.005

 
   
  

H
C  

 

This section provides a series of examples with the same initial design, a 1-by-1 unit cell with 4 rows of 16 equally 

distributed holes, and the same targets for elastic stiffness constants 
1111


C and 

2222


C . A parametric study can be 

helpful for the designer in terms of selecting the appropriate design or by giving important feedback for improving 

the optimization procedure. In this example, changing the desired Poisson’s ratio (ν) and the volume constraint (Vf) 

will drive the optimization to different results, giving an overall understanding of the possible patterns. For 

convenient comparison of the results, all other parameters were kept constant. By having ν as a variable, the 

prescribed elastic properties will be transformed into: 

1111 1122 22220.2GPa, 0.2 GPa, 0.2GPa     C C C  
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FIG. 9. Optimized auxetic metamaterials with various volume fractions and Poisson‘s ratios 

Selected results of the parametric study are shown in Figure 9. It is worth noting that not all of the designs can reach 

the target of elastic tensors, or in other words, not all of the designs have the desired Poisson’s ratio. Topology 

optimization is usually for continuum structures [18], while the design with Poisson’s ratio equal to -1 may exist in 

a form of rigid body mechanisms. Besides the shape and topology of the unit cell, the effective Poisson’s ratio also 

depends on how the internal structure deforms when the unit cell is loaded, and where and how the load is applied. 

B. Designing 2D NPR Metamaterials with Multiple Materials 

The reconcile level set method introduced in Section 3 is employed to optimize the unit cell. One additional material 

with a lower Young‘s Modulus is introduced. So, the problem is to simultaneously optimize the distribution of both 

the hard material with E 1
H
  GPa and the soft material with E 0.2

S
  GPa. The void is represented with a dummy 

material with 6E 10
V

  GPa. The volume fractions for the hard and soft material are 45% and 15%, respectively. 

The targeted formulation is similar to the one in the single-material optimization with targets:
1111 0.2 ,C GPa
   

1122 0.1 ,C GPa
    and 

2222 0.2C GPa
   and target Poisson‘s ratio ν= -0.5. The initial design is shown in Figure 10(a) 

and the final design is shown in Figure 10(b), where the green color refers to the hard material and the red color to 

the soft material. The 3-by-3 structures and elastic tensor are shown in Table IX. The iteration history, as well as 

selected intermediate result, are plotted in Figure 11. As can be seen in the final design, the soft material is 

distributed in a way which acts as de facto hinges undergoing large deformation to achieve negative Poisson’s ratio 

without sacrificing the stiffness of the unit cell. In this example, the resulted Poisson‘s ratio reaches -0.38, a value 

that will be verified in the next section. 

  

FIG. 10. The (a) Initial and (b) Final design of a 2D NPR metamaterial 
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TABLE IX. The unit cell (left), 3x3 array (middle) and effective properties (right) for an optimal 2D multi-material NPR design 

Unit cell 3×3 structure Elasticity Matrix [GPa] 

   

 

 

 

0.137 0.052 0

0.052 0.137 0

0 0 0.012

H
C

 
   
  

 

 

 

FIG. 11. The optimization history of a 2D multi-material NPR design  

In another numerical test, the total volume fraction is fixed at 60%, the different arrangement for volume fraction of 

hard material and soft material is investigated through following examples: (a) 40% for the hard material and 20% 

for the soft material; (b) 35% for the hard material and 25% for the soft material; (c) 30% for both hard and soft 

materials. The final designs of the unit cells are shown in Figure 12. 
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                                 (a)                                                        (b)                                                     (c) 

FIG. 12. Optimized 2D multi-material NPR designs with different volume fractions: (a) 40% for hard material and 20% for soft 

material; (b) 35% for hard material, and 25% for soft material; (c) 30% for both hard and soft materials. Green color for the hard 

material and red for the soft material. 

C. Designing 3D NPR Metamaterial with One Material 

The problem formulation has been extended in order to obtain a 3D unit cell with negative Poisson‘s ratio. The 
design domain consists of 40x40x40 elements and the initial design has uniformly distributed holes. The volume 

constraint is 25% and the weight factors follow the problem formulation of the 2D cases. In 3D cases, 6 elastic 

property targets have to be prescribed and, in the current optimization, are set as follows: 

1111 2222 3333 1122 1133 22330.09GPa, 0.09GPa, 0.09GPa,  0.03GPa,  0.03GPa, 0.03GPaC C C C C C
              .  

The above values imply a design with Poisson‘s ratio ν=-0.5 in all three planes. 

The initial design along with the obtained negative Poisson‘s ratio design are presented in Table X. The estimated 

Poisson‘s ratio value is -0.49 in all planes ( 12 13 230.4947, 0.4912, 0.4875        ) according to the 

elasticity matrix of the generated unit cell. 

 

TABLE X. 3D single-material NPR unit cell structure: Initial (left), final (middle) designs of the unit cell and effective elastic 

properties (right) of the optimal design 

Initial design      Unit cell    Elasticity Matrix [GPa] 

           

  
2323

1313

1212

0.0690 0.0223 0.0223 0 0 0

0.0223 0.0690 0.0223 0 0 0

0.0223 0.0223 0.0690 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

H

H

H

H

C

C

C

C

  
   
  
 
 
 
 
  

  

 

 

D. Designing 3D NPR Metamaterials with Multiple Materials   

Similar to the 2D multi-material and 3D single-material investigation, an optimization has been formulated for a 3D 

multi-material NPR design. The design domain consists of 40x40x40 elements and the initial design has now 3 

material phases: a box of hard material ( E 1
H
 GPa) with 4x4x4 uniformly distributed hollow spheres of soft 
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material ( E 0.2
S
 GPa); the third phase is the void inside the hollow spheres. The volume constraint is 12% for the 

hard material and 6% for the soft. 

The initial design along with the obtained negative Poisson‘s ratio designs are presented in Tables XI and XIII. The 
full unit cell is obtained by mirroring the design in all three directions Tables XII and XIV. 

 

1
st
 example of 3D multi-material NPR metamaterial: 

12 0.30   , 
13 0.50    and 

23 0.50    

TABLE XI. 1st example of 3D multi-material NPR design: Initial design (left), final design (middle)  

and constructed full unit cell (right) 

Initial design 1/8th of a unit cell Assembled unit cell 

           

 

 

 

TABLE XII. Illustration of the 1st example of 3D multi-material NPR design 

                     Isotropic view xy-plane 

          

yz-plane xz-plane 
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2
nd

 example of 3D multi-material NPR metamaterial: 
12 0.90   , 

13 0.30    and 
23 0.05    

TABLE XIII. 2nd example of 3D multi-material NPR design: Initial design (left), final design (middle)  

and constructed full unit cell (right) 

Initial design 1/8th of a unit cell Assembled unit cell 

           

 

 

 

TABLE XIV. Illustration of the 2nd example of 3D multi-material NPR design 

                     Isotropic view xy-plane 

          

yz-plane xz-plane 
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V. NUMERICAL VERIFICATION and EXPERIMENTAL VALIDATION 
A. Verification and Validation of 2D Single-Material NPR Metamaterials  

The numerical verification was carried out using COMSOL Multiphysics for a       structure with a volume 

fraction of 0.6 and targeted Poisson‘s ratio of -0.4. The boundary conditions are shown in Figure 13 (a), where two 

boundaries are supported and a displacement equal to -0.4 cm is applied at the right end, which is equivalent to the 

effect of applying a uniform horizontal strain of ɛ= -0.1. In the simulation results, presented in Figure 13 (b), it can 

be clearly seen that the structure was shrinked in both X and Y directions and the displacement on upper boundary is 

around -0.16 cm which gives a Poisson‘s ratio -0.4. The simulation results coroborate that the achieved metamaterial 

structure has negative Poisson‘s ratio 0.4   . 

 

FIG. 13. Numerical verification of the auxetic behavior of the NPR metamaterial: (a) (left) Boundary conditions and (b) (right) 

simulation results. 

The behavior of NPR metamaterials is further validated using experimental tests. Three prototype material structures 

are fabricated using a state-of-the-art multiple material 3D printer (Objet260 Connex, Stratasys Ltd) that allows the 

simultaneous printing of multi-materials in a single print. Tango Black, a rubber-like flexible material, is used for 

these structures. Compression tests are performed using a MTS mechanical testing machine (MTS Model43) with a 

1kN load cell. The sample is held vertically between two metal bases. The upper and lower surface of the specimens 

are coated with liquid to reduce any frictional effects between the sample and the bases. The compression tests are 

performed by lowering the loader at a rate of 0.02 mm s-1. The deformation of the specimens is monitored using a 

high-resolution digital camera. 

Three selected material structures are: specimen 1 with a volume fraction of 0.40 and targeted Poisson‘s ratio of 
0.80, specimen 2 with a volume fraction of 0.60 and targeted Poisson‘s ratio of -0.40, and specimen 3 with a volume 

fraction of 0.60 and targeted Poisson‘s ratio of -0.80. A representative sequence of images of specimens 1 and 2 

during loading is presented in Figure 14 at different strains ɛ=0, -0.05, and -0.10. Figure 14(a) clearly shows lateral 

expansion of specimen 1 during compression test, indicating a positive Poisson‘s ratio. On the contrary, Figure 14(b) 

shows lateral contraction during compression test, indicating a negative Poisson‘s ratio of specimen 3. The 
mechanical response of three material structures are ploted in Figure 15(a), where stress-strain curves show slightly 

nonlinear behavior when the compression strain is larger than 0.09, especially for specimen 3. This is due to the 

local structure rotation and self-contacting in specimen 3 at large strain. The lateral and axial strains are obtained 

through image analysis at different strain levels. Figure 15(b) shows the lateral strain versus axial strain of all three 

speicimens. Therefore, the Poisson‘s ratio can be obtained as 0.82, -0.43, and -0.77 for three specimens, respectively, 

which agrees very well with the simulated target values. These results indicate that the experimental tests verify the 

simulation results. 
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FIG. 14. Experimental images of the mechanical metamaterials at different levels of macroscopic strain: 0, -0.05, and -0.10. a) 

Specimen 1 with positive Poisson‘s ratio. b) Specimen 3 with negative Poisson‘s ratio. 

 

 

FIG. 15. Mechanical response of three mechanical metamaterials. a) Axial stress-strain curves of three specimens. b) Lateral 

strain versus axial strain 
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B. Verification and Validation of 2D Multi-material NPR Metamaterial 

Similarly, a numerical verification using COMSOL Multiphysics is performed for the multi-material design with 

total volume fraction of 0.6 (hard material: 45%, soft material: 15%) and resulted Poisson‘s ratio of -0.38. The 

boundary conditions for the 4x4cm structure are the same as before, where two boundaries are supported and a 

displacement equal to -0.4 cm is applied at the right end. In the simulation (Figure 16), the upper boundary is 

deformed by -0.15 cm which is translated to a Poisson‘s ratio of -0.375, which agrees with the estimated value. 

                      

FIG. 16. Numerical verification of the auxetic behavior of the multi-material NPR metamaterial: (a) (left) Before and (b) (right) 

after applied displacement in x direction. 

The above multi-material NPR structure is fabricated using the same 3D printer (Objet260 Connex, Stratasys Ltd). 

Vero white, a glassy polymer, is used as the hard material and Tango plus, a rubber-like material is used as the soft 

material. The compression test is performed using a MTS mechanical testing machine (MTS Model43) with a 1 kN 

load cell. The experiment is conducted in a quasi-static regime with a constant rate of 0.02 mms-1.  

A representative sequence of images of the specimen during loading is presented in Figure 17(a) at different strains 

ɛ=0, -0.04, and -0.08. It is noted that the lateral contraction during compression test indicates a negative Poisson‘s 
ratio of the specimen. The mechanical response of the multi-material structure is ploted in Figture 17(b), where the 

stress-strain curve shows nonlinear behavior. This is due to the local structure rotation and self-contacting at large 

strain. To quantify the deformation taking place in the multi-material structure during the experiment, an image 

processing software (ImageJ) is used to determine the intersection points in the specimen. The deformation near the 

four edges of the specimen are strongly affected by boundary conditions. Therefore, the focus is on the behavior of 

the central part of the specimen as shown in Figure 17 (a). Finally, the lateral and axial strains are obtained at 

different strain levels. Figure 17(c) shows the lateral strain versus axial strain of both specimens, where the 

Poisson‘s ratio can be obtained as -0.36 verifying the simulation result.  
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FIG. 17. Compression test for multi-material NPR structure. (a) Experimental images of the mechanical metamaterials at 

different levels of macroscopic strain: 0, -0.04, and -0.8. (b) Axial stress-strain curve. (c) Lateral strain versus axial strain. 
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C. Verification of 3D Single-Material NPR Metamaterial 

A         structure is built up from the 3D single-material unit cell for the verification model (Table XV). The 

mesh is refined, compared to the model used for the optimization process, increasing the accuracy of the result. The 

boundary conditions are the same as in the previous examples with 0.2 cm displacement on the right end leading to 

tension in x direction. The resulted displacement in the y direction is 0.1 cm and the Poisson‘s ratio is close to the 

estimation of -0.49. The structure‘ deformation (xy-plane) is demonstrated in Figure 18. The structure has the same 

behavior in all 3 directions. 

TABLE XV. 3D single material: Full unit cell assembled into a 2x2x2 structure. 

               Unit cell       2x2x2 structure 

 

 

 

 

 

 

 

 

FIG. 18. Numerical verification of 3D NPR structure (xy-plane): (a) before (left) and (b) after (right) a displacement is applied in 

x direction. 
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D. Verification of 3D Multi-material NPR Metamaterials  

A         3D multi-material structure, with refined mesh, is used for verification (TABLE XVI). 

1
st
 3D multi-material NPR Metamaterial Example 

The boundary conditions are the same as in the previous examples with 0.2 cm displacement on the right end 

leading to tension in x direction (Figures 19-20). The resulted displacement in y direction is 0.06 cm and the 

Poisson‘s ratio verifies the estimation of 
12 0.30   . The displacement in z direction is 0.10 cm that agrees well 

with the estimated Poisson‘s ratio of 
13 0.50   . Furthermore, a second simulation is performed by applying a 0.2 

cm displacement in y direction for obtaining the last Poisson‘s ratio of the structure (Figures 21). The structure 

deforms by 0.09 cm in z direction showing that 
23 0.45   . 

TABLE XVI. The 1st example of 3D multi-material NPR metamaterial: Full unit cell assembled into a         structure. 

               Unit cell               structure 

 

 

 

 

                      

FIG. 19. Numerical verification of the 1st example of 3D multi-material NPR structure (xy-plane): (a) before (left) and (b) after 

(right) a displacement is applied in x direction. 
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FIG. 20. Numerical verification of the 1st example of 3D multi-material NPR structure (xz-plane): (a) before (left) and (b) after 

(right) a displacement is applied in x direction. 

                      

FIG. 21. Numerical verification of the 1st example of 3D multi-material NPR structure (yz-plane): (a) before (left) and (b) after 

(right) a displacement is applied in y direction. 

  



27 

 

2
nd

 3D multi-material NPR Metamaterial Example 

Similarly, for the second 3D multi-material design (Table XVII), the Poisson‘s ratio values are: 
12 0.95   , 

13 0.3    and 
23 0.05   (Figures 22-24). 

TABLE XVII. The 2nd example of 3D multi-material NPR metamaterial: Full unit cell (left) assembled into a         

structure. 

 

 

                      

FIG. 22. Numerical verification of the 2nd 3D multi-material NPR structure (xy-plane): (a) before (left) and (b) after (right) a 

displacement is applied in x direction. 

               Unit cell              structure 
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FIG. 23. Numerical verification of the 2nd example of 3D multi-material NPR structure (xz-plane): (a) before (left) and (b) after 

(right) a displacement is applied in x direction. 

                      

FIG. 24. Numerical verification of the 2nd example of 3D multi-material NPR structure (yz-plane): (a) before (left) and (b) after 

(right) a displacement is applied in y direction. 

VI. CONCLUSIONS  

This paper proposes a level set based method for topology optimization of both single and multiple-material NPR 

metamaterials. For multi-material topology optimization, the conventional level set method is advanced with a new 

approach exploiting the reconciled level set (RLS) method. The proposed method simplifies the conventional ‗color‘ 
level set method by evolving each individual material with a single level set function and reconciling the resulted 

level set functions with the Merriman-Bence-Osher (MBO) operator. The NPR metamaterial design problem is 

formulated as a least square minimization problem using level set representation, which transforms the original 

design problem into a problem of finding the steady solution of the Hamilton-Jacobi equation. The shape sensitivity 

is rigorously derived based on the complete weak form of the governing equation with a weak imposition of 

Dirichlet boundary conditions. The 2D benchmark examples demonstrate the performance of the proposed method 

for metamaterial design. Both numerical simulations and physical experiments prove that the achieved design 

exhibit the desired auxetic behavior. The 2D single material designs follow the patterns of benchmark examples in 

existing literature. Novel designs are achieved for the 2D multi-material, and especially 3D single and multi-material 

matamaterials. The 3D design is enriching the currently limited available 3D designs with negative Poisson‘s ratio. 
The 3D multi-material design is innovative, and a new group of 3D multi-material microstructures with a different 

Poisson‘s ratio in each direction can be generated. One limitation in current approach is that it was hard to remove 
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the supporting material when the 3D designs are fabricated through additive manufacturing. In our future work, we 

will take into account such additive manufacturing constraints in the topology design process.  
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