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Abstract: We design and experimentally verify a topology optimized low-

loss and broadband two-mode (de-)multiplexer, which is (de-)multiplexing 

the fundamental and the first-order transverse-electric modes in a silicon 

photonic wire. The device has a footprint of 2.6 µm x 4.22 µm and exhibits 

a loss <1.2 dB in a 100 nm bandwidth measured around 1570 nm. The 

measured cross talk is <-12 dB and the extinction ratio is >14 dB in the C-

band. Furthermore, we demonstrate that the design method can be expanded 

to include more modes, in this case including also the second order 

transverse-electric mode, while maintaining functionality. 

2016 Optical Society of America  
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1. Introduction 

The increasing capacity demand for optical fiber communication networks has led to the 

investigation of space division multiplexing (SDM) as a possible solution to the predicted 

capacity crunch of the internet. Meanwhile, the field of photonic integrated circuits (PICs) 

will allow for high device densities while requiring relatively low operating power [1] and 

supporting cheap, robust, and effective optical communication systems. Recently on-chip 

mode-division-multiplexing (MDM) has gained significant attention as an integrated SDM 

technique, thanks to the possibility of routing multiplexed optical signals on a sub-mm scale, 

in which the footprint of the planar circuits could potentially be reduced [1-5]. Therefore, 

efficient mode (de-)multiplexers are under investigation being essential components for 

MDM. Integrated mode multiplexers have typically been relying on asymmetric directional 

couplers [2,3], Y-junctions [4,5], or multimode interferometers [6,7]. Although these solutions 

have proved to be promising, they deliver device footprints in the range of tens to hundreds of 

µm2 for a two-mode multiplexer. Increasing the number of modes to be multiplexed increases 

the device sizes substantially, as the commonly employed scheme in this respect is cascading 

designs (see e.g. [8]). 

Topology Optimization (TO) is a general and robust inverse design tool [9] used for creating 

numerous different nanophotonic components with e.g. low losses, exotic functionalities, and 

controllable bandwidth [10-13]. Recently Lu and Vuckovic [14,15] have proposed a very 

similar optimization technique entitled the “objective-first method”. Although convergence 

behavior may be different, there is, so far, no evidence of either of the approaches being 

superior to the other. Depending on parameter settings and feature size, the two approaches 

may converge to different local minima of the highly non-convex optimization problems. The 

approach from [14,15] as well as an alternative approach were recently highlighted in Nature 

Photonics [16,17] and commented upon in a corresponding Letter to the Editor by the authors 

[18]. In this paper, we present a topology optimized design of a low-loss broadband (de-

)multiplexer multiplexing the transverse-electric fundamental even mode (TE0) and the first-

order odd mode (TE1) in a silicon photonic wire. We verify the design by fabrication in 

silicon-on-insulator (SOI) material and record mode profiles and spectra to measure the 

functionality and efficiency of the device. Furthermore, a three-mode (de-)multiplexer design, 

including the second-order even mode (TE2), is realized to demonstrate the potential of 

employing the TO method to create compact many-mode SDM components for PICs. 

2. Design, optimization, and modelling 

2.1 Topology optimization of a two-mode de-multiplexer 

Topology optimization is applied to a silicon (white) structure shown in Fig. 1(a) with a 2.4 

µm x 4 µm rectangular region having a double-mode input waveguide supporting the TE0 

(red) and the TE1 (blue) modes. The objective of the TO is to obtain a design that de-

multiplexes a combined TE0 + TE1 signal transmitted from the input waveguide to the two 

single-mode output waveguides. The TE1 (blue) signal should be converted to a TE0 signal in 

the lower of the two output waveguides while the input TE0 (red) signal should be directed to 

the upper waveguide as sketched in Fig. 1(a). The input waveguide is shifted vertically 



towards the upper output waveguide to allow a smooth path for the input TE0 mode to the 

upper output waveguide. The TE0 and the TE1 modes are excited as Gaussian pulses, 

separated by a time delay of 400 fs, at position A (orange) in Fig. 1(a) having spectral 

bandwidths (full-width half-maximum) of ~260 nm centered at ~1580 nm. In the 

optimization, the design objective is to de-multiplex the two pulses to the separate output 

waveguides while keeping the amplitudes and widths of the input pulses. This is achieved by 

estimating the arrival time of the two pulses and optimizing for having a strong signal in the 

corresponding output waveguide and minimizing the intensity in the opposite waveguide. 

Three dimensional (3D) TO is done using a software package developed in-house [19,20] 

utilizing 3D finite-difference time-domain (FDTD) calculations combined with sensitivity 

analysis. The gradient calculations are performed extremely efficiently using the so-called 

adjoint approach, cf.  [13]. This means that, independent on the number of design variables, 

analytical gradients can be computed at the cost of one extra backward FDTD time integration 

per objective function. The details of the adjoint approach can be found in [19]. To fulfill the 

objective of the TO, iterative material redistribution is performed in the design domain 

(yellow) in Fig. 1(a) having a size of 2.6 µm x 4.22 µm and being slightly larger than the 

square silicon region. The 340 nm thick silicon device layer has a permittivity of εSi=11.68 

and is placed on top of a silica buffer layer with a permittivity of silica=2.085 with air above. 

Throughout the optimization, the designed structures in the silicon layer are constrained to be 

uniform in the vertical direction to render fabrication feasible. The optimization is performed 

with a 32 nm spatial resolution in a mesh of 280x110x20 grid points and perfectly matched 

absorbing layers as boundaries. The converged topology optimized structure obtained after 

200 iterations, taking ~8 hours on 112 CPUs (XeonE5-2665 cores connected with infini-

band), is shown in Fig. 1(b); the smallest features have a width of a single pixel these are, 

however, found to have only inferior effects on the performance and could have been filtered 

out during optimization by choosing different filtering parameters in the TO and/or running 

more iteration steps. For the current design, it should be stressed that no thorough 

investigations have been made of the filtering parameters in order to make the design and the 

objectives converge more efficiently. The final design is obtained as an image file. Upon 

extraction to the design software a simple threshold filtering is taking place converting any 

greyscale pixel to be either black or white. 

 

 
Fig. 1 (a) Initial structure for the TO with regions of silicon (white) and air (black). Yellow indicates the 

used design domain, orange the position of the source and purple the positions of the objectives. (b) The 

mode de-multiplexer obtained after 200 iteration steps of 3D TO.  

2.2 Modelling the topology optimized structures 

The optimized design shown in Fig. 1(b) is verified by 3D FDTD calculations where two TE0 

modes are input in the upper and lower single mode waveguides (being the output waveguides 

in Fig. 1(a)) and measuring the transmitted power to the double-mode waveguide, i.e. 

simulating the device in a multiplexing configuration. Fig. 2(a) shows the out-of-plane H-field 

(Hz) at 1580 nm calculated for both TE0 signals transmitted through the mode multiplexer. As 

intended, the signal originating from the upper waveguide maintains the fundamental TE0 

mode profile while the signal from the lower waveguide is converted to the TE1 mode in the 

double mode waveguide. The mechanism allowing for the mode conversion is based on 



sophisticated scattering processes and is very different from conventional interference and 

adiabatic conversion mechanisms due to the small scale enforced in the optimization. Only a 

small fraction of the field seems to be contained in the lower part of the structure and one 

could question the significance of this ‘appendix’. To investigate this, simulations were made 

on a design where the ‘appendix’ had been manually removed as shown along with the field 

simulations in Fig. 2(b). The calculated fluxes and transmissions with (red/blue) and without 

(magenta/cyan) the ‘appendix’ are shown in Figs. 2(c) and 2(d), respectively. From these it is 

clear that the appendix is of relevance to the performance as the losses are increased when the 

‘appendix’ is removed. It is however of note, that the functionality remains in its absence 

which indicates the potential of obtaining an even more compact device by doing further re-

optimization with a structure like Fig. 2(b) as input. The extinction ratio of the full design is 

calculated as the difference between the value of the valley of the TE1 mode and the highest 

value of the lowest of the two peaks, it is found to be >18 dB at 1580 nm. The conversion loss 

is <1 dB in the bandwidth of the source from 1450 nm to 1700 nm. 

 

 
Fig. 2 (a) Propagation of the Hz-field through the topology optimized structure at a wavelength of  

1580 nm. (b) Similar field simulations through the structure with the ‘appendix’ manually removed from 

the design. (c) 3D FDTD-calculated power flux of the two TE0 modes originating in the single mode 

waveguides and multiplexed to the TE0 and the TE1 mode for the full (red/blue) and altered (magenta/ 

cyan) designs, calculated at 1580 nm. (d) The corresponding 3D FDTD-calculated transmission pro-

perties of the devices as a function of wavelength normalized to the transmission in a straight photonic 

wire. 

 



3. Experimental results 

3.1 Fabrication 

The topology optimized mode multiplexer was fabricated in SOI material having an ~340 nm 

thick silicon layer on top of an ~2000 nm thick silica buffer layer. The two structures 

illustrated in Fig. 3(a) were fabricated to characterize the conversion and transmission 

properties of the multiplexer. The first structure (S1) inputs the TE0 mode in either of the 

input waveguides and the output signal is send to a vertical grating coupler allowing recording 

the output mode profiles. The second structure (S2) is constructed from two mode 

multiplexers, one being mirrored and placed ~9 m after the other in order to de-multiplex a 

multiplexed signal. This is done to accommodate our present measurement set-up in which we 

cannot effectively collect a first-order mode but are restricted to collect fundamental modes. 

As the design is reversible and characterized in the linear regime, the loss of a single 

multiplexer device can be estimated by halving the measured insertion loss. 

 
 

Fig. 3 (a) Sketches of the two fabricated S1 (top) and S2 (bottom) structures (not to scale). The S1 

structure inputs a TE0 mode in either of the input waveguides and sends the output signal to a grating 

coupler over which an infrared camera is placed to allow recording of the output mode profile. The S2 

structure lets the input signals undergo multiplexing and de-multiplexing allowing for characterization of 

the insertion loss of the single multiplexer. (b) Scanning electron microscope image of the fabricated 

(de-)multiplexer structure. 

The designs were defined in an ~110 nm thick layer of positive electron beam resist 

(ZEP520A) by using a JEOL JBX-9500FS electron-beam lithography system. The system was 

operated at 100 keV and the writing field of the machine was 0.5 mm x 0.5 mm. The 

estimated diameter of the electron beam is 6 nm and it is scanned in steps of 4 nm. Proximity 

error correction was applied to account for backscattered electrons. The developed resist is 

used as a soft mask for inductively coupled plasma reactive ion etching using SF6 and C4F4 

gases. As a final step SU-8 polymer waveguides were defined to overlap with inversely 

tapered silicon in- and out-put waveguides utilized for optimizing the coupling from tapered 

lensed fibers. Fig. 3(b) shows a scanning electron micrograph (SEM) image of the fabricated 

structure confirming that the design is transferred successfully to the silicon. 



3.2 Characterization of the topology optimized mode converters 

To experimentally verify the functionality of the device, the S1 structure illustrated in Fig. 

3(a) is used for recording the mode profiles of the multiplexer as light is coupled into either 

the upper or lower waveguide. The output waveguide, carrying the multiplexed signal, is 

gently tapered from 778 nm to 36.4 µm where it ends in a vertical grating coupler. The signal 

is thus coupled out of plane and collected by a microscope above which an InGaAs infrared 

camera (IR-Cam – Xenics XEVA XC130) is placed to image the mode profile. If the original 

TE0 mode has been coupled to the upper arm, it shall remain a TE0 mode when traversing the 

multiplexer, whereas light coupled to the lower arm will have been converted to a TE1 mode 

before reaching the IR camera. Fig. 4(a) shows the recorded mode profiles at 1530 nm, 1570 

nm, and 1610 nm. The upper/lower row is recorded for an input signal to the upper/lower port 

of the multiplexer, respectively. As expected, the output signal from the upper/lower port is 

seen to be TE0/TE1 modes, respectively. Mode conversion for the lower input port was seen in 

the entire wavelength range (1520 nm – 1620 nm) of the laser used in the experiment. Fig. 

4(b) shows the sampled cross-section of the mode profiles of the two modes recorded at 1570 

nm. The TE1/TE0 extinction ratio for light input from the lower port was measured to be ~17 

dB at 1570 nm. In the C-band the measured extinction ratio is larger than 14 dB. This value is 

expected to be limited by the image resolution of the measurement setup as only few pixels 

define the steep valley of the TE1 signal. 

 
Fig. 4 (a) Mode profiles of the topology optimized mode multiplexer measured using the structure S1 

shown in Fig. 3. (b) Line scans across the mode profiles recorded at 1570 nm when light is input in the 

upper (red) or lower arm (blue). (c) Transmission spectra for the mode multiplexer measured from the 

structure S2 shown in Fig. 3. All spectra are normalized to the transmission through a straight 

waveguide. 

Transmission spectra were recorded for light travelling through all four possible channel 

combinations of the input and output waveguides of structure S2 where the light is 

multiplexed and subsequently de-multiplexed. The transmission spectra were recorded in the 

wavelength region of 1520 nm to 1620 nm and have been normalized to the spectrum of a 



straight waveguide. As the design is reversible and characterized in the linear regime the loss 

of a single multiplexer device can be estimated by halving the measured losses reported in 

Fig. 4(c). The insertion loss is found to be <1.2 dB for the entire 100 nm region of the source 

with a cross-talk <-12 dB. 

4. Three-mode multiplexer 

To investigate the applicability of TO to structures (de-)multiplexing a higher number of 

modes without a substantial increase in the device footprint, a design was made based on the 

same principle as described for the two-mode (de-)multiplexer. The structure was expanded to 

include three single mode waveguides supporting only the TE0 mode to be multiplexed onto a 

wider output waveguide, see Fig. 5(a). The design domain has a size of 6.08 µm x 4.93 µm. 

As before, the objective of the TO is to de-multiplex/convert the TE0, TE1, and TE2 signals 

from the input waveguide to TE0 modes in each of the three single-mode output waveguides.  

The conditions of the optimization were identical to those described for the two-mode 

multiplexer in section 2.1 and the structure was fabricated in the same manner, as described in 

section 3.1. An SEM image of the optimized structure with overlaid mode profiles calculated 

with 3D FDTD is presented in Fig. 5(b). Two designs similar to S1 and S2 of Fig. 3(a) were 

fabricated allowing for analogous types of characterizations. 

 
Fig. 5 (a) Initial structure for the TO of a 3-mode multiplexer. The design domain is indicated in yellow 

while the positions of the excitations is indicated in orange and those of the objectives in purple. (b) 

SEM image of the fabricated optimized structure, overlaid with a 3D FDTD-calculation of the Hz-field 

of the structure.  

Functionality and performance of the device was experimentally verified by recording the 

mode profiles shown in Fig. 6(a); clearly, multiplexing and mode conversion takes place for 

all channels.  The loss was investigated for a mirrored structure inputting the TE0 mode in any 

of the three channels, multiplexing it and then recording the subsequently de-multiplexed TE0 

mode. Spectra for all possible paths of the light through this mirrored structure are given in 

Fig. 6(b). The 3 dB bandwidth is ~80 nm with lowest loss around 1.7 dB. Within the C-band 

the measured extinction ratio for the TE1 mode is >14 dB. The image resolution is, however, 

too limited to obtain a proper estimate for the extinction ratio of the TE2 mode. Here, it has 

been the goal to demonstrate the possibility of realizing few-mode (de-)multiplexing devices 

utilizing TO rather than to investigate the optimum design attainable, which will in turn be a 

trade-off between the size and the functionality. However, we believe that the performance 

figures would be possible to improve through further optimizations with altered parameters to 

obtain a device converging to a local minimum with lower losses and cross-talks of the 

various channels. 



 
Fig. 6 Experimental results for the three-mode multiplexer. (a) Mode profiles recorded using a vertical 

grating coupler and an IR camera collected at three different wavelengths. (b) Transmission spectra for a 

multiplexer and de-multiplexer configuration. The legends refer to the position of the input/output 

waveguides, ‘lower’ carries the de-multiplexed TE1 mode, ‘middle’ the TE0 and ‘upper’ the TE2 mode.  

5. Conclusion 

We have demonstrated the utilization of topology optimization for the design of a mode (de-

)multiplexer operating on the fundamental and the first-order transverse-electric modes having 

an ultra-compact footprint of 2.6 µm x 4.22 µm. It is more compact than any previous 

reported device without a loss of the general functionality. The optimized designs were 

fabricated in silicon-on-insulator material using e-beam lithography; mode profiles were 

recorded demonstrating the functionality of the device. The extinction ratio was measured to 

be >14 dB in the C-band with insertion losses <1.2 dB in a bandwidth of 100 nm limited by 

the available laser source. The crosstalk measured for a multiplexer followed by a de-

multiplexer was less than -12 dB. 

In addition, a (de-)multiplexer including the second-order transverse electric mode was 

designed with a footprint increased to no more than 6.08 µm x 4.93 µm; it experimentally 

performed in a bandwidth of ~80 nm with lowest losses of ~1.7 dB. We believe that the 

performance figures can be improved through further optimizations, but here we have 

demonstrated that the technique can be expanded to include more modes so that the topology 

optimization method can be employed to create ultra-compact mode (de-)multiplexers for 

multiple modes required for photonic integrated components. 
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