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Abstract

In this paper, we present a novel framework for con-

structing large deformation log-unbiased image registra-

tion models that generate theoretically and intuitively cor-

rect deformation maps. Such registration models do not

rely on regridding and are inherently topology preserving.

We apply information theory to quantify the magnitude of

deformations and examine the statistical distributions of

Jacobian maps in the logarithmic space. To demonstrate

the power of the proposed framework, we generalize the

well known viscous fluid registration model to compute log-

unbiased deformations. We tested the proposed method us-

ing a pair of binary corpus callosum images, a pair of

two-dimensional serial MRI images, and a set of three-

dimensional serial MRI brain images. We compared our

results to those computed using the viscous fluid registra-

tion method, and demonstrated that the proposed method

is advantageous when recovering voxel-wise maps of local

tissue change.

1. Introduction

In recent years, computational neuroimaging has become

an exciting interdisciplinary field with many applications

in functional and anatomic brain mapping, image-guided

surgery, and multimodality image fusion [1, 8, 14]. The

goal of image registration is to align, or spatially normalize,

one image to match another. In general, the transformation

that defines the correspondence map between the images

should be diffeomorphic, to preserve the topology.

To construct a deformation that is one-to-one and dif-

ferentiable [4, 10, 11], we must impose a regularizing con-

straint. Thus, the problem of image registration is often cast

as a minimization problem with a combined cost functional

consisting of an image matching functional and a regular-

izing constraint on the deformation. Common choices of

image matching functional include squared intensity differ-

ence, cross correlation [5], and (normalized) mutual infor-

mation or other divergence-based or information-theoretic

measures [6, 9, 12], while choices of regularization usually

involve differential operators inspired by thin-plate spline

theory, elasticity theory, fluid dynamics and the Euler-

Poincaré equations [11, 13].

2. Background

Let us denote the template image as T (~x) and the study

image as S(~x), which are images defined on the spatial do-

main Ω. The problem of image registration is to find a dis-

placement field ~u(~x) at each point ~x such that the deformed

template T ∗(~x) = T (~x−~u) is in some sense close to S(~x).
The term displacement is used because it can be viewed as

how a point in the deformed template is moved away from

its original location. The most common way to define the

distance between the deformed template and the study is the

L2 norm

EL2(T, S, ~u) =
1

2

∫

Ω

|T (~x − ~u) − S(~x)|2 d~x, (1)

which is also known as a Gaussian sensor model. This dis-

tance can be minimized using the gradient descent of the

corresponding Euler-Lagrange equation to obtain

∂~u(~x, t)

∂t
= −~f(~x, ~u(~x, t)), (2)

where t is an artificial time and

~f(~x, ~u(~x, t)) = −[T (~x − ~u) − S(~x)]∇T |~x−~u (3)

is the force field or the body force, which drives the tem-

plate into registration with the study. The first term in the

definition of ~f , namely ∇T |~x−~u, is the gradient of the de-

formed template and has largest values at the edges of the

template. This term determines the directions of the lo-

cal deformation forces applied to the template. The second

term T (~x−~u)−S(~x) is the difference in intensity between



the deformed template and the study. This term causes the

field force to tend to zero in areas where the deformed tem-

plate is locally aligned with the study.

This optimization problem, however, is known to be ill-

posed. In particular, the displacement field ~u is not unique,

and the regularization on ~u is required to make the problem

be well-posed. In the next section, we will review different

approaches to regularizing the displacement field.

3. Previous Work

An important observation, which stimulated the develop-

ment of intensity-based nonlinear image registration algo-

rithms, was the connection of the image data with a physi-

cally deforming system in three dimensions. Physical con-

tinuum models consider the deforming image to be embed-

ded in a three-dimensional deformable medium, which can

be either an elastic material or a viscous fluid. The medium

is subjected to certain distributed internal forces, which re-

configure the medium and eventually drive the template into

registration with the study. In this section, we briefly de-

scribe two of the most well known such models.

3.1. Elastic Registration

In [2, 3, 7], the authors noticed the similarity between

image deformation and deformation of elastic plates. For

linear elastic solids, the force field ~f is proportional to the

displacement field ~u. The spatial transformation satisfies

the partial differential equation

µ△~u + (µ + ν)~∇(~∇ · ~u) = ~f(~x, ~u), (4)

where µ and ν are Lamé constants, describing the properties

of the material.

The linear elastic equation (4) is derived assuming small

angles of rotation and small linear deformations. As a re-

sult, the elastic registration model severely penalizes large

displacements and is not useful in applications when large

nonlinear deformations are natural.

3.2. Viscous Fluid Registration

In elastic deformation, particles are usually tracked by

their initial coordinates in the Lagrangian frame of refer-

ence. In the viscous fluid model, first proposed by Chris-

tensen et al. in [4], an Eulerian reference frame is used in-

stead. The Eulerian frame of reference specifies the time

evolution of particle positions and velocities as observed

at fixed points. Consequently, a particle located at ~x at

time t originated at position ~h(~x, t) = ~x − ~u(~x, t) at time

t0 (t > t0), where ~u is the displacement. We let ~v de-

note the velocity field. The material derivative, defined by

D/Dt = ∂/∂t + ~v · ∇, describes the time rate of change

experienced by an element of material instantaneously at

point ~x at time t. Hence, the Eulerian velocity field ~v is

nonlinearly related to ~u and is determined by

~v =
D~u

Dt
=

∂~u

∂t
+ ~v · ~∇~u. (5)

Given the velocity field ~v, equation (5) can be solved to ob-

tain the displacement field ~u. In [4], the authors considered

the deforming template image to be embedded in a viscous

fluid whose motion is governed by Navier-Stokes equation

for conservation of momentum. Some simplification of the

momentum conservation equation resulted in the following

equation for ~v:

µ△~v + (µ + ν)~∇(~∇ · ~v) = ~f(~x, ~u). (6)

The △~v term is the viscosity, which constraints the velocity

field to vary smoothly. The term ~∇(~∇ · ~v) allows structures

in the template to change in mass. The nonlinear deforma-

tion force field ~f used in this model is defined as in equation

(3).

Since equation (6) is computationally expensive to solve

in practice, the authors in [6] proposed to obtain the instan-

taneous velocity from the convolution of ~f (up to a sign)

with a Gaussian kernel Gσ, with variance σ:

~v = Gσ ∗ (−~f(~x, ~u)). (7)

Even though the viscous fluid registration model al-

lows large deformations, numerical implementation of this

model may not produce diffeomorphic and topology pre-

serving maps unless regridding is used.

4. Theory

One could not study nonlinear image registration without

closely examining Jacobian maps. In this section, we pro-

vide rigorous mathematical analyses of the Jacobian maps

and use them to construct unbiased nonlinear image regis-

tration.

4.1. Global Preservation of Density Maps

We study smooth deformations ~h that map a computa-

tional domain Ω bijectively onto itself. Let us assume, with-

out loss of generality, that the volume of this domain is 1,

i.e., |Ω| = 1. The inverse map of ~h is denoted as ~h−1 and

the Jacobian matrix of ~h as D~h. The Jacobian map can thus

be defined as the determinant of the Jacobian matrix |D~h|.

In volumetric studies, the determinant of the Jacobian

matrix (density) applied to any given deformation ~h is an

important quantity, encoding the voxelwise volume change.

As ~h (and ~h−1) is bijective and thus globally volume-

preserving, we have the following preservation of global



density:
∫

Ω

|D~h(ξ)|dξ =

∫

Ω

d~y = 1,
∫

Ω

|D~h−1(ξ)|dξ =

∫

Ω

d~x = 1.
(8)

Given global preservation of density maps, we can associate

three probability density functions to ~h, ~h−1, and the iden-

tity map (id):

Ph(·) = |D~h(·)|,

Ph−1(·) = |D~h−1(·)|,
Pid(·) = 1.

(9)

Differentiating the identity ~h−1(~h(~x)) = ~x on both sides

and setting ~y = ~h(~x), we obtain

D~h−1(~y) · D~h(~x) = id, (10)

and hence,

|D~h−1(~y)| · |D~h(~x)| = 1. (11)

By associating deformations with their corresponding

global density maps, we can now apply information theory

to quantify the magnitude of deformations. In our approach,

we choose the symmetric Kullback-Leibler (sKL) distance:

sKL(Ph, Pid) = KL(Pid, Ph) + KL(Ph, Pid) (12)

to measure the magnitude of any deformation ~h. Here KL,

the Kullback-Leibler distance between two probability den-

sity functions X and Y , is defined as

KL(X,Y ) =

∫

Ω

X log
X

Y
d~x ≥ 0. (13)

To motivate this approach, notice that the first part of sKL
measure is simply integrating the log-density over the entire

computational image domain:
∫

Ω

log |D~h(~x)|d~x = −

∫

Ω

log
1

|D~h(~x)|
d~x

= −

∫

Ω

Pid log
Pid

Ph

d~x

= −KL(Pid, Ph) ≤ 0.

(14)

To attach geometric meaning to the second term, we notice

that the KL distance has skew-symmetry with respect to ~h
and its inverse

KL(Pid, Ph−1) = −

∫

Ω

log |D~h−1(~y)|d~y

=

∫

Ω

(

log |D~h(~x)|
)

|D~h(~x)|d~x

=

∫

Ω

Ph log
Ph

Pid

d~x

= KL(Ph, Pid),

(15)

where the second equality was obtained using a change of

variables, ~y = ~h(~x). Similarly, we have

KL(Pid, Ph) = KL(Ph−1 , Pid). (16)

4.2. Unbiased Deformation in the Logarithmic
Space

Before developing formulations to construct unbiased

deformations in the logarithmic space, we generalize equa-

tion (14) to the case of mapping regions of interest (ROI).

Assuming we have a priori knowledge that one ROI is

mapped to another, we would like to recover a mapping that

is unbiased in the logarithmic space. Intuitively, without

further knowledge other than overall ROI matching, the re-

sulting Jacobian map should take a constant value inside the

ROI. This can be achieved using the proposed formulations.

Indeed, given any deformation ~g mapping domain A in the

source (with volume a) to domain B in the target (with vol-

ume b), we have the following

1

a

∫

A

log |D~g(~x)|d~x ≤ log
b

a
, (17)

with equality obtained if and only if the Jacobian map of ~g
takes a constant value (i.e., b/a). This generalization can

be shown by observing that the logarithmic mapping is a

convex mapping:

n
∑

i=1

log(xi) ≤ n log(x̄); x̄ =
1

n

n
∑

i=1

xi. (18)

With the above generalization, one can see that, assuming

the only constraint is an ROI deformation from A to B, the

unbiased mapping under the logarithmic operation has an

evenly distributed Jacobian field, which is also intuitively

correct (as there is no reason to assume non-uniformity of

the Jacobian field inside the ROI).

Given equation (14) and its generalization, we propose

to quantify the distance between any given deformation and

the identity map by computing the symmetric KL distance

through their density functions. Due to the above mentioned

skew-symmetry, this distance takes the following several

equivalent forms:

sKL(Ph, Pid) = sKL(Ph−1 , Pid)
= KL(Ph, Pid) + KL(Ph−1 , Pid)
= KL(Ph, Pid) + KL(Pid, Ph)

= KL(Pid, Ph−1) + KL(Pid, Ph)
= KL(Pid, Ph−1) + KL(Ph−1 , Pid)

=

∫

Ω

(

|D~h(~x)| − 1
)

log |D~h(~x)|d~x

=

∫

Ω

(

|D~h−1(~y)| − 1
)

log |D~h−1(~y)|d~y.

(19)

To see why minimizing equation (19) leads to unbiased de-

formation in the logarithmic space, we observe that the in-

tegrand is always non-negative, and only evaluates to zero



(a) T (b) S

(c) Christensen’s (d) proposed

Figure 1. Corpus callosum example. (a) image T ; (b) image S; (c)

image T is deformed to image S using Christensen’s model; (d)

image T is deformed to image S using the proposed model.

Christensen’s proposed

Figure 2. Corpus callosum example. Results obtained with Chris-

tensen’s model and the proposed model. Blue, yellow and red

contours represent the boundaries of corpus callosum in T , S, and

deformed T , respectively. For both methods, yellow contour is es-

sentially invisible due to a very close match. However, the result-

ing grid of the proposed method is visually more regular. Also,

note the grid lines merging and self-crossing for Christensen’s

model, signifying a topology change.

when ~h is volume-preserving everywhere (Jacobian of ~h is

1 everywhere). Thus, by treating it as a cost, we recover

zero-change by minimizing this cost when we compare im-

ages differing only in noise. Also, this approach is unbiased

for mapping ROIs in the logarithmic space, due to the in-

equality in (17).

5. Implementation

In this section, we generalize the viscous fluid registra-

tion model (referred to as Christensen’s method) described

Christensen’s proposed

Figure 3. Corpus callosum example. Jacobian map of the deforma-

tion is superimposed with the deformed image for Christensen’s

model and the proposed model.
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Figure 4. Corpus callosum example. Histograms of Jacobian val-

ues of the deformations inside corpus callosum for Christensen’s

model and the proposed model.
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(a) (b)

Figure 5. Corpus callosum example. (a) Standard deviation of Ja-

cobian values inside corpus callosum per iteration. (b) Symmetric

KL distance. For Christensen’s model (dashed blue), both stan-

dard deviation and symmetric KL distance increase while for the

proposed model (solid red), both standard deviation and symmet-

ric KL distance decrease and stabilize.

in section 3.2. We provide a new energy functional incorpo-

rating the symmetric Kullback-Leibler distance in section 4,

give corresponding force field equations, and describe an al-

gorithm for the new log-unbiased viscous fluid registration

model.

Rather than minimizing energy functional defined in

equation (1), we propose to minimize the following energy:

E(T, S, ~u) =
1

2

∫

Ω

|T (~x − ~u) − S(~x)|2 d~x

+λ

∫

Ω

(

|D~h(~x)| − 1
)

log |D~h(~x)|d~x,
(20)



(a) T (b) S

(c) Christensen’s (d) proposed

Figure 6. Serial MRI example. (a) image T ; (b) image S; (c) image

T is deformed to image S using Christensen’s model; (d) image T

is deformed to image S using the proposed model.

where λ > 0 is the Lagrange multiplier. Without loss of

generality, we will consider the case where Ω ⊂ R
2. The

equations that follow can be easily extended to three spa-

tial dimensions. Denoting ~x = (x1, x2) and ~h = (h1, h2),

we can write the Jacobian matrix as D~h(~x) = [∂hi/∂xj ],
where i, j = 1, 2. Defining function L as L(y) = (y −

1) log y, the force field vector ~f for energy in (20) will be

given as

~f(~x, ~u(~x, t)) = −[T (~x − ~u) − S(~x)]∇T |~x−~u

− λ

[

− ∂
∂x1

(

∂h2

∂x2

L′
)

+ ∂
∂x2

(

∂h2

∂x1

L′
)

∂
∂x1

(

∂h1

∂x2

L′
)

− ∂
∂x2

(

∂h1

∂x1

L′
)

]

,
(21)

where L′ = L′(|D~h|) = 1 + log(|D~h|) − 1/|D~h|. We are

now ready to give an algorithm for the proposed method.

Algorithm. Log-Unbiased Nonlinear Image Registration

Initialize t = 0 and ~u(~x, 0) = 0.

1) Given ~u(~x, t), calculate the force field f(~x, ~u(~x, t)) us-

ing equation (21).

Note that the viscous fluid model, described in section

3.2, obtains the force field using equation (3).

2) Solve (7) for the instantaneous velocity ~v(~x, t).

Steps 3-5 describe the procedure for solving equation (5),

advancing ~u(~x, t) in time.

3) Calculate the perturbation of the displacement field
~R(~x) = ~v(~x, t) − ~v(~x, t) · ~∇~u(~x, t).

Christensen’s proposed

Figure 7. Serial MRI example. Results obtained with Chris-

tensen’s model and the proposed model. Blue, yellow and red

contours represent the boundaries of ventricles in T , S, and de-

formed T , respectively. Note that for both methods, yellow con-

tour is essentially invisible due to a very close match. However,

the resulting grid of the proposed method is visually more regular.

Christensen’s proposed

Figure 8. Serial MRI example. Jacobian map of the deformation

is superimposed with the deformed image for Christensen’s model

and the proposed model.

4) Time step dt is calculated adaptively so that dt ·
max(||~R||) = △u, where △u is the maximal displace-

ment allowed in one iteration. Results in this paper are

obtained with △u = 0.1.

5) Advance equation (5), i.e. ∂~u(~x, t)/∂t = ~R(~x), in

time, with time step from step 4, solving for ~u(~x, t).

6) If the cost functional in (20) decreases by sufficiently

small amount compared to the previous iteration, then

stop.

7) Let t = t + dt and go to step 1.

To obtain a fair comparison between the proposed and

the viscous fluid method, re-gridding was not employed.

Re-gridding is essentially a memoryless procedure, as how

images are matched after each re-gridding is independent of

the deformation before the re-gridding, rendering the com-

parison of final Jacobian fields and cost functionals prob-

lematic. Moreover, the strategy of re-gridding, through the

relaxation of deformation over time, is less rigorous from a



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

100

200

300

400

500

600

Jacobian

H
is

to
gr

am

 Christensen‘s model

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

100

200

300

400

500

600

Jacobian

H
is

to
gr

am

 proposed model

Figure 9. Serial MRI example. Histograms of Jacobian values of

the deformations inside ventricles for Christensen’s model and the

proposed model.
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(a) (b)

Figure 10. Serial MRI example. (a) Standard deviation of Jaco-

bian values inside the ventricle per iteration. (b) Symmetric KL

distance. For Christensen’s model (dashed blue), both standard

deviation and symmetric KL distance increase while for the pro-

posed model (solid red), both standard deviation and symmetric

KL distance stabilize.

theoretical standpoint. For that reason, for the results pre-

sented in this paper, velocity vector ~v was obtained from

equation (7) rather than by solving the simplification of the

momentum conservation equation (6), for both the proposed

and Christensen’s models. From our experience, solving

equation (6) makes it necessary to employ re-gridding in

order to achieve close matching.

6. Results and Discussion

In this section, we tested the proposed nonlinear regis-

tration model and compared the results to those obtained

with the fluid registration (Christensen’s) model. In order

to gain more insight into the effect of the symmetric KL
distance term in (19), we first consider matching two 2D

binary images (both 289 by 289, λ = 1000 in (21)), rep-

resenting midline corpus callosum contours of two control

subjects (Figures 1 through 5). As seen in Figure 1, both the

fluid registration model and the proposed model generated

a close match between the deformed image and the study.

However, Figures 2 and 3 show grid lines merge and self-

cross for Christensen’s model, which is a consequence of

negative Jacobian values at certain places, indicating topol-

ogy change. The proposed method, on the other hand, more

evenly distributes deformation inside and outside the corpus

callosum (resulting from the convex property of the log-

(a) T (b) S

(c) Christensen’s (d) proposed

Figure 11. 3D Serial MRI example. Volume cuts of (a) T (time

1), (b) S (time 3), (c) T deformed using Christensen’s model, and

(d) T deformed using the proposed model. The middle time point

(time 2) is not shown.

Christensen’s proposed

Figure 12. 3D Serial MRI example. Volume cuts of Jacobian maps

of deformations (time 1 to time 3) for Christensen’s model and the

proposed model. Jacobian maps of deformations from time 2 to

time 3 are not shown.

arithmic mapping in inequality (17)). The histograms of

the Jacobian field inside the corpus callosum are shown in

Figure 4 (notice the histogram for the proposed method is

noticeably sharper). Figure 5(a) plots the standard devia-

tion of the Jacobian field inside the corpus callosum as a

function of iteration number. For Christensen’s model, the

standard deviation increased with the number of iterations,

since the grid became less regular. On the other hand, the

proposed method yielded an optimized standard deviation

as more iterations were computed. The proposed symmet-

ric KL distance also increased for Christensen’s method,

while it was minimized for the proposed method as shown

in Figure 5(b).

In Figures 6 through 10, we show the results of matching

a pair of 2D slices from a set of serial MRI images (each of

size 226 by 256; λ = 400 in (21)), where visually signif-

icant ventricle enlargement is present. Both Christensen’s

method and the proposed model generated a close match

between the deformed image and the study (Figure 6(a-d)).



(a) Christensen’s model (b) proposed model
time 2 to time 3 time 1 to time 3 time 2 to time 3 time 1 to time 3

Figure 13. 3D Serial MRI example. Jacobian maps are superimposed with the deformed volumes for Christensen’s model (columns 1

and 2) and the proposed model (columns 3 and 4). Smaller deformations (time 2 to time 3) and larger deformations (time 1 to time 3) are

shown. Rows depict slices in axial (rows 1 and 2), sagittal (row 3), and coronal (row 4) planes. Right temporal atrophy (RT) and ventricular

enlargement (V) are easily visualized in the Jacobian map generated using the proposed method, while Christensen’s method generated a

very noisy map.
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Figure 14. 3D Serial MRI example. Symmetric KL distance is

shown for Christensen’s and proposed models for a larger defor-

mation (time 1 to time 3) and a smaller deformation (time 2 to time

3). Note that this measure is proportional to the magnitude of de-

formation. For the proposed method, the symmetric KL distance

stabilizes.

Here, there is no reason not to evenly distribute the Jacobian

field inside the ventricles, as realized using the proposed

method. In contrast, Christensen’s method generated a den-

sity map with extreme values along the ventricular bound-

ary. Indeed, given the overall longitudinal ventricular di-

latation, we argue that the corresponding density change

map should be constant inside the ventricle. As seen in

Figure 10, both the standard deviation inside the ventricle

and the symmetric KL distance increased for Christensen’s

method, while these quantities stabilized for the proposed

method.

In the last numerical example (Figures 11 through 14),

we tested the proposed model using a set of three 3D Se-

rial MRI volumes obtained from a patient with right-side

semantic dementia (temporal atrophy). In this example, the

initial scan was obtained in 02/1993, with the two follow-up

scans, in 02/1996 and 08/1999, referred to as time 1, time 2,

and time 3, respectively (each volume was downsampled to

112x128x128). A fully three-dimensional computation was

employed, with λ = 500 in the generalization of equation

(21) to three spatial dimensions. In Figure 13(a), the 3D Ja-

cobian map generated using the Christensen’s method is vi-

sually very noisy with extreme values along the boundaries

of the brain as well as in the background, masking the real

change over the right temporal area. In contrast, as shown

in Figure 13(b), right temporal atrophy (RT) and ventric-

ular enlargement (V) are easily visualized in the Jacobian

map generated using the proposed method, demonstrating

its theoretical and practical advantages. Future work will

investigate whether statistical differences in groups of struc-

tural brain images are detected with higher power using the

proposed method, which avoids bias in the distribution of

the Jacobian in homogeneous brain regions.
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