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Abstract

Multi-scale structures, as found in nature (e.g., bone and bamboo), hold the promise of achieving superior performance

while being intrinsically lightweight, robust, and multi-functional. Recent years have seen a rapid development in topology

optimization approaches for designing multi-scale structures, but the field actually dates back to the seminal paper by

Bendsøe and Kikuchi from 1988 (Computer Methods in Applied Mechanics and Engineering 71(2): pp. 197–224). In this

review, we intend to categorize existing approaches, explain the principles of each category, analyze their strengths and

applicabilities, and discuss open research questions. The review and associated analyses will hopefully form a basis for

future research and development in this exciting field.

Keywords Topology optimization · Multi-scale structures · Multi-scale modelling · Additive manufacturing

1 Introduction

Topology optimization is a computational design method for

automatically generating a structural layout with maximized

performance under relevant design specifications. In other

words, the structural design problem can be formulated

as optimizing the distribution of material in a discretized

design domain (Bendsøe 1989). The optimized layout is

not restricted to its initial topology, opening for superior

structural performance over manual designs based on engi-

neers’ intuition and experience. This capability is especially

attractive and has been successfully applied in high-tech

industries, such as aerospace (Zhu et al. 2016), automo-

tive (Yang and Chahande 1995), architecture (Beghini et al.

2014), and healthcare (Wang et al. 2016).

Early works that lead to the establishment of this field,

and in particular the seminal work by Bendsøe and Kikuchi

(1988), made use of a material model corresponding
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2800, Kgs. Lyngby, Denmark

to infinitely small square cells with rectangular holes

and evaluated equivalent mechanical properties of these

cells by numerical homogenization. Theoretically, optimal

structures comprise spatially varying geometric patterns

spanning multiple length scales. Due to manufacturing

difficulties of these multi-scale structures, focus in the

late 1990s shifted from homogenization-based approaches

to “mono-scale” approaches, optimizing the distribution

of a homogeneous isotropic material (Bendsøe 1989;

Zhou and Rozvany 1991; Mlejnek 1992; Bendsøe and

Sigmund 1999). Popular methods such as those based on

density (Sigmund 2001), level sets (Wang et al. 2003;

Allaire et al. 2004), and evolutionary procedures (Xie and

Steven 1993) all belong to this latter category.

Over the past few years, along with advances in additive

manufacturing (AM, also known as 3D printing), there has

been a resurgent interest in optimal design of multi-scale

structures. In additive manufacturing, parts are produced

layer upon layer by, e.g., extruding small flattened strings

of molten material or melting and fusing powder material

or wire. AM provides an effective means to fabricate

complex mono-scale structures as well as delicate multi-

scale structures. In fact, topology optimization of (mono-

scale) structures and the use of lattice infill are recognized

as two dominating strategies for designing next-generation

lightweight structures (Brackett et al. 2011; Thompson et al.

2016; Plocher and Panesar 2019). The combination, i.e.,

topology optimization of multi-scale structures, thus holds

the promise of superior performance in a general sense.
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Fig. 1 Illustration of a

multi-scale structure

These expectations are sometimes coupled with observation

of multi-scale structures found in nature (e.g., bone and

bamboo (Lakes 1993; Fratzl and Weinkamer 2007)), while

the specific function and the driving mechanisms underlying

those natural multi-scale structures are not always known

precisely.

Figure 1 illustrates a multi-scale structure. Each point

in the macroscale structure effectively represents a periodic

repetition of a local microstructure. Here, as common in

the topology optimization literature, microstructure shall

be interpreted relatively—it does not specifically refer to

a physical size under, e.g., 1 mm but rather to a scale

much smaller than the macroscale. It is thus assumed that

continuum mechanics is applicable to both macro- and

microscales. Some examples of 3D multi-scale structures

designed by topology optimization are shown in Fig. 2.

In view of the rapid development of topology optimiza-

tion of multi-scale structures, it seems timely to critically

review the variety of methods that have been proposed.

The term multi-scale has been used extensively in the lit-

erature (and also in this review) to describe structures and

modelling techniques, as well as design approaches. Many

design approaches make use of multi-scale modelling, i.e.,

they assume separation of length scales. However, mono-

scale modelling can also be used to design multi-scale

structures. In this review, we intend to categorize existing

approaches, explain the principles of each category, analyze

their strengths and applicabilities, and discuss open research

questions. This review is supplemented with our imple-

mentation of representative approaches, based on which we

quantitatively evaluate structural performance. This review

and analysis hopefully will form a basis for future research

and development in this exciting field.

2 Background

In this section, we categorize three fundamental formula-

tions that provide the basis for most multi-scale approaches.

2.1 Homogenization-based structural optimization

A starting point in the history of structural optimization

is the classical work by Michell (1904) where an opti-

mal truss design is represented by a continuum description.

Arguably, this is the first work on multi-scale optimiza-

tion since the truss-like continuum description is actually

a limit case that can only be realized by using an infinite

number of discrete truss members; see Prager and Roz-

vany (1977) for more details. Similarly, Cheng and Olhoff

Fig. 2 Some examples of 3D multi-scale structures designed by

topology optimization. From left to right: a bone-inspired infill struc-

tures, b variable-density lattice optimization, and (c,d,e) three de-

homogenization schemes in 3D. The first three are produced by 3D

printing, while the last two are renderings. a and c Reprinted with

permission from IEEE, from Wu et al. (2018) and Wu et al. (2021),

respectively. b, d and e Reprinted with permission from Elsevier, from

Zhang et al. (2017), Geoffroy-Donders et al. (2020)and Groen et al.

(2020), respectively

1456



Topology optimization of multi-scale structures: a review

Fig. 3 Layout of the unit cell

with a rectangular hole, in local

(y1, y2), and global (x1, x2)

coordinate systems

(1981) found that for the case of optimizing the stiffness

of a plate by varying the thickness, more stiffener-like

reinforcement appeared when the design space was refined.

They made the important conclusion that in the limit of

an infinitely fine mesh an infinite number of stiffener-like

reinforcing members would occur (Cheng 1981). Only by

restricting the variation in shape can existence of a solution

be proven (Niordson 1983). For compliance minimization

in 2 or 3 dimensions, Kohn and Strang (1986) proved

that the optimal material distribution can only be found by

relaxing the design space. This means the use of a contin-

uous composite material description using a characteristic

unit-cell length ǫ → 0, allowing for much more detail

than a single-scale discretized point-wise material or void

description. Here, the theory of homogenization (Bensous-

san et al. 1978) enters the field of structural optimization,

since this is the perfect tool to bridge the scale between the

microscopic periodic composite material and its effective

(homogenized) properties on the macroscale. Using this the-

ory, several research groups independently and more or less

simultaneously realized that there exists a class of sequential

laminates, the so-called rank-N laminates that can achieve

the theoretical upper bounds for maximum strain energy

density (Lurie and Cherkaev 1984; Norris 1985; Francfort

and Murat 1986; Milton 1986). These composite materials

consist of several scales in themselves, which is a nec-

essary condition to achieve ultimate stiffness (Allaire and

Aubry 1999). With this knowledge, Bendsøe and Kikuchi

(1988) came up with the landmark paper that provided

the computational framework to do homogenization-based

topology optimization of continuum structures. Contrary to

using rank-2 laminates that are optimal for a single load

case in 2D, they came up with a single-scale interpretation,

the square microstructure with a rectangular hole, shown in

Fig. 3. By changing the widths μ1 and μ2 as well as the

orientation θ throughout the design domain, near-optimal

structures could be achieved. The use of rank-2 laminates

as a microstructure was included in later works (Bendsøe

1989; Allaire and Kohn 1993).

2.2 Density-based topology optimization

Shortly after the homogenization-based topology optimiza-

tion approach was introduced, an alternative known as the

SIMP (Solid Isotropic Material with Penalization) or power-

law approach was suggested (Bendsøe 1989; Zhou and

Rozvany 1991; Mlejnek 1992). Here, the material distribu-

tion in a design domain is represented by a scalar field, with

a relative density per element in the discretized domain.

Here, ρ = 1 means solid and ρ = 0 means empty. This

integer-programming problem is relaxed to allow for inter-

mediate densities during optimization. Regardless of the

value of the relative density, the material within each ele-

ment is assumed to be isotropic and homogeneous. Material

properties (e.g., Young’s modulus) are related to relative

densities by a power-law interpolation. This seemingly arti-

ficial relationship was later proved physically permissible

for a properly chosen penalty power, e.g., with a power

p ≥ 3 for Poisson’s ratio ν = 1/3 (Bendsøe and Sigmund

1999). Based on this, a heterogeneous material distribu-

tion within the element domain, i.e., a microstructure of

solid base material and void, can be found to match the

expected material properties of an intermediate density.

Hence, even the simple “mono-scale” density approaches

may be interpreted as multi-scale approaches albeit with

suboptimal microstructures. With a justified penalization

power, the SIMP approach converges to near 0-1 solu-

tions, representing mono-scale structures. In a number of

multi-scale approaches to be discussed later, a smaller p is

chosen for obtaining solutions with a large portion of inter-

mediate densities, which provide a basis for filling porous

microstructures. However, this may not be mechanically

valid, c.f. if p < 3 for ν = 1/3, this power-law scheme

violates the Hashin-Strikhman bounds (Hashin and Shtrik-

man 1963). The SIMP approach is easy to implement; see

educational codes (Sigmund 2001; Andreassen et al. 2011;

Ferrari and Sigmund 2020). Here, the three-field projection

approach is recommended (Guest et al. 2004; Xu et al. 2010;

Wang et al. 2011).
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Mono-scale structures can also be optimized by methods

based on level sets (Wang et al. 2003; Allaire et al.

2004), evolutionary procedures (Xie and Steven 1993), and

geometric morphing and projection (Norato et al. 2004; Guo

et al. 2014). For an overview of these methods, we refer

to the reviews by Sigmund and Maute (2013) and Deaton

and Grandhi (2014). The use of non-gradient approaches

for solving topology optimization problems with many

variables is not recommended (Sigmund 2011).

2.3 Inverse homogenization

The theory of numerical homogenization, which approxi-

mates effective properties of a periodic unit cell, can also

be exploited to design a microstructure with desired prop-

erties. This method was introduced by Sigmund (1994)

and is generally referred to as inverse homogenization.

With compliance minimization in mind, it is common prac-

tice to formulate an optimization problem to maximize the

microstructure stiffness with respect to the applied stresses

or strains. For the difference in stiffness between such

microstructures and the optimal energy bounds, see, e.g.,

Guedes et al. (2003) and Träff et al. (2019). Furthermore,

microstructures with negative Poisson’s ratio (Sigmund

1994; Andreassen et al. 2014; Clausen et al. 2015b), materi-

als with maximum shear and bulk moduli (Sigmund 2000),

or materials with increased buckling strength (Thomsen

et al. 2018; Wang and Sigmund 2020) can be designed using

inverse homogenization.

Besides problems in elasticity, inverse homogenization

can be applied to many other types of physics. Sigmund

and Torquato (1996) considered thermal expansion prob-

lems, while Torquato et al. (2002) included both thermal and

electrical conductivity. Sigmund (1999) and Challis et al.

(2012) considered combined stiffness and fluid permeabil-

ity. Inverse homogenization for the design of phononic and

photonic materials has been considered by Sigmund and

Jensen (2003) and Jensen and Sigmund (2011), respectively.

Lately, inverse homogenization has been applied to the

design of photonic isolaters by Christiansen et al. (2019).

For more details on material design using inverse homog-

enization, we refer interested readers to the review papers

by Cadman et al. (2013) and Osanov and Guest (2016) and

the Ph.D. thesis by Andreassen (2015).

3 Full-scale approaches

As mentioned earlier, multi-scale structures can be designed

using either multi-scale or mono-scale modelling. In this re-

view, approaches based on multi-scale modelling (i.e., with

the assumption of separation of length scales) are referred

to as multi-scale approaches. Approaches that do not make

this assumption, i.e., “mono-scale” approaches, optimize

distribution of a homogeneous material. When the design

domain is discretized by a finite-sized mesh, such “mono-

scale” approaches typically result in mono-scale structures.

However, as the discretization of the design domain goes

high, it can directly be used to achieve multi-scale struc-

tures, since theoretical stiffness optimal structures span mul-

tiple scales. By employing careful continuation techniques

and sufficiently fine meshes, and in the absence of regular-

ization for mesh independence such as control of minimum

length, perimeter, or slope, multi-scale structures should

appear naturally. However, the appearance of fine scale

structures may also be stimulated by controlling the layout

locally. In these approaches, analysis and optimization of

structures are performed in the full resolution of the domain,

and we thus refer to them as full-scale approaches.

For local control approaches, two strategies can be dis-

tinguished: pattern repetition and local volume constraints.

In the former, the design domain is partitioned into a num-

ber of subdomains that are further refined. The layout in

each subdomain is enforced to be the same as that in the

others, leading to periodic patterns in the full domain. In

a variation, the subdomains are grouped, and an identical

layout is enforced in subdomains per group, resulting in,

for instance, periodic patterns along one axis with grada-

tion along another. The enforcement of an identical layout

in subdomains can be achieved by creating a template that

links all subdomains. The sensitivity of each point in the

template is the sum of sensitivities of corresponding points

in all linked subdomains. This strategy reduces the solution

space from the full design domain to one subdomain, or a

few for a gradation or partitioning, but the analysis is still

performed on the full mesh.

Pattern repetition is pursued in full-scale approaches as

well as multi-scale approaches. We discuss the former here,

and will return to the latter in subsequent sections. Zhang

and Sun (2006) presented a first and comprehensive study

on creating periodic patterns using topology optimization.

It was shown that topology design results were greatly

influenced by both the number and aspect ratio of the

subdomains. Similar results were later reproduced using

evolutionary procedures (Huang and Xie 2008) and level

sets (Liu et al. 2018b). Almeida et al. (2010) presented

a density-based approach to create pattern repetition as

well as structural symmetry. It is worth noting that

the subdomains do not have to be of the same size.

Repetitive pattern with a variation in size was demonstrated

by Stromberg et al. (2011) and Wu et al. (2016a) for

architectural design, by establishing a mapping between

points in size-varying subdomains. Lately, the principle

of pattern repetition has been used to design mechanisms

(Wu et al. 2020). Designing periodic patterns using full-

scale analysis involves intensive computation. Zhang and
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Sun (2006) proposed to reduce computation time through

condensation—unfortunately, the details were missing in

the original paper. Alexandersen and Lazarov (2015)

showed an enormous reduction in computational cost by

using a spectral coarse basis pre-conditioner that exploits

the repeated patterns, i.e., for each repeated pattern the same

spectral basis can be used.

The second strategy to stimulate fine scale structures is

to apply local volume constraints (Wu et al. 2018). The

idea is to impose an upper bound on the fraction of solid

elements in the neighborhood of every point in the full

design domain. This involves two important parameters: the

radius of the neighborhood which affects the pore size, and

the prescribed upper bound on the local volume fraction

which controls the porosity. Since this creates a large

number of constraints (equal to the number of elements),

aggregation schemes such as the p-norm are often applied

to aggregate the per-element constraints into a global one,

facilitating the optimization process. It is found that local

volume constraints yield bone-like porous structures that are

aligned with principal stress directions (see Fig. 2a). These

structures are robust with respect to load variations, local

material failure, and buckling, at the price of some decrease

in stiffness. A typical way to ensure robustness is to model

uncertainties such as material failure and load variations

in topology optimization, resulting in distributed structures

(e.g., Jansen et al. (2014)). This demands multiple finite

element analyses per optimization iteration. In this regard,

applying local volume constraints is an efficient alternative

for robust design. The concept of local volume constraints

is similar to maximum length scale control, which was

introduced by Guest (2009) and later studied in Lazarov and

Wang (2017) and Carstensen and Guest (2018).

A number of further developments of the local volume

constraints have been proposed. Wu et al. (2017) combined

it with a coating approach (Clausen et al. 2015a) to simu-

ltaneously evolve the (macroscale) structure and the mic-

rostructures therein, referred to as shell-infill composites.

Gradation in the porosity and pore size was demonstrated

by Schmidt et al. (2019). Dou (2020) reformulated the

constraints by a projection method, while Cang et al.

(2019) made use of machine learning algorithms to predict

optimized structures with local volume constraints. This

was recently extended to incorporate multiple materials (Li

et al. 2020). Furthermore, the local volume constraints have

been applied in the context of other physics problems, e.g.,

heat conduction (Yan et al. 2018) and structural mechanics

coupled with heat conduction (Das and Sutradhar 2020).

Figure 4 compares compliance-minimized structures

optimized using a conventional mono-scale formulation

under a total volume constraint (left), with pattern repetition

(middle) and with local volume constraints (right). From

this comparison it can be concluded that:

– Both pattern repetition and local volume constraints

restrict the solution space, and the structure is expected

to be less optimal than obtained from a formulation

on the same resolution without these constraints. While

more tests are not included here, it can be found that the

restriction becomes more pronounced if the size of the

repetitive pattern or the filter radius for defining local

volume is reduced. Oppositely, when the pattern size

or filter radius is larger than the size of the domain,

the constraints have no influence on the solution; the

local volume constraints degenerate to the conventional

global volume constraint.

– Porous structures from local volume constraints exhibit

continuous variations in orientation, while periodic

patterns have a constant orientation. In this sense,

local volume constraints are less restrictive than pattern

repetition in constraining the optimization problem.

Note that pattern repetition also implicitly controls the

volume fraction in subdomains.

4 Classification of multi-scale approaches

Many works on multi-scale optimization repeat the theory to

do numerical homogenization using finite elements, which

Fig. 4 Full-scale optimized structures using the same amount of mate-

rial. The design space is a rectangular domain discretized by 400×200

square elements. The boundary condition is illustrated on the reference

design (left). Middle: Optimized design with enforced pattern repeti-

tion. The size of the pattern is 40 × 40, indicated by a blue transparent

square. Right: Optimized design with local volume constraints. The

radius of the filter for calculating local volumes is 20, indicated by

a blue transparent disk. From left to right, the compliance values are

100.56, 282.82, and 152.28, respectively
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was described in detail by Guedes and Kikuchi (1990).

Based on this theory, Andreassen and Andreasen (2014)

provided an open-source educational Matlab code to do nu-

merical homogenization for plane problems, which has later

been extended to 3D by Dong et al. (2019). However, more

important is how to accurately define the multi-scale opti-

mization problem. Therefore, we will now review some theo-

retical aspects about the problem formulation for compliance

minimization problems for nload load cases. Using spatially

varying microstructures, we can write the corresponding

optimization problem as (e.g., Rodrigues et al. 2002),

max
ρ

∫

Ω ρdΩ≤Vmax

max
EH (ρ)∈Ead

min
uk∈U

{

nload
∑

k=1

wkΠk
tot

}

. (1)

Here, ρ is the macroscale variable describing the porosity

of the varying microstructures, which is subject to an upper

bound on the available material Vmax . EH describes the

homogenized elasticity tensor of the microstructures, which

has to be in the physically admissible set of elasticity

tensors Ead . The inner problem describes the minimization

of potential energy Πk
tot , i.e., the equilibrium constraint

that has to hold for each load case k, where we solve

for displacement field uk in the space of kinematically

admissible displacement fields U . Finally, wk is a weighting

factor to scale the energy for each load case. The compliance

J can be calculated as,

J = −2

{

nload
∑

k=1

wkΠk
tot

}

, (2)

hence, maximizing the total potential energy is equivalent to

minimizing the compliance.

Optimization problem (1) can be solved in different

ways, e.g., as one system of equations using the simultane-

ous analysis and design (SAND) approach (Jog and Haber

1996), or using a sequence of separable convex approxima-

tions using a so-called nested analysis and design (NAND)

approach (Fleury 1993). The latter is the de facto stan-

dard for topology optimization problems. However, solving

problem (1) would, depending on the way the material of the

microstructures is modeled, result in a large KKT matrix for

the maximization with respect to EH . To circumvent this,

we can interchange the maximization with respect to EH

and the minimization with respect to u,

max
ρ

∫

Ω ρdΩ≤Vmax

min
uk∈U

{

max
EH (ρ)∈Ead

{

E(uk, ρ)
}

−

nload
∑

k=1

wkΠk
ext

}

. (3)

Here, Πext is the potential energy of the applied loads for

the k-th load case, and the point-wise optimal strain energy

E can be written as,

E =
1

2

nload
∑

k=1

wk
(

∫

Ω

ε(uk) : EH (ρ) : ε(uk)dΩ
)

. (4)

Hence, we now have an inner point-wise microstructure

optimization problem. As proven by Lipton (1994b),

problem (3) is equivalent to problem (1) if a microstructure

parameterization is used such that the strain energy

is concave with respect to EH . This concavity is a

property of optimal rank-N microstructures. Hence, if

suboptimal microstructures are used, the optimality of the

solution to problem (3) cannot be guaranteed. Nevertheless,

problem (3) results in an optimization problem that is

independent of the material description and thus forms

the basis for the vast majority of multi-scale topology

optimization approaches. The most common way to solve

the optimization problem (3) is to use a hierarchical solution

procedure (see, e.g., Bendsøe and Sigmund (2004) for

a detailed description), which can be summarized in the

flowchart below.

1. Initialize data: Geometry, mesh, boundary conditions,

density ρ, microstructure description EH , etc.

2. Analysis: Solve for macroscale displacements uk .

3. Microstructure optimization: Solve point-wise for EH

by maximizing E for given strains and ρ.

4. Density update: Update the outer maximization prob-

lem, subject to volume constraint.

5. Check convergence: Check if the optimization problem

is converged. If not, repeat steps 2–5.

It is not necessary to solve the problem exactly like

this. For example, one can combine the global density

update and all local problems in one large optimization

step (see, e.g., Bendsøe and Kikuchi (1988)). However,

for problems with a large number of design variables,

the separation in local and global problems allows for

reducing the computational time through the use of parallel

computations (Coelho et al. 2008).

An alternative to the hierarchical formulation (problem

(1)) is to assign two sets of design variables, i.e., on

both macro- and microscales, and concurrently optimize

these two sets. This concurrent formulation, known as

PAMP (Porous Anisotropic Material with Penalization),

was proposed by Liu et al. (2008) to design microstructures

and their macroscopic layout.

Problem (3) and the abovementioned flowchart will

be used to categorize multi-scale approaches later on.

Although the equation concerns compliance minimization

in the elasticity setting, similar looking equations and

flowcharts can be made for different types of physics

including additional constraints. Each of these multi-scale

problems can be divided into a sequence of three related

optimization problems, i.e., a state problem; a global

parameter distribution problem; and one or many local

microstructure optimization problems. The key point in

classifying the different multi-scale topology optimization
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approaches is to determine what kinds of restrictions are

applied to the solution space of each of the sub-problems.

For now, we assume that at least the state problem is

solved up to full accuracy in each of the multi-scale

problems, although this may not apply to deep learning

or iterative solution approaches. Hence, we classify the

different approaches by (1) the restrictions that are applied

to the density distribution and (2) the restrictions that are

applied to the admissible set of properties Ead that can be

achieved by the parameterized microstructure.

It should be mentioned that even in the elasticity setting

it is not for all cases exactly known which constitutive

tensors are realizable (Milton et al. 2017). For example,

microstructures that reach minimum shear modulus at the

Walpole point have never been realized (Sigmund 2000).

However, as discussed above, rank-N laminates cover the

full space of optimal designs for compliance minimization

problems. In other words, if one uses rank-N laminates for

the microstructure description one can solve problem (3)

to the true optimum. It is known that for a single load

case in a 2D setting, rank-2 laminates are sufficient to

describe the optimal solution, while for multiple load cases

a rank-3 laminate is required (Avellaneda 1987). Hence,

if one would only use a rank-2 parameterization for a

multiple load case problem, the optimality could be severely

reduced. Since the vast majority of works on multi-scale

topology optimization use (strongly) restricted sets Ead

(for computational, manufacturing or other reasons), we

categorize approaches based on the following restrictions,

starting with the least restricted category:

I Optimal set of elasticity tensors: Ead is represented

by a geometry parameterization that allows the local

problem to be solved to optimality. This is for

elasticity and conduction problems the set of rank-N

laminates (Allaire 2002). However, note that, for many

other types of problems, the optimal set of constitutive

tensors is not exactly known yet.

II Unrestricted unit-cell design: Ead contains the set

of unit cells that can be obtained using inverse

homogenization, without restrictions on the material

distribution, shape, connectivity, or orientation of the

unit cell. This means that if a fine enough discretization

is used, the microstructures should converge to what

is theoretically possible. However, in practice, limited

mesh resolution will cause suboptimal microstructures.

III Restricted unit-cell design: Ead contains the set of unit

cells that can be obtained using inverse homogeniza-

tion with restrictions on material distribution, unit-cell

shape, connectivity, or orientation. For example, this

can be a square unit cell or a design with pre-defined

solid elements, both resulting in severely restricted

design freedom.

IV Parameterized unit cell with multiple parameters: Ead

contains a set of pre-computed parameterized unit

cells such that the microstructure is parameterized

using more than 1 parameter. For example, this can

be the rectangular hole microstructure by Bendsøe

and Kikuchi (1988). Due to the rotational freedom,

the rectangular hole cell actually performs almost as

well as rank-2 microstructures (Bendsøe and Sigmund

1999), if properly de-homogenized.

V Parameterized unit cell based on density: Ead con-

tains a single constitutive tensor EH for a given

microstructure density ρ. This is the most restrictive

case since it does not involve a local optimization prob-

lem. Isotropic microstructures satisfying the Hashin-

Shtrikman bounds (Hashin and Shtrikman 1963) fall

in this category since the isotropic elasticity tensor

follows only from the density. Likewise, the SIMP

approach with a penalty parameter p that satisfies

the Hashin-Shtrikman bounds (Bendsøe and Sigmund

1999) falls into this category.

The difference between category III where the

microstructure topology is optimized during the optimiza-

tion process and category IV is that for category IV a

database of pre-computed microstructural properties is

generated. Hence, category IV will require a heavy pre-

computation step, but afterwards the optimization problem

can be solved more efficiently.

There are many works that consider a set of elasticity

tensors Ead outside of the bounds on what is theoretically

possible. An example of this is the free material optimiza-

tion (FMO) approach (Bendsøe et al. 1994), which has also

been used in two-scale structural optimization (Schury et al.

2012; Hu et al. 2020). In this method, the entries of EH

are the design variables, and using either a constraint on a

norm or on eigenvalues of EH one can try to relate the ten-

sor to a density distribution. Nevertheless, there is no direct

relation between the bounds used on the tensor and the

Hashin-Shtrikman bounds; and therefore, we will not dis-

cuss the FMO method further in this review. Another good

example of violation of the bounds is the variable thickness

sheet problem (Rossow and Taylor 1973), i.e., the SIMP

method with p = 1. In 2 dimensions, we can justify these

designs by interpreting density as a thickness in the out-

of-plane direction. Hence, it should therefore be seen as a

sizing problem. However, the model becomes invalid if used

to pre-compute a global density distribution for a subse-

quent porous microstructure realization. One cannot make

an in-plane realization of these variable thickness designs

and therefore works that use SIMP with p = 1 for any

porous or 3D design problem should be avoided.

Finally, we can categorize the outer problem into three

different categories.
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A Unrestricted density: There are no restrictions on the

density, i.e., ρ ∈ [0, 1].

B Restricted density: Only a few values of ρ are allowed.

For example, this applies to the SIMP method (possibly

combined with a projection method (Guest et al. 2004)

to reduce elements with intermediate densities), and

also the PAMP approach (Liu et al. 2008) falls into

this category. This also applies to interface bounded

approaches (Clausen et al. 2015a; Groen et al. 2019;

Luo et al. 2019) with a fixed infill density and a solid

outer shell.

C Fixed density: The density field is fixed, i.e., there is no

outer optimization problem. This is, for example, a uni-

form density field or a density distribution based on

some prior optimization problem. Note that a fixed

density does not necessarily restrict the unit cell to

be periodic, though this is the case in Cherkaev et al.

(1998) and Fujii et al. (2001). A fixed density permits

unit cell adaptation, e.g., rotation (Wu et al. 2021).

In total, we can thus identify 5 × 3 different categories

of multi-scale topology optimization problems, which are

summarized in Table 1. Here, we also list a fundamental

paper for each category (if available).

5Multi-scale approaches

This section is organized in accordance with the above

classification based on restrictions on unit cells. We start

with the least restricted category—the optimal set of

constitutive properties (I), and then proceed directly to

the most restricted one where unit cells are parameterized

by a single parameter, i.e., density (V). This is followed

by categories with increasing flexibility in the unit cell

parameterization (II, III, IV). This order is found to align

with the chronological order of the first article in each

category (see Table 1, column A).

5.1 Optimal set of constitutive properties

In the context of elasticity, the minimum number of

sequential layers that is required to parameterize the optimal

solution using rank-N microstructures depends on both

the number of load cases and the dimension of the

problem (Avellaneda 1987; Francfort and Murat 1986):

– Rank-2 laminates with orthogonal layers, for plane

problems subject to a single load case

– Rank-3 laminates, for plane problems subject to

multiple load cases

– Rank-3 laminates with orthogonal layers, for problems

in 3D subject to a single load case

– Rank-6 laminates for problems in 3D subject to

multiple load cases

Hence, at most, 7 different length scales are needed to describe

an optimal material parameterization in 3D, i.e., six length

scales for the microstructure and one for the macroscopic

parameterization. The elasticity tensors of these multi-scale

laminates can be derived analytically, allowing the local

microstructure optimization problems to be solved in a very

efficient manner. For example, for a rank-2 laminate shown

in Fig. 5 (right) the first layering is constructed on the

infinitesimal length scale x/ǫ2 shown in Fig. 5 (left). This

layering can be described by the relative layer width μ1

that describes the ratio of the isotropic stiff material (+)

compared to the weak void material (-) and the interface

normal n1 and tangent t1. Subsequently, the rank-2 laminate

is constructed using a second layering on length scale x/ǫ

using relative layer width μ2 that describes the ratio of the

stiff material to the first layering. By ensuring orthogonal

interface vectors, the elasticity tensor is thus defined by

only three parameters, μ1, μ2, and θ2, besides the material

properties of the stiff (+) and weak (-) phase respectively.

The first work in which topology optimization using

rank-2 laminates was considered is the work by Bendsøe

(1989). Subsequently, Allaire and Kohn (1993) proved that

the optimal design for plane problem subject to a single load

case can be described purely by the stress distribution in the

macroscopic domain. Multiple load case problems, where

the design is parameterized using optimal rank-3 laminates,

have been considered for both plane problems (Allaire et al.

1996; Cherkaev et al. 1998) and plate/shell problems (Dı́az

et al. 1995; Hammer et al. 1997; Krog and Olhoff 1999).

By choosing different plate layouts, e.g., using a fixed core

thickness, Soto and Dı́az (1993) and Krog and Olhoff (1999)

Table 1 Categories of multi-scale topology optimization problems and representative papers

A: Unrestricted density B: Restricted density C: Fixed density

I: Optimal set of elasticity tensors Rank-2 (Bendsøe 1989) Soto and Dı́az (1993) Cherkaev et al. (1998)

II: Unrestricted unit-cell design Barbarosie and Toader (2014) – –

III: Restricted unit-cell design Rodrigues et al. (2002) Liu et al. (2008) Fujii et al. (2001)

IV: Parameterized unit cell with multiple parameters Bendsøe and Kikuchi (1988) Groen et al. (2019) Wu et al. (2021)

V: Parameterized unit cell based on density SIMP (Bendsøe 1989) Guest et al. (2004) Finite element analysis
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Fig. 5 Visualization of how a

rank-2 microstructure is

constructed from a stiff isotropic

material (+) and a

weak/compliant isotropic

material (-). Please note the

different length scales, on the

left x/ǫ2 and on the right x/ǫ,

with the characteristic unit-cell

length ǫ → 0

θ1

 x2/ϵ
2

 x1/ϵ
2

θ1

n
1

t
1μ1

(1-μ1)

(+)

(-)

θ2

n
2

μ2

(1-μ2)

t
2

 x1/ϵ

(+)

(Rank-1)

 x2/ϵ

showed the effect of using several density restrictions on

the performance. The effect of restricting the amount of

unique microstructures in the domain has been investigated

by Cherkaev et al. (1998), who demonstrated that the

performance can be at least twice as bad if only 1 or a few

unique micostructures are used in the design domain.

The method has been applied to 3D topology optimiza-

tion problems, where orthogonal rank-3 laminates are used

for single load case problems (Cherkaev and Palais 1996;

Allaire et al. 1997; Dı́az and Lipton 1997; Olhoff et al. 1998;

Czarnecki and Lewiński 2006). Multiple load cases are con-

sidered by Dı́az and Lipton (2000). A nice feature of rank-N

laminates is that they provide a lower bound on the theoreti-

cal compliance that can be reached. It is thus recommended

to include this comparison when presenting a multi-scale

approach. To help doing so, we supply a code for the opti-

mization of rank-2 microstructures, which is discussed in

Appendix.

A downside of structures optimized using rank-N

laminates is that they consist of several length scales.

This poses two challenges. Firstly, although technology is

rapidly developing and lab work has demonstrated multi-

scale manufacturing capability (e.g., Zheng et al. (2016)),

a majority of manufacturing techniques do not yet support

precise production of structures spanning multiple length

scales. Hence, single scale interpretation of multi-scale

rank-N laminates is required. Träff et al. (2019) have

shown that the multi-scale rank-N microstructures can be

approximated on a single scale with only a small loss in

performance. Secondly, it is necessary to compile globally

consistent structures from locally defined rank-N laminates

(or their simplified versions), i.e., to de-homogenize the

results. This problem was first addressed by Pantz and

Trabelsi (2008), who used an implicit geometry description

to interpret the optimized multi-scale designs on a single

length scale with little loss in performance. More details on

de-homogenization will be presented later in Section 5.3.1.

Another difficulty with the interpretation of rank-N

microstructures is that, for multiple load cases, there exist

an infinite number of different microstructure parameter-

izations that can reach the same elasticity tensor. As an

example, consider the planar unit-cell optimization problem

using four independent load cases shown in Fig. 6 (top).

If we optimize for minimum complementary energy and

find the corresponding rank-3 laminates using the method

of Lipton (1994a), we obtain the four distinct microstructure

realizations shown in Fig. 6 (bottom). These microstruc-

tures and an infinite number of combinations thereof can

Fig. 6 Top: Illustration of the

four stress cases and their

respective weights. Bottom:

Visualizations of optimal rank-3

laminates with indicated

hierarchy, optimized for the 4

stress cases using

ρ = 0.5 (Groen 2019) 0.150.35 0.150.35
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Fig. 7 Three types of 3D unit

cells, from left to right, truss- or

beam-like lattice structure, triply

periodic minimal surface

(TPMS), and topology

optimized microstructure

(Reprinted from Andreassen

et al. 2014 with permission from

Elsevier)

achieve the same minimum complementary energy, which

is both an advantage and a difficulty when finding practical

interpretations of rank-N designs.

Finally, it should be mentioned again that for many

problems beyond elasticity and heat conduction, a full

parameterization of the optimal set of constitutive properties

is yet to be found. Finding these bounds on the properties

and geometries that reach these bounds is a research field

on its own. The interested reader is referred to the books on

the theory of composites by Milton (2002, 2016).

5.2 Parameterized unit cell based on density

Predefined cellular structures such as those shown in

Fig. 7 have been used to efficiently design multi-

scale components. Common in many of these multi-scale

approaches is the use of homogenization to evaluate

the effective material properties of predefined unit cells.

Since the cells are predefined, homogenization can be

performed off-line prior to optimization. This allows to

generate structures with fine geometric details at a run-

time computational complexity comparable to mono-scale

approaches (Section 2.2). This is attractive, as evidenced by

the large number of publications and industrial examples

falling into this category. Predefined unit cells reduce the

solution space of the microstructures to a dimension of 1

(or a few, see Section 5.3). This distinguishes this approach

from hierarchical or concurrent approaches (Sections 5.4

and 5.5), where microstructures are represented by multi-

variable density fields. This distinction is meaningful for

implementation. Since the solution space is reduced, it is

convenient to construct a differentiable function that maps

the reduced parameters to homogenized properties, and use

this function in macroscale optimization.

A typical application of these approaches is to design 3D

printed components with uniform infill patterns. From the

optimization perspective, this requires no or little adaption

of mono-scale optimization approaches. The repeating unit

cell can be interpreted as a material, the distribution

of which is then optimized by mono-scale approaches.

Note that the unit cells interpreted as a material can be

isotropic or anisotropic. An example of the former is a

2D beam-like lattice structure constructed from a regular

triangular tiling (Clausen et al. 2016). In contrast, the 2D

lattice structure from a regular square tiling is anisotropic.

Most mono-scale optimization approaches in their standard

form deal with isotropic materials. To handle anisotropic

materials, the stiffness matrices in finite element analysis

must be adapted to reflect the homogenized elasticity tensor

of the anisotropic material. Also note that if not optimally

oriented along local principal stress directions, anisotropic

microstructures may result in highly suboptimal results.

There has been a growing interest in designing com-

ponents with graded cellular structures. Here, the input to

optimization extends from a single unit cell to a set of cells

with gradation in porosity and effective material proper-

ties (e.g., elasticity tensor). This set can thus be referred

to as functionally graded cells. They are typically param-

eterized by the fraction of solid material within each cell

(ρ), naturally serving as the design variable in optimization.

The homogenized elasticity tensor (EH ) is a function of

ρ, EH (ρ), which can be constructed by interpolating elas-

ticity tensors of sample cells with equally spaced material

fractions. EH (ρ) thus depends on the specific functionally

graded cells, and in general it deviates from the power-

law relation. This function for X-shaped lattice structures

with varying thicknesses is visualized in Fig. 8a, where the

power-law curves with p = 1 (i.e., unpenalized), 2 and 3

are also plotted. For accurately representing the correspond-

ing mechanical properties, the cell-specific EH (ρ) shall

be used in lieu of the generic power-law in density-based

topology optimization. The cell-specific EH (ρ) is com-

monly constructed using numerical homogenization. Wu

et al. (2019) proposed an alternative surrogate model for

mapping the effective properties of density parameterized

unit cells. It used static condensation to reduce the degrees

of freedom of unit cells, followed by proper orthogonal

decomposition and diffuse approximation for mapping the

density to unit cell stiffness matrix.

Cell-specific material interpolation models have been

used in the optimization for components consisting of

gyroid-based cellular structures (Li et al. 2018a) and beam-

like lattice structures (Wang et al. 2018; Watts et al. 2019),

as well as topology optimized microstructures (Garner et al.

2019). Graded cellular structures can also be obtained

by post-processing an unmodified SIMP-based mono-scale

topology optimization approach, e.g., by replacing the

intermediate densities by unit cells of the corresponding
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Fig. 8 Comparison of different interpolations for topology optimiza-

tion of a cantilever beam using a volume fraction of 25%. a Inter-

polation functions for square-shaped (Es ) and X-shaped (Ex ) lattice

cells with varying member thicknesses. The samples of square- and

X-shaped cells are marked by � and ×, respectively. b, c Opti-

mized density distributions using square- and X-shaped cells with

cell-specific interpolation functions, respectively. d, e Optimized

density distributions using a SIMP interpolation, with p = 1 and 3,

respectively. In d and e, c indicates the compliance estimated by the

generic (unphysical) power-law, while cs and cx refer to the compli-

ance re-evaluated with cell-specific elasticity tensors. SIMP with p = 1

d significantly overestimates the stiffness of lattice cells. f A reference

design by using rank-2 material (obtained with code in Appendix)

material fractions (Brackett et al. 2011; Panesar et al.

2018). Figure 8 compares interpolation schemes for two

different unit cells (c.f., (b) and (c)) with varying member

thicknesses. The comparison is performed on the 2D

cantilever problem, thoroughly studied by Sigmund et al.

(2016). The domain is fixed at its left edge and loaded with

a unit vertical load distributed over the central 10% of the

right edge. Young’s moduli for the solid and void material

are E0 = 1 and Emin = 0.001, respectively1. Poisson’s

ratio is ν0 = 0.3 for both materials2. The compliances of

the designs using the cell-specific interpolation functions

(b and c) are much smaller than the design using generic

(unphysical) power-law with p = 1 (d) and post-processed

by interpreting gray elements with square- or X-shaped

cells, demonstrating the significance of using an accurate

material interpolation model in optimization. It simply

does not make mechanical sense to use a non-physical

macroscale model like SIMP with p = 1 to control the

macroscopic density in multi-scale approaches. In (d), the

post-process of replacing gray elements by square-shaped

cells leads to a large compliance of cs = 1017.03, since

low-density square-shaped cells are weak in shear. The

designs using cell-specific interpolations (b and c) have

1For rank-2 material, continuation can be applied to allow for a smaller

value of Emin; see Appendix.
2ν0 = 0.0 was used in Sigmund et al. (2016)

higher compliance values than design (e) using the power

law with p = 3 (p starts from 1 and is increased by 0.2

every 50 iterations). This suggests the optimization using

cell-specific interpolations gets stuck in local minima. The

number of iterations for obtaining both (b) and (c) is 400.

Design (b) has a density distribution close to black and

white, while design (c) has large gray regions. X-Shaped

cells have large shear moduli, making it economical to

place gray elements in the middle of the beam which is

predominately under shear stress. Rank-2 material achieves

optimal stiffness (f) due to the alignment of material

anisotropy with principal stress directions, whereas the

fixed orientation of the square- and X-shaped lattice cells

restricts the adaptation of material anisotropy.

The curves for EH
ij (ρ) for the square- and X-shaped

cells are lower than the theoretical limit according to

the Hashin–Shtrikman bounds (Hashin and Shtrikman

1963). This means a suboptimal use of material using

cellular structures with a simple geometry. To improve

the properties, Zhou and Li (2008) applied inverse

homogenization (see Section 2.3) to design a series of

unit cells with varying material fractions. Figure 9 (top)

shows unit cells independently optimized for an increasing

material fraction, using the code provided by Xia and

Breitkopf (2015). These optimized cells have distinct

topology, owing to the large solution space in topology

optimization. It is also noticeable that neighboring cells,

1465



J. Wu et al.

Fig. 9 Top: Illustration of poorly connected microstructures. The unit

cells are individually optimized for maximum bulk modulus under

linearly varying volume fractions from 30 to 50%, from left to right.

Bottom: Optimized connectivity, achieved by maximizing the bulk

modulus of extended domains covering adjacent cells (Garner et al.

2019). Reprinted from Garner et al. (2019) with permission from

Elsevier

despite being close in terms of material fractions, may have

poor connectivity across the interface (see Fig. 9 (top),

between the first and second and between the third and

fourth cells). The connectivity issue is also recognizable

in hierarchical approaches (Rodrigues et al. 2002), to be

discussed in Section 5.4. Note that this is less of a problem

in cellular structures parameterized by thickness since the

topology there is constant, as long as the thickness does not

vanish to 0.

Zhou and Li (2008) proposed three methods to

address the connectivity issue between topology optimized

microstructures: kinematic connectivity constraint, pseudo

load, and unified formulation with non-linear diffusion. In

the first two, unit cells are optimized individually, while

solid non-design regions or pseudo loads are prescribed

along the domain boundary to stimulate connectivity. In

the last, unit cells are optimized altogether, while a non-

linear diffusion term defined on the domain covering all

cells is integrated in the objective function to penalize dis-

connection and suppress checkerboard patterns. Radman

(2013a, b) improved the computational efficiency of the

unified formulation by successively optimizing new unit

cells, while considering connection to already optimized

cells. Du et al. (2018) proposed a physics-independent

connectivity index, which measures the amount of overlap

in adjacent cells across the shared interface. Garner et al.

(2019) proposed to optimize the connectivity, quantified

by the physical properties of interest (e.g., bulk modulus)

of an extended domain that covers adjacent cells. Poor

connectivity between adjacent cells leads to an inferior

bulk modulus for the extended domain as a compound

cell, and thus is effectively suppressed in optimization.

Figure 9 (bottom) shows results from this compound for-

mulation. Mapping these compatibility optimized cells to a

compliance-minimized macroscale density distribution, and

evaluating structural compliance using both full-scale and

homogenization-based analyses, it was found that the dis-

crepancy is small (a relative error of 2%). This small error

is also attributed to the limited and slowly varying nature of

the microstructure which satisfies basic assumptions of the

homogenization-based multi-scale modelling. This method

has been demonstrated for optimizing up to 100 varying

unit cells in 2D. Optimizing a large number of unit cells

in 3D can be computationally expensive. Cramer et al.

(2016) proposed geometric interpolation to obtain transi-

tioning microstructures between individually optimized unit

cells. This geometric approach works for microstructures of

similar topology.

Cellular structures, both assemblies of geometric primi-

tives and topology optimized microstructures, are typically

defined within a square or cube domain. Such a fixed design

domain may limit the achievable properties (c.f., Träff et al.

(2019)). These cellular structures may be square symmet-

ric (2D) or cubic symmetric (3D) but not (necessarily)

isotropic. If orthotropic directions are oriented along regular

finite element grid directions and not along principal stress

directions as recommended by Pedersen (1989), inferior

stiffness may be the result.

5.3 Parameterized unit cell withmultiple parameters

Functionally graded cells can be obtained by uniformly

varying the thickness of the geometric primitives in the

cell domain, e.g., the square- and X-shaped 2D lattices

in the previous subsection. Consequently, each element in

the macroscale optimization is assigned a single design

variable, the material volume fraction, ρ(d), where d

is the thickness. To enlarge the solution space, the

parameterization of unit cells can be extended. The unit

cell in Fig. 10 (middle) has two superimposed geometric

patterns, i.e., an X shape and a plus shape, each with an

independent thickness, leading to more variations in the

attainable elasticity tensor, EH (d, t). The number of design

variables per element can be further increased, e.g., by

assigning an individual thickness per geometric primitive,

indicated by different colors in Fig. 10 (right). Graded

lattice structures in 2D and 3D optimized with multiple

design variables per macro element have been demonstrated

by Wang (2018, 2020). Imediegwu et al. (2019) used

a lattice cell with seven independent parameters for 3D

optimization. As the number of independent parameters

Fig. 10 Illustration of unit cells with 1, 2, and 4 independent

parameters, from left to right
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Fig. 11 Single-scale interpretations of a multi-scale design for the

Michell cantilever using a volume fraction of 0.4 and the microstruc-

tures by Bendsøe and Kikuchi (1988). Left: Naive interpretation, right:

de-homogenized design using the approach presented in Groen and

Sigmund (2018). Reprinted from Groen et al. (2019) with permission

from John Wiley & Sons

for describing the unit cell increases, a large number of

numerical homogenization operations is required. White

et al. (2019) proposed a neural network surrogate model

to provide the mapping from parameters to resulting

metamaterial properties. Zhu et al. (2017) pre-computed the

space of attainable Young’s modulus and Poisson’s ratio

for certain types of microstructures, and used this space

as a constraint for macroscale topology optimization with

microstructures. Zhu et al. (2019) presented an approach

for concurrent optimization of the microscale material

distribution and a macroscale mapping function which

transforms periodic microstructures into graded ones. This

was extended and demonstrated for 3D problems (Xue et al.

2020).

As the number of parameters increases, the potential to

generate a variety in the anisotropic directions of the mic-

rostructures increases, and this, to some extent, allows an

adaption of microstructural anisotropy to the local stress di-

rections during optimization. To ultimately align the aniso-

tropy of microstructures to stress directions, it is critical to

release the rotational freedom in the unit cell parameteriza-

tion, as pioneered by Bendsøe and Kikuchi (1988).

5.3.1 De-homogenization

A benefit of the approaches using parameterized unit cells

with multiple parameters including rotation is that one

can get optimized designs that perform very close to the

theoretical limit. For example, let us consider a classical

optimization example: the Michell cantilever clamped on

the left with a unit load on 20% of the right boundary.

Using the square microstructure with a rectangular hole

by Bendsøe and Kikuchi (1988) shown in Fig. 3, and

parameterizing the design domain by 80 × 40 bi-linear

elements, we can obtain a compliance value of 58.35 for an

upper bound on the material volume fraction of 0.4. This

is very close to the value of 56.73 obtained using optimal

rank-2 microstructures reported in Sigmund et al. (2016).

Although the microstructures are on a single length scale, it

is still difficult to interpret the spatially varying multi-scale

design as a well-connected manufacturable design. A naive

approach would be to enlarge each microstructure to the

size of a bi-linear element and apply the appropriate

orientation. As can be seen in Fig. 11 (left), this results in a

disconnected design. The process of constructing connected

and physically realizable designs from homogenization-

based optimization is referred to as de-homogenization—a

term coined by G. Allaire and colleagues.

A very promising post-processing method to obtain well-

connected mono-scale designs from a spatially varying

multi-scale design is the de-homogenization method intro-

duced by Pantz and Trabelsi (2008). Using this method, an

implicit geometry description is created to represent/enlarge

the multi-scale design to a fine but realizable single length

scale. In recent years, the interest in this approach has

renewed, resulting in simplifications and improvements of

the approach (Groen and Sigmund 2018; Allaire et al.

2018). The approach of Groen and Sigmund (2018), applied

to the Michell cantilever, resulted in the high-resolution

mono-scale design (1600 × 800 elements) shown in Fig. 11

(right). A minimum feature size is applied and resulting

compliance is 59.55. The core idea of the approach is to cre-

ate a set of smooth mapping functions φi(x) that convert

from the global frame of reference x to the microstructure

frame of reference y. In other words, we create a conformal-

like map in a similar fashion as texture mapping (Lévy et al.

2002). The most important requirement is that the spatially

varying microstructure orientation is smooth throughout the

domain such that smooth mapping functions φi(x) can be

generated. A visual overview of how the approach works is

given in Fig. 12. Consider a coated domain (Fig. 12a) with a

porous interior using the microstructure in Fig. 3 with μ1 =

μ2 = 0.1, the corresponding microstructure orientation θ

is shown in Fig. 12b. One of the two mapping functions

φ1(x) is shown in Fig. 12c and the corresponding de-

homogenized design is seen in Fig. 12d. A main advantage

of this approach is that since it uses an implicit geometry

description, the design can be evaluated at an infinitely fine

resolution. Furthermore, the periodicity (i.e., the amount of

microstructures) can be explicitly controlled, even to have
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Fig. 12 Example of the de-homogenization procedure. From left to

right, a coated domain, b microstructure orientation θ , c mapping func-

tion φ1(x), d de-homogenized design, e de-homogenized design using

adaptive periodicity approach from (Groen et al. 2019). Reprinted

from Groen et al. (2019) with permission from Elsevier

a more uniform spacing as can be seen in Fig. 12e (Groen

et al. 2019). It has to be mentioned that different kinds of

microstructures (i.e., with non-orthogonal features) can be

de-homogenized as well (Geoffroy-Donders 2018; Groen

2019; Kumar and Suresh 2020; Tamijani et al. 2020).

A challenge of the de-homogenization approach is to

allow a smooth microstructure orientation throughout the

domain. This is especially an issue since the elasticity

tensor has a rotational symmetry of π , i.e., rotating the

microstructure 180° does not affect the properties; however,

it complicates the de-homogenization. To circumvent this,

Pantz and Trabelsi (2008) proposed a two-field approach to

solve for φi(x). In a different approach, Groen and Sigmund

(2018) used an image-based sorting approach, while Allaire

et al. (2018) used a discontinuous Galerkin approach to

solve for φi(x). Furthermore, it is known that singularities

can occur in the design domain, either caused by the

stress field or caused by regularization methods. Hence,

the algorithms should be able to handle these singularities.

Different approaches to do so are discussed in Pantz and

Trabelsi (2010), Geoffroy-Donders (2018), and Stutz et al.

(2020). The extension of the approach to 3D requires a

solution to the problem that the principal stress directions

are not well-ordered in 3D. To circumvent this, Geoffroy-

Donders et al. (2020) introduced a regularization functional,

while Groen et al. (2020) combined a regularization and an

image-based sorting approach.

A further challenge is the de-homogenization of rank-N

designs optimized for multiple load cases. The non-uniqueness

of the optimal microstructures, which allows for an

infinite amount of designs, has to be taken into account,

since the de-homogenization procedure requires smooth

vector fields throughout the design domain. Hence, making

sure that the microstructure orientation is continuous

throughout Ω , without restricting the performance is a key

challenge (Groen 2019).

Above approaches seek a global parameterization of each

of the principal stress directions. In a different approach,

de-homogenization is cast as finding a quadrilateral (2D) or

hexahedral (3D) mesh with each edge being aligned with

the optimized stress directions (Wu et al. 2021), borrowing

ideas from field-aligned meshing (Jakob et al. 2015; Gao

et al. 2017). Instead of decomposing a tensor field into

three vector fields, the difference between the orientation

of a (locally parameterized) quad/hex element and a stress

tensor is measured by comparing all possible perturbations

of decomposed directions. The cumulative difference over

all elements is minimized by an iterative local updating

scheme. This approach is demonstrated in combination

with a modified version of the rectangular hole model. As

illustrated in Fig. 13a for 2D cases, the unit cell is allowed

to rotate (θ ) and elongate independently along each axis (αx

and αy). In addition, another design variable (not shown in

(a)), similarly used in PAMP (Liu et al. 2008), is introduced

to encode whether or not a finite element is filled with

lattices. The optimized lattice distribution and the compiled

continuous lattice structure are shown in Fig. 13b and

c, respectively. The optimized structure possesses spatial

Fig. 13 a The unit cell, a modified version of the rectangular hole

model, adapts by rotating and elongation. b The optimized lattice

distribution for the Michell cantilever using 15% solid material. The

frames are rotated and elongated according to the optimized fields. c

A continuous lattice structure compiled from b, demonstrating spa-

tial variations in orientation, porosity, and anisotropy (Wu et al. 2021).

©2021 IEEE. Reprinted, with permission, from Wu et al. (2021)
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variations in orientation, porosity, and anisotropy. A 3D

example is shown in Fig. 2c.

Yet another mapping strategy is to modify crossing of

contour lines of aforementioned φ fields, connect these

by truss or frame elements, and then tune nodal positions

and connectivities in a subsequent shape optimization

process (Larsen et al. 2018).

5.4 Restricted unit-cell design

Predefined cellular structures are beneficial for computa-

tional efficiency. However, they may significantly restrict

the solution space. To access the full solution space, while

avoiding intensive full-scale analysis, an idea is to use a

hierarchical formulation. Hierarchical optimization of mate-

rial and structure dates back to Rodrigues et al. (2002)

which was later extended to 3D (Coelho et al. 2008),

both using SIMP. Comparable results were reproduced with

level sets (Sivapuram et al. 2016). Hierarchical optimiza-

tion combined with inverse homogenization is also referred

to as concurrent (or simultaneous) optimization of struc-

ture and material (or microstructure). Like in approaches

in other categories, here, a two-scale discretization of the

domain is employed. The formulation involves one prob-

lem at the global (or macro) scale and many problems

at the local (or micro) scale. The global problem deter-

mines the macroscopic spatial distribution of homogenized

material, and local problems determine microscopic spa-

tial distribution of solid and void phases by optimizing for

homogenized properties. The structural equilibrium in the

macroscale is in general nonlinear due to the microstructure

adaptation (Jog and Haber 1996). A nonlinear resolution

framework based on FE2 scheme was developed to address

this nonlinearity (Xia and Breitkopf 2014). This subsection

discusses approaches that prescribe the domain shape of

microstructures and/or their orientation.

The microstructural optimization problem (inverse

homogenization) should result in single-scale approxima-

tions of theoretically optimal rank-N composites. In a recent

work, it was found that inverse homogenization at low vol-

ume fractions is prone to producing local optima, and a

simple mapping approach was suggested to approxi-

mate rank-3 laminates (Träff et al. 2019). These mapped

microstructures perform relatively close to theoretical

energy bounds, and can serve as starting guesses for inverse

homogenization problems to achieve performances even

closer to the bounds.

In each iteration of a hierarchical solution process, fol-

lowing a solved global problem, the local problems become

independent from each other. On the positive side, the inde-

pendent problems can be solved in parallel by sending sets

of local problems to different processors (Coelho et al.

2011). This gains a computational speedup and thus allows

solving two-scale problems in 3D. On the other hand, the

independent nature of the local problems creates a criti-

cal challenge regarding the compatibility of microstructures

across the shared boundary. We emphasize that the prob-

lem of concern is related to structural properties beyond the

disconnected geometry, and thus choose to use compatibil-

ity in lieu of connectivity. The compatibility problem arises

since disconnections between adjacent microstructures are

not captured in the global analysis using homogenized prop-

erties (separation of scales). A mechanical indication of

compatibility is the discrepancy between the objective (e.g.,

compliance) evaluated by a full-scale analysis and by an

analysis using the homogenized properties (Garner et al.

2019). Some approaches summarized in Section 5.2 for

improving compatibility in functionally graded microstruc-

tures are also applicable to the hierarchical optimization.

For instance, by using extended domains that overlap in

local optimizations, the compatibility can be significantly

improved, reducing the discrepancy in compliance val-

ues between full-scale and homogenization analyses from

six orders of magnitude to two (Garner et al. 2019) (see

Fig. 14). While this is good progress, a discrepancy of

two orders of magnitude is still alarming. To examine the

optimality, we can visually compare hierarchically opti-

mized structures with those from full-scale approaches with

local volume constraints (Section 3) and de-homogenization

approaches (Section 5.3). For a single load, orthogonal

microstructures that are individually aligned with princi-

pal stress directions are known to be close to optimal.

Such orthogonal microstructures are distinct in full-scale

approaches with local volume constraints as well as de-

homogenization approaches, but are difficult to discover

in large regions of hierarchically optimized structures. A

reason behind the poor compatibility is that the fixed, axis-

aligned rectangular domain used in inverse homogenization

is incapable of accommodating rotation of these orthogonal

microstructures.

Other strategies have been proposed to enhance connec-

tivity. Wang et al. (2017) proposed a shape metamorphosis

method based on level-set representations to interpolate a

prototype microstructure to generate a family of graded

microstructures. The interpolated microstructures are con-

nectable to each other in a natural way since they present

similar topological features and material distribution pat-

terns at their edges. Li et al. (2018b) adopted the kinematic

constraint approach (Zhou and Li 2008) for level-set–based

topology optimization of functionally graded cellular com-

posites hosting auxetic metamaterials. Zhou et al. (2019)

proposed a geometric connectivity index upon which con-

straints were defined and included in the macroscale opti-

mization to improve connectivity. Liu et al. (2020) recently

proposed to ensure connectivity between any two types of

the microstructures by introducing pre-defined connective
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Fig. 14 Illustrative result of hierarchical optimization of material and

structure of a simply supported beam, without (left) and with (right) a

compound formulation to improve microstructural compatibility (Gar-

ner et al. 2019). Half of the optimized structure from each formulation

is shown, for compactness. The compliance of the left part by a

full-scale analysis and an analysis using homogenized properties is

8.32 × 1013 and 6.54 × 107, respectively, while the compliance of

the right part is 4.96 × 109 and 8.42 × 107, respectively. Reprinted

from Garner et al. (2019) with permission from Elsevier

regions in the microstructural unit cells and keeping these

regions sharing the same topology. In these approaches, the

connectivity was often visually assessed, and a mechanical

assessment was unfortunately missing.

The compatibility issue is circumvented if the optimiza-

tion problem is reformulated to design structures consist-

ing of repetitive microstructures, at the cost of reduced

structural performance. Such a formulation was presented

by Fujii et al. (2001) for designing repetitive microstruc-

tures in the entire design space. Liu et al. (2008) incor-

porated a macroscale variable to concurrently design the

microstructure and its distribution. Here, the solution space

is reduced to a single microstructure, a strategy similar to

pattern repetition in full-scale approaches (Section 3). The

global analysis is performed using homogenized properties

rather than on the full scale, assisted with an interpolation

scheme called Porous Anisotropic Material with Penal-

ization (PAMP). It was first demonstrated for compliance

minimization, and extended for maximizing fundamental

frequency (Niu et al. 2009), for considering load uncer-

tainties (Guo et al. 2015) and more. Similar formulations

and extensions using evolutionary procedures can be found

in Huang et al. (2013) and more.

In between the spectrum from a single microstructure to

the full solution space, approaches have been developed to

design the structural layout of a few unique, unprescribed

microstructures (Deng and Chen 2017; Zhang et al. 2018;

Liu et al. 2020). Pizzolato et al. (2019) built on the

PAMP framework (Liu et al. 2008) and developed a

level-set approach to optimize the distribution of multiple

concurrently optimized microstructures. It was studied in

the context of heat transfer problems. When the location

of unique microstructures is not prescribed, it is often

cast as a multi-material optimization problem, for which

discrete material optimization (Stegmann and Lund 2005)

and ordered SIMP interpolation (Zuo and Saitou 2017) are

applicable.

As discussed in Section 3, periodic and graded

microstructures can also be designed using full-scale

approaches. When the structural analysis is performed on

the full resolution, a poor connectivity is reflected by

a suboptimal objective. Thus, full-scale approaches natu-

rally ensure good connectivity between microstructures or

subdomains, at the price of intensive full-scale analyses.

Therefore, results from relevant full-scale approaches may

serve as a reference for multi-scale approaches of graded

microstructures. From the comparison in Fig. 4, it is clear

that a logical (but often underreported) consequence of

using periodic microstructures with a fixed orientation is a

large reduction in stiffness.

5.5 Unrestricted unit-cell design

All approaches in the previous section have one thing in

common; the shape of the unit-cell domain is rectangular.

However, it is very important to acknowledge the effect

of the unit-cell domain on the performance. In a large

amount of works that consider a single load case, the

numerical examples show that the optimized unit cells

resemble a rotated version of the microstructure by Bendsøe

and Kikuchi (1988) (Fig. 3). However, since the unit-cell

domain cannot be rotated, the shape of the microstructures
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is modified to account for a periodic shape, in turn reducing

performance. In other words, if the unit-cell design domain

was allowed to rotate, a simpler and close to optimal

microstructure would have been found.

To investigate the effect of the unit-cell shape and

orientation on the performance, Träff et al. (2019) did

an extensive comparison of the effect of the starting

guess, when inverse homogenization is used to optimize

the microstructure performance. They observed that the

material design problem is non-unique and highly non-

convex, i.e., different starting guesses result in completely

different unit-cell designs and performances. Furthermore,

a starting guess of the unit-cell shape and topology based on

an optimal rank-3 microstructure resulted in a significantly

better performance compared to the use of a rectangular

domain. The parallelogram shape of the unit cell, which

was optimized as well, allowed for periodicity patterns

that cannot be described by a rectangular domain as seen

in Fig. 15. Especially for lower volume fractions, Träff

et al. (2019) observed that a unit cell with a starting

guess and shape based on an optimal rank-3 laminate

significantly outperformed (e.g., up to 30% more efficient)

the designs using a traditional rectangular domain. Hence,

the choice of the unit-cell domain significantly influences

the performance and researchers have to be aware of

this when choosing a multi-scale topology optimization

algorithm.

Recently, Wang et al. (2019) showed that near-optimal

and periodic truss lattice structures could be obtained for

multiple load cases by distorting simple Bravais-like lattice

structures to a parallelepiped. Besides using a parallelogram

in 2D or a parallelepiped in 3D, one can use many more

different types of polygons to solve the homogenization

equations (Barbarosie et al. 2017; Podestá et al. 2019). For

example, in 2D, a hexagon can be used to describe a periodic

isotropic hexagonal microstructure (Sigmund 2000).

From all studies discussed above, we can conclude

that performing multi-scale optimization with unit cells

Fig. 15 Left: Rank-3 microstructure with indicated hierarchy. Right:

approximated single-scale microstructure using the method by Träff

et al. (2019) to indicate different periodicity patterns that cannot be

achieved by a rectangular unit cell. Reprinted from Träff et al. (2019)

with permission from Springer Nature

that are optimized using inverse homogenization on a

rectangular domain reduces the optimality. This effect has

been acknowledged by Barbarosie and Toader (2014) who

combined the optimization of the microstructure topology

and shape. This approach can achieve structural designs

that are close to optimal; however, an extensive comparison

unfortunately has not been performed. To address the large

computational cost included in solving the problem, the

approach has been parallelized. To the authors’ knowledge

(and surprise), this is the only work on multi-scale topology

optimization that simultaneously addresses the macroscopic

design and both unit-cell topology and shape to get as close

to the optimal design that can be achieved on a single

length scale. Nevertheless, this method does not address

the connectivity of the spatially varying unit cells over the

design domain. More research has to be done to efficiently

blend unit cells of different shapes together without a loss

in performance to further advance this method.

6 Discussion

6.1 Motivation

Two important questions that people working on multi-scale

structures should ask themselves are:

– What are the benefits of multi-scale structures?

– What are the expected benefits of multi-scale

approaches?

These two questions are related but apparently independent

from each other. While multi-scale structures are most often

optimized, not surprisingly, by multi-scale approaches, they

can also be designed using full-scale approaches with some

additional constraints (Section 3). One important motivation

of multi-scale topology optimization is to accelerate the

computation for optimizing structures at high resolution.

Here, it shall be reminded that theoretical stiffness-

optimal structures span multiple scales. A higher resolution

discretization enables the appearance of fine geometric

details, which may bring the performance of optimized

structures closer to theoretical limit. This, however,

implies significant computational cost. Thus, multi-scale

approaches are introduced for means of acceleration. These

include the original hierarchical approach by Rodrigues

et al. (2002), de-homogenization approaches (Pantz and

Trabelsi 2008; Groen and Sigmund 2018), and works along

these directions.

Many multi-scale approaches, while being formulated

as an optimization problem (e.g., for maximizing stiff-

ness), restrict the solution space by enforcing one or a

few repetitive microstructures that are either predefined

or concurrently optimized, with a fixed orientation and/or
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limited density range. This restriction may be beneficial

under various considerations, from structural such as buck-

ling strength (Clausen et al. 2016), robustness (Wu et al.

2018), and multi-functionality to operational such as inspec-

tion and repair, and from manufacturability over aesthetics

to sustainability. In this regard, the microstructures play the

role of accounting for these considerations. From a math-

ematical perspective, it would be interesting to explicitly

model these requirements and integrate them in an opti-

mization problem with a high-resolution discretization. This

is challenging, since a mathematical model of some of the

requirements is not available yet or comes with computa-

tional complications. Thus, restricting the solution space by

a reduced parameterization can be understood as a strategy

to balance the defined objective and various other consider-

ations. A general recommendation is to always motivate use

of stiffness suboptimal microstructures. Too many works

seem to forget this aspect and show optimized designs that

are clearly not optimal with respect to stiffness.

Analogous to technical optimization, nature has been

an advocate for multi-scale structures. Hierarchically

organized, functionally graded structures can be found in

plant and animal bodies such as bamboo and bone (Lakes

1993; Fratzl and Weinkamer 2007). These bio-structures are

remarkable from a mechanical perspective while supporting

biological functionalities.

6.2 Evaluation

Most (if not all) multi-scale approaches make use of homo-

genization, which assumes separation of scales, i.e.,

microstructure should be much smaller than the macrostruc-

ture. This assumption often becomes invalid when consid-

ering the finite resolution of manufacturing processes. A

general rule of thumb is that cells should be repeated 5 to

10 times before effective properties can be trusted. This cer-

tainly means that commonly seen approaches where one

macroscale finite element corresponds to one microstructure

cell, where cells may vary between each element, should

be used with extreme caution. Interestingly, however, multi-

scale optimization, where microstructure is appropriately

adapted to local stress fields, unimpeded by cell geometry

or orientation (c.f., de-homogenization approaches) pro-

vides extremely good performances even for quite large

periodicities, i.e., with lack of scale separation (see Groen

and Sigmund (2018) and Wu et al. (2021)). The reason

is that the optimal microstructures ensure purely tension-

compression-dominated deformations at both micro- and

macroscale, which homogenization-wise need fewer cell

repetitions for accuracy than required for bending or shear

dominated deformations. Under all circumstances, it is

strongly recommended to verify any assumptions of scale

separation with subsequent full-scale analyses. Full-scale

analysis of course implies heavy computation. Fortunately,

however, recent adoption of advanced linear solvers and par-

allel computing has partially alleviated this problem (Amir

et al. 2014; Aage et al. 2015; Wu et al. 2016a). Validation

by full-scale analysis in 2D starts to appear in a handful

of recent papers (Groen and Sigmund 2018; Garner et al.

2019; Wu et al. 2021), and should be an integral part of the

validation of all multi-scale works.

Optimization in general and multi-scale approaches in

particular are about making a delicate balance between con-

flicting objectives and constraints, and between the quality

of results and computational efficiency. In this regard, gains

in one aspect are often, understandably, accompanied by

losses in other aspects. Both sides are valuable for inspiring

future development. These are especially important for

researchers who may be less familiar with the topic, e.g.,

students, application engineers, and colleagues from other

disciplines. Therefore, we strongly recommend to include

a quantitative comparison (or a discussion if a quantitative

analysis is difficult to perform, e.g., regarding aesthetics)

when a new approach is introduced. Comparisons can

be made on different levels, with non-optimized designs,

with optimized mono-scale structures, with designs from

alternative multi-scale approaches, etc. In the case of a

2D compliance design subject to a single load case, we

recommend to perform a quantitative comparison with what

is theoretically possible using rank-2 microstructures. To do

this, we provide a Matlab script in Appendix.

6.3 Extensions, alternative formulations, open
questions

Our review has been focusing on design parameterizations,

which are typically demonstrated in compliance minimiza-

tion under the assumption of small deformations. Accom-

modating stress constraints, buckling constraints, and geo-

metric and material nonlinearities represents an important

and non-trivial next step. Some recent works have started to

tackle these challenges.

– Stress constraints. Collet et al. (2018) proposed a

formulation for optimizing periodic microstructures

with stress constraints, assuming that the classical von

Mises stress criterion remains valid at the microscale.

Ferrer et al. (2020) proposed a square cell with a super-

ellipsoidal hole, avoiding right angles and thus stress

concentration in the classic rectangular hole model.

In concurrent optimization of shell and parameterized

lattice infill, Yu et al. (2020) proposed using two stress

constraints on the macroscale, a von Mises stress-

based constraint for the solid shell layer, and a Tsai-

Hill yield criteria-based constraint for the homogenized

infill.
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– Buckling, geometric and material nonlinearities, and

plasticity. Yuge and Kikuchi (1995) developed elasto-

plastic finite element analysis based on homogenization

to optimize frame structures subjected to plastic

deformation. Neves et al. (2002) addressed the problem

of determining highly localized buckling modes in

perfectly periodic cellular microstructures of infinite

extent. Thomsen et al. (2018) proposed a optimization

model to predict local and global microstructural

buckling, based on which periodic cellular materials are

optimized for maximized strength under compressive

load. A systematic investigation of the performances

of simple and optimized periodic infill structures

in terms of finite scale stiffness and buckling was

presented by Wang and Sigmund (2020). Strength of

common 3D microstructures is treated in Andersen

et al. (2021). Furthermore, Bluhm et al. (2020)

proposed a framework for benchmarking the ability

of periodic microstructures to maintain stiffness under

large deformations, accounting in a unified manner

both for buckling and softening due to geometric and

material nonlinearities.

Going beyond structural mechanics, design of multi-

scale structures involving other physics and even multi-

physics is another important venue to explore. Some of

the works along this direction have been mentioned in

previous sections when specific multi-scale approaches

were introduced. For instance, Das and Sutradhar (2020)

presented an extension of the full-scale approach with the

local volume constraints (Wu et al. 2018) to optimize heat-

dissipating structures considering structural and thermal

performance. Fluid flow through the pores in lattice

structures is another interesting topic, relevant for design of

actuators (Andreasen and Sigmund 2011) and biomedical

implants (Challis et al. 2012). Furthermore, as discussed

in Section 2.3, inverse homogenization has been used

to design metamaterials with extreme or counter-intuitive

physical properties such as a negative Poisson’s ratio

and negative thermal expansion (Sigmund and Torquato

1996). Designing multi-scale structures composed of such

metamaterials is fascinating. It can potentially open

innovative application areas in shape-morphing products,

soft robots, and 4D printing (i.e., with an extra dimension of

transformation over time).

Optimized structures from multi-scale approaches typi-

cally have two scales. It is worth mentioning that buckling-

enhanced microstructures themselves exhibit two (or more)

hierarchical scales (Thomsen et al. 2018). Integrating them

in macroscale structural optimization would effectively lead

to three-scale structures. The microstructures in two-scale

approaches are normally defined in a uniform discretization

of the macro domain, and thus have the same spatial extent.

Wu et al. (2016b) proposed a full-scale approach to design

octree-tree like structures, where the cells exhibit spatially

varying sizes. This allows to achieve a large range of vari-

ations in porosity and pore sizes. The discrete problem of

hierarchical subdivision was later reformulated by continu-

ous variables to facilitate gradient-based optimization (Wu

2018).

Microstructures are typically defined and analyzed

based on a Cartesian grid discretization with a fixed

orientation. Approximating free-form macroscale shape by

square or cubic microstructures leads to staircasing on the

boundaries. This artifact may be less of a concern when the

macroscale domain is orders of magnitude larger than the

microstructure size. However, with the limited resolution

of manufacturing processes, the effects of this artifact

may be non-negligible, both visually and mechanically.

Conforming quad/hex meshing can be an alternative for

constructing a boundary-aligned grid (Wu et al. 2021).

However, mapping square or cubic microstructures into

irregular grids may introduce error in mechanical properties.

Note that homogenization assumes a repeatable domain, and

thus direct homogenization over irregular cells seems not

possible.

As stated in the Introduction section, much of the recent

interest in designing multi-scale structures is triggered by

contemporary advances in additive manufacturing (AM).

While being able to produce highly complex shapes

and even structural features spanning seven orders of

magnitude (Zheng et al. 2016), existing AM processes

are not free from manufacturability and post-processing

requirements. Structural design thus needs to consider, e.g.,

a minimum feature size, self-supportingness (i.e., free of

critical overhang), accessibility for removing unsolidified

powder or resin, and auxiliary support structure (Liu

et al. 2018a). In the context of multi-scale design, these

requirements (or some of them) can be satisfied by carefully

selecting unit cells, e.g., beam-like lattice cells (see prints in

Fig. 2) or self-supporting rhombic cells (Wu et al. 2016b).

Stiffness optimal rank-N laminates and closed-walled cells

with stiffness close to theoretical bounds (Sigmund et al.

2016) may, depending on process, be less favorable than

open-walled cells regarding the removal of unsolidified

powder or resin. Along with developments of advanced

manufacturing technologies, design for manufacturability

will continue to be an important topic in (multi-scale)

topology optimization.

The design of multi-scale structures is a topic of interest

in multiple other disciplines apart from applied mathemat-

ics, computational mechanics, and mechanical engineering.

We envisage that cross-pollination with material science

(e.g., multi-scale materials modelling (van der Giessen et al.

2020)) as well as geometry modelling and processing (e.g.,

texture synthesis (Dumas et al. 2015)) will further advance
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optimization and inverse design of multi-scale structures.

The cross-pollination is actually already benefiting the field.

For instance, the conformal-like mapping and field-aligned

meshing have been used for de-homogenization.

7 Conclusion

We have reviewed the development of multi-scale topology

optimization, from its inception to the current state-of-the-

art. Existing approaches are classified into full-scale and

multi-scale approaches, according to whether or not the

separation of length scales is assumed in the modelling.

Full-scale approaches control structural details by imposing,

e.g., pattern repetition and local volume constraints,

while performing structural analysis on the fine scale,

which is computation-intensive. Multi-scale approaches

reduce computation by using analytical or numerical

homogenization, under the assumption of separation of

length scales, which may give rise to compatibility issues.

These approaches are categorized in this review based on

the parameterization of the micro- and macroscales.

The development in this field is exciting. Innovative

approaches and applications continue to appear. To con-

struct an objective understanding of multi-scale structures

and multi-scale optimization approaches, we make the fol-

lowing recommendations:

– Since the assumption of separation of length scales may

not be respected in the optimized multi-scale structures,

structural performance evaluated by homogenization

may not faithfully represent reality. It is thus strongly

recommended to compare with full-scale analysis when

homogenization is used in the optimization approach.

– Many parameterizations have been introduced for

designing multi-scale structures while reducing the

gap between full-scale and homogenization-based

analyses. These parameterizations may (severely) limit

the achievable structural objective. It is thus also

recommended to compare with standard mono-scale

approaches under a comparable computation time,

when investigating homogenization-based methods.

– Multi-scale structures hold the promise of achiev-

ing superior performance while being intrinsically

lightweight, robust, and multi-functional. The true ben-

efits of novel multi-scale structures need to be validated,

numerically, and/or experimentally.

Appendix : MATLAB code topRank2

Together with this review, we present a MATLAB code

for the topology optimization of 2D structures subject to

a single load case using optimal rank-2 microstructures

consisting of solid material (with stiffness E+) and void.

The code is based on the MATLAB code by Andreassen

et al. (2011), and we will therefore only discuss the

differences. The most obvious difference is the use of a

rank-2 material model (see Fig. 5 for the visualization

of a unit cell). The effective material property can be

analytically derived using the homogenization equation

(see, e.g., Allaire (2002) and Bendsøe and Sigmund (2004)),

and can be summarized in Voigt notation as,

EH (μ1, μ2, θ) =
E−

1 − ν2

⎡

⎣

1 ν 0
ν 1 0

0 0 1−ν
2

⎤

⎦ +
E+

1 − μ2 + μ1μ2(1 − ν)

R
T (θ)

⎡

⎣

μ1 μ1μ2ν 0
μ1μ2ν μ2(1 − μ2 + μ1μ2) 0

0 0 0

⎤

⎦ R(θ) (5)

Since a rank-2 microstructure consisting of solid material

and void contains no stiffness against shearing, a small

isotropic background stiffness E− is added to make this

material model work stable on a finite mesh. To minimize

the effect of this background stiffness and avoid getting

stuck in local minima, we start with E− = 0.1E+ and

gradually reduce every 50 iterations until E− = 10−6E+.

For efficient assembly of the stiffness matrix, we pre-

integrated 6 element matrices, i.e., one for each unique

index of the rotated elasticity tensor. As is discussed

by Pedersen (1989), a microstructure is optimally aligned

with the principal stresses/strains. Therefore, we update the

microstructure orientation (θ ) during each design iteration

based on the principal stress directions. Subsequently, we

update the relative layer widths (μi) based on the gradients

using the optimality criterion approach. Finally, it should be

noted that we use the density filter to avoid the formation of

checkerboard-like patterns that are artificially stiff. Similar

to the 88-line MATLAB code, the default design problem

is the half MBB-beam, where the compliance is minimized

subject to an upper bound on the volume fraction of the stiff

material. The code can be called as follows:

toprank2(nelX,nelY,rMin,volFrac)

where nelX and nelY are the number of bi-linear elements

in x- and y-direction, respectively, rMin is the filter radius

in element length h used for the density filter, and volFrac

is the volume fraction that the stiff material is allowed to

use.
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Replication of results Results presented in this review are based on
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the results have been described in the manuscript. The code for

examples shown in Figs. 4 and 8 is available on request from the

corresponding author.
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Podestá J, Méndez C, Toro S, Huespe A (2019) Symme-

try considerations for topology design in the elastic inverse

homogenization problem. J Mech Phys Solids 128:54–78.

https://doi.org/10.1016/j.jmps.2019.03.018

Prager W, Rozvany G (1977) Optimization of structural

geometry. In: Dynamical Systems, Elsevier, pp 265–293.

https://doi.org/10.1016/b978-0-12-083750-2.50023-0

Radman A, Huang X, Xie Y (2013a) Topological optimization for

the design of microstructures of isotropic cellular materials.

Eng Optim 45(11):1331–1348. https://doi.org/10.1080/0305215X.

2012.737781

Radman A, Huang X, Xie YM (2013b) Topology optimization of

functionally graded cellular materials. J Mater Sci 48(4):1503–

1510. https://doi.org/10.1007/s10853-012-6905-1

Rodrigues H, Guedes J, Bendsøe M (2002) Hierarchical optimization

of material and structure. Struct Multidiscipl Optim 24(1):1–10.

https://doi.org/10.1007/s00158-002-0209-z

Rossow M, Taylor J (1973) A finite element method for the optimal

design of variable thickness sheets. AIAA J 11(11):1566–1569.

https://doi.org/10.2514/3.50631
Schmidt MP, Pedersen CB, Gout C (2019) On structural topology opti-

mization using graded porosity control. Struct Multidiscip Optim

60(4):1437–1453. https://doi.org/10.1007/s00158-019-02275-x

Schury F, Stingl M, Wein F (2012) Efficient two-scale optimization

of manufacturable graded structures. SIAM J Sci Comput

34(6):B711–B733. https://doi.org/10.1137/110850335

Sigmund O (1994) Materials with prescribed constitutive param-

eters: an inverse homogenization problem. Int J Solids

Struct 31(17):2313–2329. https://doi.org/10.1016/0020-7683(94)

90154-6

Sigmund O (1999) On the optimality of bone microstructure. In:

Bendsøe MP, Pedersen P (eds) IUTAM Symposium on synthesis

in bio solid mechanics. Springer, Netherlands, Dordrecht, pp 221-

234
Sigmund O (2000) A new class of extremal composites. J Mech Phys

Solids 48(2):397–428. https://doi.org/10.1016/S0022-5096(99)

00034-4
Sigmund O (2001) A 99 line topology optimization code writ-

ten in Matlab. Struct Multidiscipl Opti 21(2):120–127.

https://doi.org/10.1007/s001580050176
Sigmund O (2011) On the usefulness of non-gradient approaches in

topology optimization. Struct Multidiscip Optim 43(5):589–596.

https://doi.org/10.1007/s00158-011-0638-7
Sigmund O, Jensen JS (2003) Systematic design of phononic

band-gap materials and structures by topology optimization.

Philosophical transactions of the royal society of london

series a: mathematical. Phys Eng Sci 361(1806):1001–1019.

https://doi.org/10.1098/rsta.2003.1177
Sigmund O, Maute K (2013) Topology optimization

approaches. Struct Multidiscip Optim 48(6):1031–1055.

https://doi.org/10.1007/s00158-013-0978-6
Sigmund O, Torquato S (1996) Composites with extremal ther-

mal expansion coefficients. Appl Phys Lett 69(21):3203–3205.

https://doi.org/10.1063/1.117961
Sigmund O, Aage N, Andreassen E (2016) On the (non-)optimality

of michell structures. Struct Multidiscip Optim 54(2):361–373.

https://doi.org/10.1007/s00158-016-1420-7
Sivapuram R, Dunning PD, Kim HA (2016) Simultaneous

material and structural optimization by multiscale topology

1478

https://doi.org/10.1002/nme.6031
https://doi.org/10.1007/BF00934300
https://doi.org/10.1080/14786440409463229
https://doi.org/10.2140/memocs.2017.5.95
https://doi.org/10.1007/978-1-4613-8646-9_
https://doi.org/10.1017/cbo9780511613357
https://doi.org/10.1007/BF01744697
https://doi.org/10.1002/nme.449
https://doi.org/10.1016/0020-7683(83)90005-7
https://doi.org/10.1007/s00158-008-0334-4
https://doi.org/10.1002/nme.1044
https://doi.org/10.1016/0167-6636(85)90002-x
https://doi.org/10.1007/bf01213995
https://doi.org/10.1146/annurev-matsci-070115-031826
https://doi.org/10.1016/j.addma.2017.11.008
https://doi.org/10.1137/070688900
https://doi.org/10.1109/MMAR.2010.5587222
https://doi.org/10.1007/BF01637666
https://doi.org/10.1016/j.cma.2019.07.021
https://doi.org/10.1016/j.matdes.2019.108164
https://doi.org/10.1016/j.jmps.2019.03.018
https://doi.org/10.1016/b978-0-12-083750-2.50023-0
https://doi.org/10.1080/0305215X.2012.737781
https://doi.org/10.1080/0305215X.
https://doi.org/10.1007/s10853-012-6905-1
https://doi.org/10.1007/s00158-002-0209-z
https://doi.org/10.2514/3.50631
https://doi.org/10.1007/s00158-019-02275-x
https://doi.org/10.1137/110850335
https://doi.org/10.1016/0020-7683(94)90154-6
https://doi.org/10.1016/0020-7683(94)90154-6
https://doi.org/10.1016/S0022-5096(99)00034-4
https://doi.org/10.1016/S0022-5096(99)00034-4
https://doi.org/10.1007/s001580050176
https://doi.org/10.1007/s00158-011-0638-7
https://doi.org/10.1098/rsta.2003.1177
https://doi.org/10.1007/s00158-013-0978-6
https://doi.org/10.1063/1.117961
https://doi.org/10.1007/s00158-016-1420-7


Topology optimization of multi-scale structures: a review

optimization. Struct Multidiscip Optim 54(5):1267–1281.

https://doi.org/10.1007/s00158-016-1519-x

Soto CA, Dı́az AR (1993) On the modelling of ribbed

plates for shape optimization. Struct Optim 6(3):175–188.

https://doi.org/10.1007/bf01743510

Stegmann J, Lund E (2005) Discrete material optimization of

general composite shell structures. Int J Numer Methods Eng

62(14):2009–2027. https://doi.org/10.1002/nme.1259

Stromberg LL, Beghini A, Baker WF, Paulino GH (2011) Application

of layout and topology optimization using pattern gradation for

the conceptual design of buildings. Struct Multidiscip Optim

43(2):165–180. https://doi.org/10.1007/s00158-010-0563-1

Stutz FC, Groen JP, Sigmund o, Bærentzen JA (2020) Singular-

ity aware de-homogenization for high-resolution topology opti-

mized structures. Structural and Multidisciplinary Optimization.

https://doi.org/10.1007/s00158-020-02681-6

Tamijani AY, Velasco SP, Alacoque L (2020) Topological and

morphological design of additively-manufacturable spatially-

varying periodic cellular solids. Mater Des 196:109155.

https://doi.org/10.1016/j.matdes.2020.109155

Thompson MK, Moroni G, Vaneker T, Fadel G, Campbell RI,

Gibson I, Bernard A, Schulz J, Graf P, Ahuja B, Martina F

(2016) Design for additive manufacturing: trends, opportuni-

ties, considerations, and constraints. CIRP Ann 65(2):737–760.

https://doi.org/10.1016/j.cirp.2016.05.004

Thomsen CR, Wang F, Sigmund O (2018) Buckling strength

topology optimization of 2d periodic materials based on linearized

bifurcation analysis. Comput Methods Appl Mech Eng 339:115–

136. https://doi.org/10.1016/j.cma.2018.04.031
Torquato S, Hyun S, Donev A (2002) Multifunctional com-

posites: optimizing microstructures for simultaneous trans-

port of heat and electricity. Phys Rev Lett 89:266601.

https://doi.org/10.1103/PhysRevLett.89.266601
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