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Summary

Topology structural optimization problems have been usually stated in terms of a max-

imum stiffness (minimum compliance) approach. In this kind of formulations, the aim is

to distribute a given amount of material in a certain domain, so that the stiffness of the re-

sulting structure is maximized for a given load case. In addition, no stress or displacement

constraints are taken into account. This paper presents a different strategy: a minimum

weight Finite Element formulation for optimization of continuum structures subjected to

stress constraints. We propose two different approaches to take into account the stress con-

straints in the optimization formulation. The local constraints approach imposes a stress

constraint in some distributed points of the domain. However, the global approach aggre-

gates the effect of all the local constraints in a global function. The feasibility of these two

approaches is demonstrated by solving some application examples.

Introduction

Structural optimization problems have been mainly written thereafter in terms of min-

imum weight formulations with non-linear constraints. These constraints usually limit the

maximum allowable stresses and displacements. However, most of the topology optimiza-

tion problems have been routinely stated in terms of minimum compliance (maximum stiff-

ness) approaches. Essentially, in this kind of formulations a given amount of material must

be distributed within a given domain while the stiffness of the resulting structure is maxi-

mized (the compliance is minimized) for a given load case [1].

The traditional minimum compliance formulations offer some obvious advantages.

However, they also present several important drawbacks (mesh dependency, checkerboard

layouts). In addition, the final design could be unfeasible in practice because stress and

displacement constraints are not imposed.

On the other hand, since the most of structural design problems include stress and

displacement constraints, it seems that these criteria should be mandatorily considered in

structural topology optimization formulations. In this paper, we follow this strategy and

propose a different approach that considers stress constraints.

The most intuitive formulation to impose stress constraints consists in considering

a constraint at each point of the structure. Thus, the usual option is to consider stress

constraints at one given point within each finite element of the mesh (the ”local constraints

approach”). This formulation is very robust and the solutions obtained are very realistic. In

addition, no artificial techniques are required to obtain adequate solutions. However, this
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formulation presents some unexpected numerical effects when the relative density tends to

zero (e.g. singularity phenomena).

Due to the large computing effort necessary to obtain optimal solutions when the num-

ber of elements increases, a number of different techniques have been proposed to reduce

the number of constraints of the problem. One of these approaches consists in stating one

or several global functions. This function would include all the constraints of the local

approach. Thus, the number of constraints is drastically reduced. This technique is usually

referred to as the ”global stress constraints approach”.

In this paper, we present a FEM based minimum weight with stress constraints (MWSC)

approach for structural topology optimization problems. We have developed two differ-

ent approaches: a local constraint one and a global constraint formulation based on the

Kreisselmeier-Steinhauser function [2]. Finally, we present one application example that

compares the results obtained with the global and the local approach.

Minimum weight with stress constraints formulation

The optimization problem can be formulated from a generic point of view as

Minimize F(ρ) = Cost(ρ)
subject to: Gℓ(σi) ≤ 0 ℓ = 1, . . . ,Nconst

0 < ρmin ≤ ρe ≤ 1, e = 1, . . . ,Nelem

ρmin = 0.001 (usually)

(1)

where F(ρ̄) is the objective function and Gℓ(σ̄i) are the stress constraints.

The objective function can be defined as

F(ρ) =
Nelem

∑
i=1

∫
Ωe

(ρe)
1/p

dΩ (2)

where the parameter p is a penalty parameter to avoid intermediate densities in the opti-

mized solution [3] (If p > 1 intermediate densities are penalized). If p = 1 the objective

function is the total weight of the structure. Ω is the domain occupied by each element.

Local Constraints

The value of the local constraints approach is computed by limiting the maximum

value of the local stress obtained by means of a conventional Finite Element formulation.

Moreover, the material failure is usually checked according to stress failure criteria (e.g.

Von Mises criterion). These criteria usually consider a ”reference stress”, based on the real

stress tensor, to test the failure of the material. Thus, the maximum allowable values of this



”reference stress” σ̂(σ̄) at each point r̄o
j can be considered by introducing the following

inequalities:

g j(ρ̄) = σ̂
(

σ̄h(r̄o
j , ρ̄)

)
− σ̂max ≤ 0, g j(ρ̄) = σ̂min − σ̂

(
σ̄h(r̄o

j , ρ̄)
)
≤ 0, (3)

where σ̂max and σ̂min are the corresponding upper and lower limits of the stress failure

criterion used.

Consequently, this approach requires to manage a huge number of highly non-linear

constraints. So, the optimization problem is very complicated. We have solved this problem

by using a Sequential Linear Programming algorithm based on the Simplex Method to

obtain the search direction and a Quadratic Line Search algorithm to obtain the best advance

factor based on the algorithms proposed by Navarrina and Casteleiro [4].

The Sensitivity Analysis required is developed following the general formulation pro-

posed in [5]. The linear programming optimization algorithm requires full first order

derivatives to obtain the right search direction and second order directional derivatives

to obtain the advance factor. The calculations of the right search direction and the full

first order derivatives require, in practice, almost the total computing time and data storage

amount.

Moreover, the stress constraints approach usually presents the so called ”singularity

phenomena”. The optimum solution of the problem is a singular point of the feasible

solutions from a theoretical point of view, as it can be seen in [6]. Cheng and Jiang [7]

explained the nature of this phenomenon, which is due to the discontinuos nature of the

stresses when the density tends to zero. Thus, when the relative density is null the stress

constraint disappears. However, when the relative density tends to zero the stress constraint

can become violated.

This fact can be observed in some theoretical truss optimization problems like the

proposed by Cheng and Guo [6]. Furthermore, it has been demonstrated that in other fields

of structures optimization the singularity phenomena must be also considered [8].

Thus, due to this singularity phenomenon, the formulation needs to be relaxed to avoid

this undesiderable situation. In this paper, we propose a different formulation based on the

contributions of Duysinx and Cheng ( [6],[8]) and Navarrina [3]. Following these ideas, we

propose the following statement of the local stress constraints using the Von Mises failure

criterion:

g(ρ) =
[
σ̂
(

σh(ro
j ,ρ)

)
− σ̂max ϕj

]
ρ(ro

j )
q
≤ 0, (4)

where

ϕ j = 1− ε+
ε

ρ(ro
j )

(5)



The ”relaxation parameter” ε usually varies from 0.001 to 0.1, and its value is reduced

when the solution is near the optimum during the optimization process.

The exponent q is a parameter that allows us to impose real stress constraints (q = 0)

or effective stress constraints (q = 1). We have observed that the effective stress constraints

avoid some singularities [3].

Global stress constraint

The global stress constraint approach is a relatively new field of the topology opti-

mization of continuum structures. This approach implies the substitution of all the local

constraints by only one constraint which would include the local ones. This technique

presents obvious advantages since the optimization problem is much easily solved than

with the local approach because only one constraint has to be considered. In addition, the

data storage amount and the computing time are decreased. The keystone of this approach

is the global function. It is very important to find the best function to aggregate the local

constraints in a global one. In this paper we propose a global formulation based on the

Kreisselmeier-Steinhauser function as it was used by Martins and Poon [2]. However, we

have introduced some simple modifications to solve a number of numerical effects observed

with the original one. The proposed global function of stress constraints aggregation is

GKS (g j(ρ)) =
1

µ
ln




Nconst

∑
j=1

e
µ

(
σ j

σ j,max ϕ j

−1

)

 (6)

where σ j is the local stress considered in the previous formulation and σ j,max is the maxi-

mum stress allowed according to the considered failure criterion. ϕ j is the ”relaxed stress

coefficient” proposed in the local constraints approach (5). In addition, this modification

also avoids the numerical overflow because the exponent would not take high values when

the local constraints become violated.

The parameter µ allows to penalize higher stress values. When the value of µ increases,

the solution is forced to become more feasible according to the local constraints approach.

However, if we use high values the problem also becomes more unstable due to the nu-

merical inaccuracy in the calculation of the derivatives. In addition, some undesiderable

numerical effects (overflow) may occur.

The maximum value of the aggregated constraint should be the upper limit of all the

local stress constraints, that is

GKSmax (g j(ρ)) =
1

µ
ln(Nconst), (7)

where Nconst is the total number of local stress constraints considered.



Now, the problem (1) is stated as a constrained optimization problem with only one

highly non-linear constraint. For this reason we have turned our attention to ”barrier func-

tion” type optimization algorithm. We have tested different kinds of ”barrier functions”

(logarithmic and inverse) obtaining similar results with them.

Numerical example

We present a numerical example solved with the two formulations proposed to check

them. The example solved is a two-dimensional structure. However, we show a three-

dimensional solution, assuming the relative density to be the thickness of each element, to

favor the comprehension of the solution obtained.

The example is a L-shape beam 1 m long and 1 m high (Figure 1). This beam is

supported in the upper edge. Furthermore, a vertical concentrated force of 4 103 kN is

applied in the middle of the right vertical edge. In addition, self weight is also considered.

The beam is made of steel with an elastic limit of σe = 230 MPa and a Young Mod-

ule of Ee = 2.1 105 MPa. The Poisson value is ν = 0.3 and the mass density is γmat =
76.5 kN/m3.

These solutions (figure 2) are very similar to the solutions obtained by Duysinx and

Bendsøe [8].

Figure 1: L-shape beam (units in meters).
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Figure 2: Local approach with q=1 (F=18.2% Fo) (left) and global approach µ = 20,

(F=17.6% Fo) (right), ε = 0.01 and p = 4, (Thickness multiplied by a factor of 0.5)

References

1. E. Ramm, S. Schwarz, R. Kemmler (2000): ”Advances in structural optimization

including nonlinear mechanics”,Proc. of the European Congress on Computational

Methods in Applied Sciences and Engineering [ECCOMAS 2000], Barcelona.

2. J. R. R. A. Martins and N. M. K. Poon (2005): ”On Structural Optimization Using

Constraint Aggregation”, Proceedings of the VI World Congress of Structural and

Multidisciplinary Optimization (WCSMO6), Rio de Janeiro, Brazil.

3. F. Navarrina, I. Muı́ños, I. Colominas and M. Casteleiro (2005): ”Topology opti-

mization of structures: a minimum weight approach with stress constraints”, Ad-

vances in Engineering Software, Vol. 36, pp. 599-606.

4. F. Navarrina and M. Casteleiro (1991): ”A general methodologycal analysis for opti-

mum design”, International Journal for Numerical Methods in Engineering, Vol. 31,

pp. 85-111.
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