
1

Topology prediction for helical transmembrane proteins
at 86% accuracy

Burkhard Rost 1, Piero Fariselli 2 & Rita Casadio 2

1 Corresponding author: then: EMBL
now: Dept. Biochemistry & Mol. Biophys., Columbia Univ., 650 West 168th Street BB217, New York,
NY 10032, USA, rost@columbia.edu, http://cubic.bioc.columbia.edu/

2 then and now: Lab. of Biophysics, Dep. of Biology, Univ. of Bologna, 40126 Bologna, Italy

QUOTE: Protein Science 1996 Vol. 5, pp. 1704-1718

Abstract

Previously, we introduced a neural network system
predicting locations of transmembrane helices based
on evolutionary profiles (PHDhtm, (Rost et al.,
1995). Here, we describe an improvement and an
extension of that system. The improvement is
achieved by a dynamic programming-like algorithm
that optimises helices compatible with the neural
network output. The extension is the prediction of
topology (orientation of first loop region with respect
to membrane) by applying to the refined prediction
the observation that positively charged residues are
more abundant in extra-cytoplasmic regions.
Furthermore, we introduce a method to reduce the
number of false positives, i.e., proteins falsely
predicted with membrane helices. The evaluation of
prediction accuracy is based on a cross-validation
and a double-blind test set (in total 131 proteins).
The final method appears to be more accurate than
other methods published. (1) For almost 89% (±3%)
of the test proteins all transmembrane helices are
predicted correctly. (2) For more than 86% (±3%) of
the proteins topology is predicted correctly. (3) We
define reliability indices which correlate with
prediction accuracy: for one half of the proteins
segment accuracy raises to 98%; and for two-thirds
accuracy of topology prediction is 95%. (4) The rate
of proteins for which transmembrane helices are
predicted falsely is below 2% (±1%). Finally, the
method is applied to 1616 sequences of Haemophilus
influenzae. We predict 19% of the genome
sequences to contain one or more transmembrane
helices. This appears to be lower than what we
predicted previously for the yeast VIII chromosome
(about 25%).

Introduction ◊◊◊◊

Integral membrane proteins comprise an important
class of proteins for which experimental techniques
for three-dimensional (3D) structure determination
are often not applicable. Fortunately, theoretical
prediction of structural aspects is simpler for
membrane proteins than it is for globular proteins as
the lipid bilayer imposes strong constraints on the
degrees of freedom for the 3D structure (von Heijne,
1981, Eisenberg et al., 1984, Engelman et al., 1986,
von Heijne & Gavel, 1988, von Heijne, 1989, von
Heijne, 1992, Taylor et al., 1994, Rost et al., 1995).

Prediction of transmembrane helices. 3D structures
are experimentally determined for two types of
membrane proteins: (1) helical proteins consisting of
typically apolar helices of about 20 residues that
cross the membrane perpendicular to its surface
(photo-reaction centre (Deisenhofer et al., 1985);
bacteriorhodopsin (Henderson et al., 1990); light
harvesting complex II (Wang, 1994)), cytochrome C
oxidase (Iwata et al., 1995); and (2) b proteins
consisting of 16-stranded b-barrels (porin (Weiss &
Schulz, 1992, Cowan & Rosenbusch, 1994, Kreusch
& Schulz, 1994)). Methods for the prediction of
transmembrane segments usually focus on helical
transmembrane proteins for which more

                                                                        

◊  Abbreviations: 3D, three-dimensional; 1D, one-
dimensional; HTM, transmembrane helix (in figures
and tables also abbreviated with the symbol H; L is
used to describe non-transmembrane regions); PDB,
Protein Data Bank of experimentally determined 3D
structures of proteins; PHDhtm, Profile based neural
network prediction of helical transmembrane
regions; PHDhtm_f i l , empirical filter post-
processing the output from PHDhtm; PHDhtm_ref,
refinement procedure post-processing the output
from PHDhtm described here; SWISS-PROT, data
base of known protein sequences.
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experimental data is available. Prediction methods
were designed to predict the locations of
transmembrane helices (von Heijne, 1981, Argos et
al., 1982, Kyte & Doolittle, 1982, Engelman et al.,
1986, von Heijne, 1986b, von Heijne, 1986a,
Cornette et al., 1987, von Heijne & Gavel, 1988,
Degli Esposti et al., 1990, von Heijne & Manoil,
1990, Landolt-Marticorena et al., 1992, von Heijne,
1992, Donnelly et al., 1993, Edelman, 1993, O'Hara
et al., 1993, Sipos & von Heijne, 1993, Jones et al.,
1994, Persson & Argos, 1994, Donnelly & Findlay,
1995, Casadio et al., 1996), and the orientation of
transmembrane helices with respect to the cell
(dubbed topology, Fig. 1, (von Heijne & Gavel,
1988, von Heijne, 1989, Nilsson & von Heijne,
1990, von Heijne, 1992, Sipos & von Heijne, 1993,
Jones et al., 1994, Casadio & Fariselli, 1996)). If the
locations of the transmembrane helices and the
topology are known at sufficient accuracy, 3D
structure can be successfully predicted for the
membrane spanning segments by an exhaustive
search of the entire possible structure space (Taylor
et al., 1994).

Accuracy of prediction methods. One of the
problems in predicting structure for helical
transmembrane proteins is the lack of accurate
experimental information. Most prediction methods
designed for globular water-soluble proteins are
typically based on more than 100 proteins (Rost &
Sander, 1994, Rost & Sander, 1995) of known 3D
structure as stored in PDB (Bernstein et al., 1977).
To obtain sufficiently large data sets, prediction
methods for membrane proteins use data from
experimental sources other than crystallography or
spectroscopy (Manoil & Beckwith, 1986, Park et al.,
1992, Hennessey & Broome-Smith, 1993). There are
numerous examples for proteins for which 'reliable
experimental information' obtained from different
groups is contradictory. To list a few controversial
cases: (1) nicotinic acetylcholine receptor channel:
four a-helices vs. two a-helices and two b-strands
(Hucho et al., 1994); (2) P-type ATPases: eight vs.
ten a-helices (Stokes et al., 1994); (3) a-subunit of
the FO channel E. coli: topology out (Lewis et al.,
1990) vs. topology in (Bjorbaek et al., 1990); (4)
mitochondrial cytochrome B: 7-9 a-helices (Degli
Esposti et al., 1993). One consequence of this is that
prediction methods are likely to become more
accurate as reliable experimental information about
integral membrane proteins is being added to the
databases. Another consequence, however, is the
problem to adequately estimate prediction accuracy.
Thus, estimates for expected accuracy have to be
taken with caution.

Further improvement of prediction accuracy
necessary? Advanced methods for the prediction of
transmembrane helices (Jones et al., 1994, Persson &
Argos, 1994, Rost et al., 1995) reach levels of about
90% accuracy (correctly predicted transmembrane
helices). Thus, predictions of transmembrane helices
are significantly more accurate than are two-state
secondary structure predictions of, e.g., helix, non-
helix for globular proteins (Rost & Sander, 1993b).
Is there any need for improving 1D predictions for
transmembrane proteins further? Indeed, two
methods that start from 1D predictions of
transmembrane helices to predict further aspects of
3D structure would presumably benefit from better
1D predictions. (1) Taylor and colleagues (Taylor et
al., 1994) achieve to predict 3D structure for the
membrane spanning helices when starting from the
knowledge of the exact locations of the helices. In
general, current 1D predictions are not accurate
enough to provide the demanded precision in
locating the helices. (2) A simple and successful
technique to predict topology is the positive-inside
rule (von Heijne & Gavel, 1988, Hartmann et al.,
1989, von Heijne, 1989, Boyd & Beckwith, 1990,
Dalbey, 1990, Nilsson & von Heijne, 1990, von
Heijne, 1992, Sipos & von Heijne, 1993): positively
charged residues occur more often in intra-
cytoplasmic than in extra-cytoplasmic regions.
Applying this rule for the prediction of topology
relies crucially on a correct prediction of the non-
transmembrane regions. We shall show, that
relatively small improvements in 1D predictions of
transmembrane helices can result in significantly
better predictions of topology.

An improvement and extension of a previously
described technique to predict locations of
transmembrane helices (Rost et al., 1995) is
presented, here. The initial method (PHDhtm) used
information derived from multiple sequence
alignments as input for a system of neural networks
(Fig. 2: step 1). The neural network preferences were
used in two ways. (1) A region of 18 adjacent
residues was searched that had the highest propensity
in the protein to be in a transmembrane helix (HTM)
(Fig. 2 : step 2). Then two thresholds were applied
(eq. 5 ) to decide whether or not the protein was
predicted to contain, at least, one HTM. (2) The
preferences for HTM and not-HTM were input to a
dynamic programming algorithm that produced a
model (locations and number of HTM's) that was
optimally compatible with the neural network
preferences and the assumption that the protein
contains transmembrane helices of lengths 18-25
residues (Fig. 2 : step 3; Fig. 6 and Fig. 7). By
working on the preferences for the entire protein, the
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Fig. 1.  Topology for helical transmembrane proteins.   In one class of membrane proteins, typically apolar helical
segments are embedded in the lipid bilayer oriented perpendicular to the surface of the membrane.  The helices can be
regarded as more or less rigid cylinders.  The orientation of the helical axes, i.e. the topology of the transmembrane
protein, can be defined by the orientation of the first N-terminal residues with respect to the cell.  The topology is defined
as out  when the protein N-term starts on extra-cytoplasmic region (protein A) and as in  if the N-term starts on the intra-
cytoplasmic side (proteins B and C).

Step 4: predict topology IN:     locations of HTM's
OUT: intra- and extracytoplasmic regions

• compile sums over positive charges (R and K) for all non-HTM regions
• compile difference between charges in all odd and all  even non-HTM regions

∆C< 0 ->    N-term intra-cytoplasmic

find similar
sequences in

SWISS-PROT

BLAST

protein U
protein A

:
protein M

MaxHom PHDhtm
(neural  network system)

1

0
1

0
residue number

H

L

Step 1:  predict
HTM preferences

IN:      protein sequence
OUT:  preference for each residue to be in  H or L

Step 3: predict HTM location
by dynamic programming

IN:      preferences for HTM
OUT:  locations and numbers of
           HTM's predicted

• find segments with maximal
  preference for HTM
• successively add highest scoring
  segments to model
• terminate if overall score (sum
  over preferences for H and L)
  decreases

1

0
residue number

H

Step 2: predict proteins
 without HTM's

find maximal area AH for 18
adjacent  residues

<P18> < threshold -> no HTM

IN:      preference for each residue
OUT:  number of HTM >0 or = 0

compile average overall score
<P18> (eq. 1) for the 18 residues

Fig. 2.  From sequence to topology
prediction.  Step 1:  Sequences similar to
the input were found in  SWISS-PROT
(Bairoch & Boeckmann, 1994) using
BLAST  (Altschul et al., 1990, Karlin &
Altschul, 1990); likely homologues were
picked re-aligned by MAXHOM  (Sander
& Schneider, 1991, Sander & Schneider,
1994); and the alignment was fed into the
neural network system PHDhtm (Rost et
al., 1995).  The network preferences for
each residue to be in a transmembrane
helix (H) or to be outside of the lipid
bilayer (L) were used as for the post-
processing methods described here.  Step
2:   The region of 18 adjacent residues
with maximal preference for H was
picked, normalised by the preferences for
L and a decision-threshold was applied to
manage the distinction between proteins
with and without transmembrane helices.
Step 3:   The network preferences were
used as input to a dynamic programming
algorithm that found the model (number
and locations of HTM's) representing the
best path through all possible models
consisting of HTM's between 18 and 25
residues by optimising the compatibility
of the model with the neural network
outputs.  Step 4:   The final refined model
output from the dynamic programming
was used to apply the positive-inside rule
(von Heijne & Gavel, 1988, von Heijne,
1992).
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refinement procedure introduced an aspect global in
sequence, i.e., the resulting model was not as
constrained to signals local in sequence (17 adjacent
residues used as input to the neural networks) as the
previous network prediction. Finally, the refinement
model was used to predict topology (Fig. 1) by
applying the positive-inside rule (Fig. 2 : step 4; Fig.
6). The main elements of the method are described in
mathematical details elsewhere (Rost et al., 1996).
Here, we focused on the new aspects (reduction of
false positives; definition of reliability indices for the
prediction) and present a thorough analysis of the
performance of the novel method. Finally, the tool
was applied to the first entirely sequenced genome of
Haemophilus influenzae (Fleischmann et al., 1995)
and particular aspects of the results were compared
to an analysis of the yeast VIII chromosome (Rost et
al., 1995).

Results

Correct prediction of all transmembrane helices
for almost 90% of the proteins

Refinement procedure significantly better than
original neural network. The refinement algorithm
(PHDhtm_ref), used here, systematically optimised
the transmembrane segments compatible with the
output of the neural network system PHDhtm. The
success was that the number of proteins for which all
transmembrane helices (dubbed HTM's) were
predicted correctly almost doubled (Table 1). More
than 98% of all observed transmembrane helices
were predicted correctly by PHDhtm_ref (337 of 341

Table 1.  Accuracy of predicting transmembrane helices and topology

Method Set Number of trans- Per-re- Per-seg- Accuracy for
membrane helices sidue ac- ment ac-  topology  

 curacy curacy prediction
Nprot Nobs Nprd Ncor Q2 QM d QT d

PHDhtm_nof 83 341 300 266 91.9 45.8 ±6.0 44.6 ±6.0
PHDhtm_fil 83 341 340 333 94.5 86.7 ±3.6 80.7 ±4.8
PHDhtm_ref 83 341 354 337 93.6 88.0 ±3.6 85.5 ±4.8
Jones et al., 1994 b 83 79.5 ±3.7 77.1 ±3.8

PHDhtm_fil 48 198 195 194 94.2 89.6 ±6.2 85.4±6.2
PHDhtm_ref 48 198 198 196 94.4 91.7 ±4.2 87.5±6.2

Eukaryotes   c 99 334 337 332 95.8 93.5 ±3.2 90.3 ±3.2
Prokaryotes  c 33 200 208 196 85.6 75.8 ±9.1 72.7 ±9.1

PHDhtm_fil 131 539 535 527 94.4 88.5 ±3.1 82.4 ±3.8
PHDhtm_ref 131 539 552 533 93.8 89.3 ±3.1 86.3 ±3.1

Results given for cross-validation set (83 proteins; electronic appendix or (Rost WWW, 1996b)), double-blind set (48
proteins; electronic appendix or (Rost WWW, 1996b)), and for the sum of these two.  Methods: PHDhtm_nof , neural
network results (no filter);  PHDhtm_fil , neural network with empirical filter (Rost et al., 1995);  PHDhtm_ref , refined
version of PHDhtm described here; Jones et al., 1994 , prediction method of Jones et al., 1994.  Scores and numbers:
Nprot, number of proteins; Nobs , number of transmembrane helices (HTM's) observed; Nprd, number of HTM's
predicted; Ncor, number of HTM's correctly predicted; Q2 , percentage of residues predicted correctly in either of the two
states: HTM, or not-HTM;  QM, percentage of proteins for which all HTM's were predicted correctly ; QT , percentage of
proteins for which the topology and all HTM's were predicted correctly.  Note: as a rule of thumb: for an evaluation set of
131 proteins and two standard deviations of 2 ¥ 3.1%, an improvement of > 0.6% would be significant.
(b)  Results compiled from literature (Jones et al., 1994).
(c)  Subsets with all eukaryotic and all prokaryotic proteins.
(d)  Estimated error: ± x ,  where x  was one standard deviation for a binomial distribution.
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Fig. 3.  Reliability of predicting correct model.   A:  Reliability of model vs. number of transmembrane helices
observed.  Note: to separate the points on the horizontal axis, we added a random number between 0 and 1 to the number
of transmembrane helices, i.e. all entries between two grey vertical lines represent the same number of helices.  Crosses
mark proteins for which all segments were predicted correctly; open circles proteins for which some helices were
predicted falsely.  For example, the highest index for a falsely predicted protein was 5 (myp0_human).  B:  Percentage of
proteins for which all transmembrane helices were correctly predicted versus the cumulative percentage of proteins
predicted with a reliability index RiS(M) ≥ n, n = 0 (low), 1, ..., 8 (high) .  RiS(M) ≥ 0  is the rightmost point representing
100% of the proteins.  For example, more than 60% of all proteins were predicted with Ri S DO3(M) ≥ 2 ; for 95% of
these all transmembrane helices were predicted correctly.

observed; Table 1). Tendency was a marginal over-
prediction (341 observed, 354 predicted; Table 1).
Prediction accuracy was higher for proteins which
were observed to contain more than one HTM (data
not shown).

Refinement procedure better at predicting segments
than empirical filter. Trans-membrane helices
predicted by PHDhtm alone were too long (266
predicted vs. 341 observed; Table 1). The reason is
that loop regions between two transmembrane
segments are often very hydrophobic. Since the
neural network only 'sees' bio-chemical properties of
amino acids, the second level of neural networks
introduced to account for correlations between
adjacent residues (Rost et al., 1995, Rost, 1996)

frequently predicted helices extending over more
than 40 residues. Thus, the network system could not
learn external constraints imposed on the structure.
Previously, we have corrected this shortcoming by
introducing an empirical filter that simply chopped
too long helices into several shorter ones (Rost et al.,
1995); PHDhtm_fil: 340 HTM's predicted vs. 341
observed; Table 1). The refinement algorithm
pursued systematically a similar goal. PHDhtm_ref
predicted slightly less residues correctly than
PHDhtm_fil, but was slightly better at predicting
correctly transmembrane helices (Table 1).

Expected accuracy verified by double-blind test.
After we had completed all tests with the cross-
validation set of 83 membrane proteins, we tested all
methods on the double-blind set of 48 proteins. The
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results corrected our previous estimates for
prediction accuracy to higher values. In particular,
PHDhtm_ref performed even better when applied to
a set of proteins which had never been used before
(Table 1). (Note: most results presented in the
following hold for the entire set of 131 proteins, i.e.,
cross-validation plus double-blind set.)

Reliability index guide for expert-driven improve-
ment of accuracy. The reliability index defined for
the final best refined model (eq. 3 ) correlated well
with prediction accuracy (Fig. 3). In practice, this
allows to focus on the subset of proteins that were
predicted more reliably. For example, 66 proteins
were predicted at levels of Ri S DO3( M) ≥ 3; for 65
of these 66 proteins all predicted HTM's were correct
(Fig. 3; outlier: myp0_human for which the signal
peptide was predicted as HTM; see electronic
appendix or (Rost WWW, 1996a)).

Second best model occasionally correct. The
dynamic programming-like algorithm yielded a list
of possible models. Results reported refer to the best
model (best according to eq. 1). However, the second
best model was occasionally better: five of the 14
proteins (out of 131) predicted with errors
(cox2_parde,  ig1r_human,  i l2b_human,
myp0_human, rfpb_salty; electronic appendix or
(Rost WWW, 1996a)) were correctly predicted by
the second best model. For another seven (of the 14),
the second best model was more accurate than the
best. Thus, additional expert information may have
had reduced the error from 11% to 7% or even to
2%. Expert decisions could have been based on the
reliability index that was > 2 for only one of the 14
proteins (myp0_human; for comparison: average
reliability for all correctly predicted proteins = 3.4;
Fig. 3; for details: electronic appendix or (Rost
WWW, 1996a)).

Correct topology prediction for more than 85%
of the proteins

Refinement most successful in predicting topology.
The empirical filter was slightly superior to the
refinement in predicting residues, and slightly
inferior in predicting segments. Which was more
crucial for using the resulting models (i.e.
predictions of all HTM's) to predict topology? Using
the refinement procedure as basis for the positive-
inside rule, we correctly predicted topology (and all
HTM's) for 86% of all proteins (vs. 82% for
PHDhtm_fil; Table 1). Thus, PHDhtm_ref was
significantly more useful as input for topology
prediction than PHDhtm_fil. Furthermore, for more
than 90% of the proteins the orientation of the first
non-membrane region was correctly predicted (data
not shown; note: a random prediction would be
correct in about 52% of all cases).

Positive-inside rule not the limiting factor. For 117
proteins all HTM's were correctly predicted; for 113
of these the topology was correctly predicted. For
three of the four proteins for which the predicted
topology was not in accordance with the SWISS-
PROT entries (4f2_human, lh4_rhoac, and ssrg_rat),
the application of the positive-inside rule yielded the
wrong topology even when starting from HTM
locations annotated in SWISS-PROT. The simple
positive-inside rule yielded the correct topology for
almost 97% of the proteins given HTM locations
annotated in SWISS-PROT. Thus, the simplicity of
the positive-inside rule was not the limiting factor for
prediction accuracy.

Reliability index correlates with prediction accuracy.
The value of the charge difference between extra-
and intra-cytoplasmic non-transmembrane regions
correlated with prediction accuracy (Fig. 4). The
reliability index Ri S DO3( T) (eq. 4 ) was > 5 for
only three falsely predicted proteins (myp0_human,
iggb_strsp, and gaa4_bovin). For all three some
HTM's were falsely predicted (electronic appendix or
(Rost WWW, 1996a)). For only one of these three
(myp0_human) the predicted model had, as well, a
high reliability, and thus could not have been
suspected as a wrong prediction by an expert. For
two chains from the cytochrome C oxidase
(cox1_parde and cox3_parde; electronic appendix or
(Rost WWW, 1996a)) we trusted our prediction
more than the SWISS-PROT annotations for a
homologue. The X-ray determination of the structure
for cytochrome C oxidase (Iwata et al., 1995)
revealed the correctness of the prediction (and
consequently the mistake in SWISS-PROT; details in
electronic appendix or (Rost WWW, 1996a)).

Eukaryotic proteins predicted at higher accuracy.
Separating the results for eukaryotic, prokaryotic and
viral proteins revealed three results. (1) Topology
and all transmembrane helices were predicted better
than average for eukaryotic proteins (Table 1). (2)
The positive-inside rule was about equally successful
for both classes, i.e., given a correct prediction of all
HTM's, the topology prediction was correct for
96.6% of the eukaryotic and for 96.0% of the
prokaryotic proteins (Table 1). (3) The five viral
proteins in our set were predicted correctly, although
they all had single membrane spanning (expected
accuracy below average; data not shown). However,
five proteins are too few to justify any conclusion
from this evidence. Why was prediction accuracy
significantly higher for Eukaryotes than for
Prokaryotes? We failed to find a satisfying answer.
Several factors may have contributed to the higher
accuracy for Eukaryotes: (i) the multiple sequence
alignments were more informative for the
Eukaryotes (20% of the alignments for Eukaryotes
had less than 4; 30% less than 10 sequences aligned;
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the respective numbers for Prokaryotes: 40% and
70%!); (ii) eukaryotic HTM's are longer (on average
23 residues, vs. 21 for Prokaryotes; longer HTM's
are predicted more reliably); (iii) there are
marginally more hydrophobic residues in eukaryotic
HTM's (subclass of residues for which prediction
accuracy was highest) and slightly more charged
residues in eukaryotic non-HTM regions (second
best predicted class of residues).

Reliable discrimination between proteins with
and without transmembrane helices

Significant reduction of false positives by evaluating
strongest HTM. The usefulness of transmembrane
predictions for the analysis of entire genomes
depends crucially on the rate of false positives (i.e.,
proteins falsely predicted to contain transmembrane
helices). Here, we introduced a method tailored to
reduce false positives. The method based on the
hypothesis that proteins with and without
transmembrane helices separate most clearly when
comparing a single region predicted with highest
average propensity for HTM. Applying a strict
decision threshold (eq. 5 ), the percentage of false

positives was reduced below 2% (Table 2, note that
the low rate of false positives was obtained at the
expense of a higher false negative rate). False
classifications occurred for proteins with very
hydrophobic patches (for two of the falsely predicted
seven proteins, HTM's were predicted for observed
strands: TATA-box binding protein, 1ytbA and the
Racemase, 2mnr).

Will the estimate for false classifications hold for
entire genomes? The investigated set of 435 globular
proteins resulted in more conservative estimates for
the error rate than did smaller sets used previously
(sets with 278, resp. 155 proteins; Table 2). The
difference between the error rate for the maximal
unique data set of 18 months ago and the maximal
set used now (PHDhtm_fil for 238 vs. 435 proteins,
Table 2) indicates that the estimated rate of false
positives ought to be viewed with scepticism.
Improved experimental techniques may determine
structures for proteins with very hydrophobic regions
that could be predicted falsely as HTM's.
Furthermore, the analysis based on proteins
contained in PDB which do not contain signal
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Fig. 4: Reliability of topology prediction. A: Charge difference vs. number of transmembrane helices observed. Note: to
separate the points on the horizontal axis, we added a random number between 0 and 1 to the number of transmembrane
helices, i.e. all entries between two grey vertical lines represent the same number of helices. Crosses mark proteins for
which all segments and the topology were predicted correctly; filled triangles proteins for which the topology prediction
was wrong although all helices were correctly predicted; open circles proteins for which some helices and the topology
were predicted falsely. High values for false topology predictions occurred only for proteins for which also the model was
predicted falsely (circles). B: Accuracy of topology prediction versus the cumulative percentage of proteins predicted with
a reliability index RiS(T) ≥ n, n = 0 (low), 1, ..., 9 (high) . RiS3(T) ≥ 0 is the rightmost point representing 100% of the
proteins. For example, more than 60% of all proteins were predicted with RiS3(T) ≥ 5 ; for 95% of these the topology and
model were predicted correctly. C: The number of proteins predicted with a certain reliability index is shown to indicate
that the drop of accuracy for RiS3(T) ≥ 6 (B) is partly due to low count rates.
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Fig. 5: Helical transmembrane
proteins  for  Haemophi lus
influenzae. A: Cumulative percentage
of helical transmembrane proteins vs.
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number of proteins 1616). We
separated between predictions based
on multiple alignments (expected
accuracy higher; filled diamonds) and
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over both.

Table 2. Accuracy of distinguishing proteins with and without transmembrane helices

Method Nglob Eglob c Nmemb Ememb c

PHDhtm, ϑstrict = 0.8 435   1.6 %  ±  0.7% 131 2.3 %  ± 1.5%
PHDhtm, ϑ loose = 0.7 435   3.7 %  ±  0.9% 131 0.0 %  ± 0.8%
PHDhtm_fil 435   5.7 %  ±  1.1% 131 0.0 %  ± 0.8%

PHDhtm_fil b 278   4.3 %  ±  1.4%   69 0.0 %  ± 1.4%
Jones et al., 1994 b 155   3.2 %  ±  1.9%   83 1.2 %  ± 1.2%
Edelman, 1993 b   14 21.4 %  ±14.3% ?

Methods: PHDhtm, J(strict) = 0.8 : strict decision threshold applied to PHDhtm output (designed to reduce false positives;
eq. 5 ); PHDhtm, J(loose) = 0.7 , loose decision threshold (designed to include all possible helical membrane proteins; eq.
5 ); PHDhtm_fil , PHDhtm plus empirical filter; Jones et al., 1994 , statistics-based method for predicting transmembrane
helices (Jones et al., 1994); Edelmann, 1993 , statistics-based prediction method (Edelman, 1993), the question mark
indicates that published results for predicting membrane proteins are not based on cross-validation tests and thus are not
comparable. Scores: N3(glob) , number of globular proteins, i.e. proteins without HTM's; E(glob) , percentage of proteins
without HTM's for which HTM's were falsely predicted; N(memb) , number of proteins with HTM's; E(memb) ,
percentage of proteins with HTM's for which no HTM's were predicted. The following proteins without HTM's were
predicted to contain HTM's by the strict threshold: 1bmdA, Oxidoreductase; 1pfiA, Viral coat protein; 1ribA, Reductase;
1spf, Lipoprotein; 1ytbA, TATA-box binding protein; 2mnr, Racemase; 2ohxA, Oxidoreductase.
(b) Results taken from literature (Edelman, 1993, Jones et al., 1994, Rost et al., 1995).
(c) Estimated error: ± x , where x was one standard deviation for a binomial distribution.
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peptides, i.e., the problem that the refined prediction
frequently confused transmembrane helices and
signal peptides is not taken into account. Thus, an
expected rate of less than 2% false positives (Table
2) may prove to be too optimistic.

Total number of false classifications lower for strict
threshold. The two decision thresholds introduced
allow to focus on either predicting as many helical
transmembrane proteins as possible (loose threshold,
eq. 5 ) or on minimising the rate of false positives
(strict threshold, eq. 5 ). The strict threshold was
better in classifying proteins without HTM's (lower
rate of false positives; higher rate of false negatives);
the loose threshold in classifying proteins with
HTM's (lower rate of false negatives; higher rate of
false positives; Table 2). The strict threshold yielded
a higher total error rate (false positives + false
negatives = 3.9%) than the loose threshold (3.7%).
However, for analysing a large number of proteins
by an automatic prediction service (Rost et al.,
1994a, Rost, 1996), e.g. entire genomes, the total
number of falsely classified proteins would be lower
for the strict than for the loose threshold as the
number of proteins without HTM's is supposedly
below 30%.

Refined version of PHDhtm compared favourably
with other methods

Better prediction of topology. The final topology
predictions were more than eight percentage points
superior to the best alternative method for prediction
of topology published when evaluated on an
identical data set of 83 proteins (Jones et al., 1994);
Table 1). An empirically derived method was
evaluated on 24 bacterial inner membrane proteins
by von Heijne (1992). A crucial idea of that method
was to choose the predicted HTM's such that the
charge difference became maximal. A similar
algorithm, in our hands, resulted in significantly
worse predictions than those obtained by the
methods described here. The result published by von
Heijne (1992) suggests a prediction accuracy of 96%
for the correct prediction of all HTM's and topology.
Leaving out the three proteins for which the
assignments of HTM's published by von Heijne did
not correspond to the SWISS-PROT assignments
(cyoa_ecoli, cyoe_ecoli, uhpt_ecoli), we achieved
the same accuracy on this specially selected data set.

Lower rate of false positives. Judging from the
results published, the method of Jones et al. (1994) is
the best in distinguishing between proteins with and
without transmembrane helices. Our method tailored
to manage this distinction yielded a lower error rate
although based on a larger and more conservative
data set (Table 2).

Analysing the entire Haemophilus influenzae
genome

Most predictions based on single sequence
information Prediction accuracy is significantly
higher if the evolutionary information contained in
multiple alignments is used as input to the neural
network system PHDhtm (Rost et al., 1995). For 332
out of 1616 H.i. proteins we predicted at least one
HTM. For 129 of the 332 predicted HTM proteins
(40%), the prediction was based on alignments; for
only 76 (23%!) predictions were based on multiple
alignments containing at least 4 sequences (results
for the 37 of these predicted to contain at least two
HTM's in Table 3; for more details see the electronic
appendix or (Rost WWW, 1996a)). About 80% of
predicted membrane-bound proteins (238) were
predicted to contain more than a single
transmembrane helix (electronic appendix or (Rost
WWW, 1996b)).

Fewer helical membrane proteins in Haemophilus
influenzae than in yeast VIII. When subtracting the
expected error rate for false positives (1.6±0.7%;
Table 2) and adding the expected under-prediction of
membrane proteins (2.3±1.5%; Table 2), the results
suggested that about 19% of all H.i. proteins contain
transmembrane helices; and about 16% more than
one HTM. A similar analysis of the yeast VIII
chromosome with our previous prediction method
(PHDhtm_fil), predicted transmembrane helices for
about 25% of the proteins; and about 16% with more
than one HTM. Given the higher error rate for false
positives of our previous method (Table 2), the
results suggested that there are slightly more proteins
with transmembrane helices in yeast VIII than in
Haemophilus influenzae.

More proteins predicted with topology 'in'. About
57% of the proteins predicted with HTM's were
predicted with topology 'in' (Fig. 5). Significant
exceptions were proteins predicted with five and
seven transmembrane helices, for which the topology
'out' dominated (Fig. 5). Interestingly, a higher
percentage of the proteins predicted with topology
'out' had both terminal non-transmembrane regions
on the outside (86 out of 144) than proteins predicted
with topology 'in' (79 out of 188). In other words,
proteins predicted with topology 'out' were more
often predicted with an odd number of HTM's.

Discussion

Significant improvement of prediction accuracy by
refinement algorithm. The segment optimising
refinement of the profile-based neural network
system PHDhtm proved to be successful in four
ways. (1) Prediction accuracy was significantly
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better than for the simple neural network prediction;
for about 89% (±3.1%, one standard deviation) of the
proteins all HTM's were correctly predicted (Table
1). (2) The refined version of PHDhtm was
significantly more accurate at predicting all HTM's
correctly than was the previously implemented
empirical filter (Table 1). (3) The refinement
algorithm was less sensitive to the choice of free
parameters (eq. 2 ) than the empirical filter as the

results were better for the double-blind set that was
used after the methods had been set up (Table 1). (4)
The reliability index defined for the final prediction
(eq. 3 ) correlated well with prediction accuracy: for
65 of the 66 proteins (i.e. 98%) predicted with
Ri S DO3(M) ≥ 3 all transmembrane helices were
predicted correctly (Fig. 3).

Table 3. Proteins with transmembrane helices predicted for Haemophilus influenzae

Name Top Nhmt N-term Segment positions

HI1586 out 13 MLSVLSINYR  29- 52, 57- 74, 87-104,132-149,154-177,182-201,216-238,
269-286,311-330,353-370,390-408,413-437,493-511

HI0772 in 12 MISRVSRFMT  22- 41, 56- 76, 98-122,136-153,158-176,191-212,252-269,  
274-298,314-331,336-360,381-405,417-441

HI0883 out 11 MTIESILSAI  14- 35, 64- 81, 86-106,144-163,180-203,208-230,235-259,
302-321,348-370,387-411,416-433

HI1154 in 11 MLLVNLAIFI  29- 47, 64- 87,102-126,179-196,219-243,250-274,284-301,
339-360,365-389,394-412,417-434

HI0687 in 10 MNNENMVRVF  13- 32, 37- 57, 68- 86, 93-116,134-151,163-180,185-202,
228-245,254-272,277-294

HI1241 in 8 MSEQSSKYIA  12- 33, 38- 61, 72- 96,101-125,130-147,159-183,188-206,
226-250

HI0359 out 7 MFDWLLEPLQ  19- 39, 52- 76, 96-113,137-155,174-198,203-227,235-259
HI0392 in 7 VDIFFVISGF   2- 19, 35- 59, 64- 88, 95-119,124-148,161-182,207-231
HI0407 out 7 MFEILFPALL  11- 31, 42- 66, 86-103,128-148,166-190,195-218,223-247
HI0825 out 7 MLINFTQVLQ  19- 40, 61- 84, 96-120,131-155,160-178,183-201,206-230
HI1248 in 7 MKKYKTGLVL   9- 26, 56- 76, 95-119,135-153,214-238,250-270,293-313
HI0188 in 6 MSNVDESQPL  24- 42, 69- 93,110-134,155-179,190-207,212-231
HI1122 in 6 MTDYRTQPIN  48- 67,108-132,152-176,181-198,224-248,278-297
HI1178 in 6 MFSDFLSLMF  15- 36, 48- 68, 86-104,124-141,146-165,185-203
HI1187 in 6 MFKFVFKRIL  11- 28, 99-120,134-158,200-218,257-281,302-323
HI1307 in 6 VMLNLIIVHL   1- 23, 34- 58, 63- 86,115-139,144-168,185-205
HI1548 in 6 MNTPFFISWR  28- 52,196-214,270-292,310-327,332-354,381-401
HI1621 in 6 MHLSEGVLHT  11- 30, 35- 59, 64- 88, 93-117,125-149,163-187
HI1452 out 5 MEELLSAVII  26- 49, 61- 85, 90-108,122-144,162-186
HI1620 out 5 MKIHHLFQPH   8- 27, 32- 56, 61- 85, 92-116,121-145
HI0238 in 4 MQQQISNYIH  15- 39, 44- 68, 73- 92,103-127
HI0318 in 4 MLFINITFAC   4- 22, 33- 54, 74- 91,130-150
HI0489 in 4 MDIFSFFSAD  14- 38, 43- 67, 91-109,114-138
HI0976 out 4 MLYQILALLI  22- 46, 60- 82, 87-105,110-128
HI1006 in 4 MSKKSGLSFL   9- 26, 66- 84, 95-113,134-151
HI1602 in 4 MKDCKMQGIG  12- 29, 47- 71, 76- 95,112-131
HI0237 out 3 MLEMLKSWYS  22- 41, 84-101,157-177
HI0832 in 3 MVDQNPKRSG  23- 43, 54- 71, 94-111
HI0886 in 3 MNNLEKYRPY  17- 34, 55- 72, 98-116
HI1001 out 3 MDSRRSLLVL 347-366,420-437,496-515
HI1737 in 3 MTLIEQIITI   6- 23, 41- 58, 68- 89
HI0484 out 2 METVITATII  12- 32, 50- 74
HI0633 in 2 MLWDLSGGMV  19- 38, 43- 63
HI1138 in 2 MKNKKLLVMA 103-121,254-272
HI1594 out 2 MLIIGLCVVS  20- 37, 42- 66
HI1619 out 2 MMRCLFQAIG  17- 34, 56- 73

We listed all proteins for which we predicted more than one transmembrane helix based on multiple sequence alignments
(information for all 332 protein predicted in the electronic appendix or (Rost WWW, 1996b). Sequence names as in
Fleischmann et al. (1995); alignments from 'http://cubic.bioc.columbia.edu/) , number of transmembrane helices
predicted; Top , predicted topology; N-term , first ten residues of sequence; Segments , positions of predicted HTM's.
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Prediction of topology better than 86% by combining
refinement and positive-inside rule. The success of
the refined version of PHDhtm showed most clearly
for the prediction of topology (Fig. 1). (1) For more
than 86% (±3.1%, one standard deviation) of the
proteins all transmembrane helices and the topology
were predicted correctly (Table 1). (2) The limiting
step for topology prediction was not the simplicity of
the positive-inside rule: for 97% of the proteins for
which all transmembrane regions had been predicted
correctly, the positive-inside rule yielded the correct
topology (Table 1). (3) The predicted reliability
correlated well with accuracy: 83 proteins were
predicted with a reliability ≥ 5 (eq. 4 ); for 79 of
these the prediction was correct (Fig. 4). (4)
Prediction accuracy was better than average for
eukaryotic proteins (Table 1). (5) The final
prediction of topology was significantly more
accurate than the best alternative method published
on a set of 83 eukaryotic and prokaryotic proteins
(Jones et al., 1994). (6) A minor improvement in 1D
accuracy resulted in a major improvement when
using the 1D prediction to predict other aspects of
protein structure. A similar effect, although less
marked, is observed for prediction-based threading
(Rost, 1995). One of the reasons for this effect is that
the refinement algorithm successfully used
information not local in sequence, i.e., extending
over the windows of 17 adjacent residues input to the
neural network system.

Reduction of false positives below 2% by evaluating
strongest HTM. The analysis of entire genomes
requires an accurate distinction between proteins
with and without transmembrane helices. Here we
introduced an algorithm that distinguished the two
classes based on a single helix for which PHDhtm
predicted the highest average propensity (eq. 5 ).
Less than 4% of the proteins were classified falsely
by this procedure. In particular, for only 1.6%
(±0.7%, one standard deviation) from a large set of
unique proteins (435) we falsely predicted
transmembrane helices (false positives; Table 2).
This was significantly better than our previous
method and results published by others (Edelman,
1993, Jones et al., 1994). Lower rates of false
positives implied higher rates of false negatives
(proteins with HTM's that were not detected). The
balance between the two can be shifted by switching
between a strict threshold (1.6% false positives;
2.3% false negatives) and a loose threshold (3.7%
false positives; 0% false negatives).

Method available by automatic prediction service.
The refinement of PHDhtm and the topology
prediction is available via an automatic prediction
service (Rost et al., 1994a, Rost, 1996); for
information send the word help to the internet
address PredictProtein@columbia.edu , or use the

W o r l d  W i d e  W e b  ( W W W )  s i t e
http://cubic.bioc.columbia.edu/predictprotein/ ).
Alternative models are provided to enable expert
users to focus on more reliably predicted HTM's.
Note that it may lead to errors in predicting topology
if the sequence starts or ends with HTM regions.

Haemophilus influenzae, an organism with few
helical transmembrane proteins? Finally, we
scanned the entire Haemophilus influenzae genome
(Fleischmann et al., 1995) for helical membrane
proteins (CPU time for prediction: several hours on a
SUN SPARC10). Given the error rate in
distinguishing between proteins with and without
HTM's (Table 2), the results suggested that about
19% of the H.i. proteins contain transmembrane
helices; and about 16% more than one HTM. These
numbers were clearly lower than those previously
(Rost et al., 1995) obtained for the entire yeast VIII
chromosome (>25%). Will the difference in the
percentage of helical membrane proteins between
yeast and Haemophilus influenzae hold up for the
entire genomes? And how about the percentage of
helical membrane proteins for other organisms? The
tool to answer by dissecting genomes as they are
being sequenced is set up.

Methods

Database and evaluation of method

Selection of proteins. We based our analyses on
proteins for which experimental information about
the locations of transmembrane helices is annotated
in the SWISS-PROT database (Manoil & Beckwith,
1986, von Heijne & Gavel, 1988, von Heijne, 1992,
Sipos & von Heijne, 1993, Bairoch & Boeckmann,
1994, Jones et al., 1994). The proteins were chosen
to meet two criteria: (1) reliability: experimental
information should be as reliable as possible (Manoil
& Beckwith, 1986, von Heijne, 1992); (2)
comparability: the data set should be similar to those
used by others (Jones et al., 1994). For the few
known 3D structures, locations of transmembrane
helices were taken from DSSP (Kabsch & Sander,
1983). For all others, locations of transmembrane
helices are often controversial. For making the
results easily reproducible for others, we decided to
always use the definitions found in SWISS-PROT
(Bairoch & Boeckmann, 1994). Locations and
topology used are listed in the electronic appendix
and on WWW (Rost WWW, 1996a).

Cross-validation test. For the prediction of
transmembrane propensities by the neural network
system (PHDhtm, (Rost et al., 1995)), the cross-
validation set of 83 transmembrane proteins was
divided into 66 proteins used for training; and 17 for
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evaluating the results (test set). This was repeated
five times (five-fold cross-validation), until each
protein had been in a test set once. The sets were
separated such that no protein in the multiple
alignments used for training had more than 25%
pairwise sequence identity to any protein in the
multiple alignments of the test proteins. The cross-
validation procedure yields estimates for prediction
accuracy that are likely to hold for proteins of yet
unknown topology (Rost & Sander, 1993a, Rost &
Sander, 1995).

Double-blind set. Although rigorous cross-validation
experiments may yield sufficiently reliable estimates
prediction accuracy, prediction methods should
always be evaluated additionally in a double-blind
experiment which proceeds in the following manner.
First, the prediction method is developed and
evaluated in a cross-validation experiment. Second,
all parameters are frozen and the method is tested on
a new set (double-blind set) of proteins which were
not used before (ideally until the day the paper is
submitted). We implemented this concept by: (1)
optimising free parameters on a subset of 10 proteins
(chosen at random from cross-validation set); (2)
compiling prediction accuracy by the cross-
validation experiment; (3) evaluating the method on
an additional double-blind set which was not used
before. The double-blind set was selected by
applying two criteria: (i) the entries for the locations
of transmembrane helices and topology should be
labelled as 'probable' by the SWISS-PROT notation;
and (ii) for similar proteins of different species only
one protein was taken. The 48 proteins used as
double-blind set are listed in the electronic appendix
or (Rost WWW, 1996a); all taken from SWISS-
PROT release 32 (Bairoch & Boeckmann, 1994) that
met those criteria and were not already contained in
our cross-validation set.

Data for the Haemophilus influenzae genome. To
illustrate the usefulness of our method, we report 332
'blind predictions' listing all proteins likely to contain
transmembrane helices for the entire Haemophilus
influenzae (H.i.) genome. The sequences of the H.i.
genome were taken from the TIGR Internet server
(Fleischmann et al., 1995). The multiple sequence
alignments for some of the 1616 protein sequences
of H.i. are publicly available (Casari et al., 1995).

Measuring prediction accuracy. In contrast to
globular proteins for which the definition of
segment-based scores for prediction accuracy is
problematic (Rost et al., 1994b), evaluating methods
predicting transmembrane helices is relatively
straightforward. Here we regarded a transmembrane
helix to be predicted correctly, if the overlap
between observed and predicted helix was, at least,
five residues.

Prediction methods

The dynamic programming-like algorithm and the
prediction of topology are conceptually simple
methods. Here we focused on describing the main
idea of both methods and attempted to provide the
details to the extent to make the work reproducible.
A mathematically more explicit description is given
elsewhere (Rost et al., 1996). The elements of the
method introduced here were presented in more
detail. These were the definitions of empirical
reliability indices (1) for the prediction of the refined
model, and (2) for the topology prediction; and (3)
the new method to distinguish proteins with and
without transmembrane helices.

Neural network predictions of transmembrane
preferences. Input for the refinement algorithm was
the output of the profile-based neural network
system PHDhtm (Fig. 2; (Rost et al., 1995)). The
output of the networks consists of two values for
each residue, giving the preferences of that residue to
be in a transmembrane helix (H) or in a region
outside of the lipid bilayer (L).

Finding the optimal path through all predicted
propensities (dynamic programming). The simplest
way to derive predictions for helix locations from
network preferences is to predict each residue to be
in the state (H or L) with largest preference (winner-
takes-all decision). The problem of this approach that
resulting transmembrane helices were too long was
corrected by an empirical filter chopping too long
helices into several shorter ones (Rost et al., 1995).
A less arbitrary alternative for generating predictions
from preferences is to find the optimal positioning of
transmembrane helices compatible with the network
output (a similar dynamic programming method has
been implemented for topology prediction by Jones
et al., 1994). Since transmembrane helices are
observed to extend over about 18-25 residues, all
possible transmembrane helices (HTM's) can be
enumerated. The dynamic programming-like
algorithm was implemented by the following steps
(Fig. 6).

(1) Convert network output to propensity: The
preferences (from PHDhtm) were normalised to
propensities to yield preference H + preference L = 1
for each residue.

(2) Compile pool of possible HTM's: The average
propensity per helix was computed for all possible
HTM's. Note that the number of possible helices is
usually much larger than the number of residues
(Fig. 7).

(3) Generation of models with increasing number of
HTM's: Starting from the assumption that the protein
contained no HTM (µ=0), we successively picked
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Fig. 6. Refinement of PHDhtm and prediction of topology. Refinement: the dynamic programming algorithm
comprised the following three steps. (1) Compilation of pool of possible HTM's: for all possible transmembrane helices
the preferences from the neural network output were summed over 18-25 residues; the results were stored (shown for best
eight HTM's). (2) Generation of models with increasing number of HTM's: all possible models containing successively
more helices, i.e. µ = 0, 1 , ..., n, were generated by selecting at each step µ that helix from the pool with maximal sum and
no overlap to any of the helices added at previous steps µ' < µ. (3) Selection of best model: finally the model µ with
maximal sum over the network preferences was selected as prediction (here µ=3). Topology prediction: The number of
positively charged residues (R: Arginine; K: Lysine) was summed separately over all odd (first, third, ...) and over all even
(second, fourth, ...) non-transmembrane regions of the optimal model (highest sum over neural network preferences, here
µ=3). The final prediction of topology was assigned according to the sign of the difference between the number of
charged residues in odd and even regions. For example, for a positive difference, the first residues of the protein N-term
were predicted as starting on the extra-cytoplasmic side.

highest score = 80, for model µ=2,
i.e. final prediction: HHHLLLHHHL

µ=0, no helix     => LLLLLLLLLL  score=38 (1+1+1+5+8+8+2+2+2+8)
µ=1, best helix A => HHHLLLLLLL  score=62 (9+9+9+5+8+8+2+2+2+8)
µ=2, 2nd best   M => HHHLLLHHHL  score=80 (9+9+9+5+8+8+8+8+8+8)
µ=3, 3rd best   none left!

A 1-3:27/3=9.0; B 1-4:32/4=8.0; C 2-4:23/3=6.7; D 2-5:25/4=6.3; E 3-5:16/3=5.3;
F 3-6:18/4=4.5; G 4-6: 9/3=3.0; H 4-7:17/4=4.3; I 5-7:12/3=4.0; J 5-8:20/4=5.0;
K 6-8:18/3=6.0; L 6-9:26/4=6.5; M 7-9:24/3=8.0; N 7-10:26/4=6.5;O 8-10:18/3=6.0

1 . . . 5 . . . . 1 0
9 9 9 5 2 2 8 8 8 2
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residue number
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propensity for L:

INPUT:
preferences pre-
dicted by PHDhtm

Compile pool of
all possible HTM's
(here = 15)

Generation of
all possible models
(here = 3)

Selection of best
model (here µ=2)

A
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Fig. 7. Explicit example for the refinement algorithm. For simplicity the following unrealistic parameters were used:
minimal length of HTM = 3 residues; maximal length of HTM = 4 residues (for the real implementation we used 18
residues for the minimal and 25 for the maximal length; eq. 2 ). A: Output from PHDhtm for a sequence of ten residues
converted to the propensities for each residue to be in a transmembrane helix (H) or not (L). B: Pool of all possible HTM's
(A-O) of length 3 and 4; given are the numbers for the N- and C-term and the average helix propensity for each HTM. C:
Starting from the model with no HTM (µ=0), successively the best HTM's are added; given the number of helices, the
final prediction for all ten residues and the resulting score for that model (eq. 1 ). D: Best model is the one with µ=2
HTM's.
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the best from the pool of all HTM's. Thus, models were generated with µ=1, 2, ... , n HTM's (Fig. 7).

(4) Selection of best model: The final prediction was the model with highest sum over all propensities. The score
P S DO3(µ) for the model with µ helices was defined by:

Pµ  = 
1

Nres
  ∑

k=1

Nres
  p

H
k  δH

k  + p
L
k  δL

k ( 1 )

with δL
k = 1 - δH

k   ,   and  δH
k  = 




 
1,  if residue k is in a helix

0,  else

where Nres  was the number of residues in the protein; pH
k   the propensities of residue k  to be in a HTM,

and p
L
k   the propensity not to be in a HTM.   

The algorithm described based on three free parameters that were chosen by optimising the performance of the
method with respect to a subset of 10 proteins.  The parameters were the minimal and maximal length of
transmembrane helices, and the minimal length of a non-transmembrane region (dubbed loop) inserted between
two helices.  We used:

Lmin = 18  ,   Lmax = 25  ,   Lloop = 4 ( 2 )
Reliability index for best model.   Instead of the reliability index associated with the network output for each

residue (Rost, 1996), here we introduced an index describing the reliability of the prediction for the correctness
of the best model obtained by the refinement algorithm, i.e. the prediction that the protein has µ' helices.  This
index was based on the difference between the scores (eq. 1 ) for the best and for the second best model.  We
empirically favoured the following definition:  

RiM = INT ( ) min { } 9 ,  100 ×  ( Pµ'  - Pµ''  )  ( 3 )

where INT(x)  was the integer value of variable x  , min{x,y}  the minimum of x  and y  ,  Pµ'  the score (eq. 1 ) for
the best model predicting µ'  HTM's, and Pµ''   the score for the second best model predicting µ''  HTM's.  Thus,
the reliability adopted values between 0 (unreliable), and 9 (reliable).   

Predicting topology based on the positive-inside
rule. Gunnar von Heijne established that membrane
proteins of certain species contain more positively
charged residues (Arginine and Lysine) on the intra-
cytoplasmic side of the membrane than on the extra-
cytoplasmic side (von Heijne & Gavel, 1988, von
Heijne, 1989, Nilsson & von Heijne, 1990, von
Heijne, 1992). Indeed, the rule was valid for more
than 95% of the proteins in our data sets (data not
shown). The application of this rule to the models
obtained by PHDhtm (no filter), PHDhtm_fil, or the
refined version of PHDhtm_ref, required three steps
(Fig. 6).

(1) Compiling the positive charges: The positive
charges C were compiled as percentages of
positively charged residues (R and K) present in the
entire sequence alignment of the protein. The
percentages were summed separately for even and
odd loop regions. (Note: for globular regions of more
than 60 residues, we included only the 25 residues on
the terminal sides.)

(2) Computing the charge difference: The charge
difference was compiled by subtracting positive
charges of odd loop regions from positive charges of
even regions (∆C ).

(3) Prediction according to sign of charge difference:
If the charge difference was negative (∆C ≤ 0 ) the
first loop was predicted to be extra-cytoplasmic; if it
was positive (∆C > 0 ) to be intra-cytoplasmic.

Reliability index for predicting topology. The
underlying hypothesis for defining a reliability index
for the predicted topology was that the reliability
would be proportional to the charge difference. We
empirically favoured the following definition:

RiT = INT ( ) min { } 9 ,  2 ×  | | ∆C2    
( 4 )

where INT(x) was the integer value of x , min{x,y}
the minimum of x and y , and |∆C| the absolute value
of the charge difference. The definition normalises
the reliability index to values between 0 (unreliable)
and 9 (reliable).

Distinguishing proteins with and without HTM's
based on strongest HTM. Predictions of
transmembrane helices could be used to keep track
with the flow of genome data (Oliver et al., 1992,
Johnston et al., 1994, Fleischmann et al., 1995) by
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quickly scanning entire genomes for possible
membrane associated proteins. For this purpose we
need methods to distinguish between proteins with
and without transmembrane helices. Previously, we
used the empirical filter to accomplish the distinction
(Rost et al., 1995, Rost, 1996). The segment-oriented
refinement algorithm provided an alternative
solution to the problem that was applied to PHDhtm
network output by the following three steps.

(1) Converting output to propensities: For all
residues the neural network output was converted to
propensities (i.e., preference H + preference L = 1).

(2) Compiling propensity for best HTM: We scanned
the protein for the segment of 18 (minimal length of
HTM, eq. 2 ) consecutive residues with the maximal
HTM propensity.

(3) Applying decision thresholds: Finally, we
predicted the protein to be globular if the average
propensity for the best HTM was below a decision
threshold J.

We introduced two different thresholds for the
decision to address two different possible goals of
the user. (i) As many as possible helical membrane
proteins should be found with as few as possible
false positives (J S UP5(strict)). (ii) All helical
membrane proteins should be found even at the
expense of including many false positives in the list
(J S UP5(loose)). The following values were used:

ϑ strict = 0.8  ,  and  ϑ loose = 0.7   ( 5 )

Results will be given for both constants (Table 2).
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