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Topology-preserving rigid transformation

of 2D digital images
Phuc Ngo, Nicolas Passat, Yukiko Kenmochi, Hugues Talbot

Abstract—We provide conditions under which 2D digital im-
ages, considered in the two most common digital topology models
(namely, dual adjacency and well-composedness), preserve their
topological properties under rigid transformation. This study,
that is developed in a discrete framework, leads to the proposal
of efficient preprocessing strategies that ensure the topological
invariance of images under further rigid transformation. These
results and methods are proved to be valid for various kinds of
images (binary, grey-level, label), thus providing a generic set
of tools, that can be used in particular in the context of image
registration and warping.

Index Terms—Digital imaging, rigid transformation, digital
topology, well-composed images, image correction.

I. INTRODUCTION

IN digital imaging, the preservation of topological properties

is a crucial issue in several application fields, involving 3D

data (e.g., medical imaging [1]) but also 2D ones (e.g., remote

sensing [2]). In particular, topology preservation –pioneered

nearly fifty years ago [3], [4]– has been investigated in the

context of image transformation, both from the viewpoints of

registration [5] and warping [6]. It has to be noticed that efforts

have been mainly devoted to handle complex transformations,

while more simple ones have been globally unconsidered.

Indeed, the handling of “simple” transformations (e.g.,

translations, rotations) is often assumed to be trivial. This can

be explained by the fact that, in the continuous case (i.e., in

Rn), most of such transformations are topology-preserving,

while this is not necessarily the case for complex ones (e.g.,

those induced by nonrigid registration [7]). Based on this

“continuous” assertion, it is often thought that simple trans-

formations still lead to easy handling of topological properties

in the digital case (i.e., in Zn). This is a wrong belief.

In the case of rigid transformations [8], that include the

family of rotations, (e.g., (quasi-)shear rotations [9], [10], or

hinge angle rotations [11], [12], [13]), some topological issues

have been identified [14], [15]. These issues are directly or

indirectly induced by the sampling policies that are mandatory

to guarantee the stability of the transformations inside Zn.

In this article, we propose a study devoted to the topological

invariance of 2D digital images under rigid transformation. In

Sec. II, we first provide background notions required to make

the article self-contained. Secs. III–V constitute the core of

the article. The main purposes are first detailed in Sec. III.
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Paris and the Université Paris-Est, LIGM UMR CNRS 8049, Paris, France
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Nicolas Passat is with the Université de Reims Champagne-Ardenne,
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We then propose, in Sec. IV, some conditions under which

a 2D digital image preserves its topological properties under

any rigid transformation. Based on these results, we provide

in Sec. V some methodological solutions for analysing and

preprocessing digital images before rigid transformation, in

order to preserve their topological properties. This study is

generic on two sides: (i) the main two digital topology models

are considered, namely the dual adjacency, and the well-

composedness ones; and (ii) the cases of binary, grey-level

and label images are dealt with. Sec. VI concludes the article

by perspective works. For the sake of readability, technical

proofs are reported in Appendix.

II. BACKGROUND NOTIONS

A. Notations

The sets are noted A, B, C, etc. Subsets of these sets are

noted A, B, Γ, etc. The power set of a set A is noted 2A. The

elements of sets are noted a, b, c, etc., and a, b, c, etc. if the

set is a cartesian product. By abuse of notation, an element

a, that should be noted as a column vector, is noted as a line

vector, e.g., a = (a, b) instead of a =
(

a

b

)

.

The functions defined on continuous sets are noted A, B, C,

etc., and the ones defined on discrete sets are noted A, B, C,

etc. A function F from A to B is noted F : A → B. If A ⊆ A

and B ⊆ B, we note F (A) = {F (x) | x ∈ A} and F−1(B) =
{x | F (x) ∈ B}. If F is a bijection, its inverse function is

also noted F−1 : B → A. The restriction of F : A → B to

the subset A ⊆ A is noted F|A : A → B. The composition of

F : A → B and G : B → C is noted G ◦ F : A → C. The

spaces of functions are noted A, B, C, etc.

Adjacency (i.e., binary, irreflexive and symmetric) relations

are noted a. Equivalence (i.e., binary, reflexive, transitive and

symmetric) relations are noted ∼. We recall that a relation a

(resp. ∼) defined on a set A is actually a subset of A×A, and

that a a b (resp. a ∼ b) means that (a, b) ∈ a (resp. ∼).

Given a set A, equipped with an equivalence relation ∼, the

equivalence class of a ∈ A with respect to ∼ is noted [a]∼,

and the quotient set of A with respect to ∼ is noted A/∼.

B. Rigid transformations

1) Continuous case: In R
2, a rigid transformation is a

function ∣

∣

∣

∣

U : R2 → R2

x 7→ R.x+ t
(1)

where R is a rotation matrix, and t ∈ R2. The function U is

a bijection, and we note T = U−1 its inverse function, which

is also a rigid transformation. We note RigR2 the set of the

rigid transformations.
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2) Discrete case: These definitions cannot be directly ap-

plied in the discrete case, i.e., when considering Z2 instead

of R2. Indeed, there is no guarantee that U(Z2) ⊆ Z2. The

handling of discrete rigid transformations then requires to

consider a discretisation operator D : R2 → Z2. In the most

common cases –and in the present one– D is the standard

rounding function. We can then define the discrete analogues

U : Z2 → Z2 and T : Z2 → Z2, of U and T , as

U = D ◦ U|Z2 (2)

T = D ◦ T|Z2 = D ◦ (U−1)|Z2 (3)

We note RigZ2 the set of the discrete rigid transformations.

3) Transformation models: Two transformation models can

be considered for discrete (rigid) transformations: the Eulerian

(or backwards) model, and the Lagragian (or forwards) one.

The Lagrangian model consists of computing U(Z2), i.e.,

it determines the image of the “initial” space Z2 associated

to the rigid transformation. From an imaging viewpoint, this

model is not satisfactory, since U is, in most cases, neither

injective nor surjective. In other words, if U is applied on a

digital image (see Sec. II-C), it may lead to a transformed

image that will present both undefined and conflicted values.

By opposition, the Eulerian model consists of computing

T (Z2), i.e., it determines the preimage of the “transformed”

space Z2 associated to the rigid transformation. From an

imaging viewpoint, this model is more satisfactory, since T is

defined on the whole transformed space Z2, thus guaranteeing

that any point of a transformed digital image will be unam-

biguously defined. Nevertheless, since T presents the same

properties as U in terms of non-injectivity and non-surjectivity,

this model is not exempt from (topological) drawbacks.

C. Digital images

In this article, we consider finite digital images, that are

defined as functions from Z2 to a value set V. A digital image

I : Z2 → V is considered as finite if there exists a value ⊥ ∈ V

such that I−1(V \ {⊥}) is finite. The infinite part I−1({⊥})
is then considered as the “background” of the image. This

assumption is motivated by practical considerations related to

the digital definition of images in computer-based applications.

Still motivated by practical considerations, we consider

three kinds of frequently used value sets for V:

• B = {0, 1};

• G ⊆ Z or R (equipped with the canonical order 6);

• L, being any arbitrary set (non-equipped with an order).

The first case (V = B) deals with binary images. The set of

finite binary images is noted ImB. The second case (V = G)

deals with grey-level images. Without loss of generality, we

can assume that ⊥ =
∧6

G. The set of finite grey-level images

is noted ImG. The third case (V = L) deals with label images.

The set of finite label images is noted ImL.

Remark 1: For the sake of readability, a point p = (x, y) ∈
Z2 will be associated to the pixel [x− 1

2 , x+
1
2 ]× [y− 1

2 , y+
1
2 ] ⊂ R

2. In particular, the figures that illustrate the following

sections rely on this digital interpretation.

D. Digital topology

1) Basic notions: Digital topology [16] provides a simple

framework for handling the topology of binary images in Zn.

Beyond its simplicity, it is also a robust framework that has

been proved to be compliant [17] with other discrete models

(e.g., Khalimsky grids [18] and cubical complexes [19]) but

also with continuous notions of topology [20].

Practically, digital topology on Zn mainly relies on two

adjacency relations, noted a2n and a3n−1, defined, for any

p,q ∈ Zn, by

(

p a2n q
)

⇐⇒
(

‖p− q‖1 = 1
)

(4)
(

p a3n−1 q
)

⇐⇒
(

‖p− q‖∞ = 1
)

(5)

In the case of Z2, we retrieve in particular the well-known 4-

and 8-adjacency relations, namely a4 and a8.

Let Ω ⊆ Z2, and p,q ∈ Ω. We say that p,q are 4- (resp. 8-)

adjacent (in Ω) if p a4 q (resp. p a8 q). From the reflexive-

transitive closure of a4 (resp. a8) on Ω, we derive the 4-

(resp. 8-) connectedness relation ∼4 (resp. ∼8) (on Ω); we

say that p,q are 4- (resp. 8-) connected (in Ω) if p ∼4 q

(resp. p ∼8 q). It is plain that ∼4 (resp. ∼8) is an equivalence

relation on Ω; the equivalence classes of Ω with respect to ∼4

(resp. ∼8), namely the elements of Ω/∼4 (resp. Ω/∼8) are

called the 4- (resp. 8-) connected components of Ω.

2) Dual adjacency and well-composedness models: A finite

set Ω ⊂ Z2 can be modeled as a binary image I ∈ ImB,

defined by I−1({1}) = Ω and I−1({0}) = Ω = Z2\Ω, or vice

versa. The topological handling of such a binary image cannot

relevantly rely on a8 for both Ω and Ω, due to paradoxes

related to the discrete version of the Jordan theorem [21]. In

this context, it has been proved [22] that such paradoxes could

be avoided by considering distinct adjacencies for Ω and Ω,

leading to the dual adjacency model (see Fig. 1(a–d)).

Definition 2 (Dual adjacency [22]): Let I ∈ ImB. Let Ω =
I−1({1}) and Ω = I−1({0}). We say that I is a (8, 4)- (resp.

a (4, 8)-) image if Ω is equipped with a4 (resp. a8), while

Ω is equipped with a8 (resp. a4). We define the set of the

connected components of the (8, 4)- (resp. (4, 8)-) image I as

C(8,4)[I] = I−1({1})/∼8 ∪ I−1({0})/∼4 (6)

(resp. C(4,8)[I] = I−1({1})/∼4 ∪ I−1({0})/∼8 ) (7)

(For the sake of concision, we will often write (k, k) as a

unified notation for (8, 4) and (4, 8).)
Alternatively, both Ω and Ω may be equipped with a4. In

this context, it has been proposed [23] to only focus on images

that avoid the issues related to the Jordan theorem, i.e., those

for which ∼4 and ∼8 are equivalent for both Ω and Ω, thus

leading to the well-composedness model (see Fig. 1(e–h)).

Definition 3 (Well-composedness [23]): Let I ∈ ImB. We

say that I is a well-composed (or a wc-) image if

∀v ∈ B, I−1({v})/∼8 = I−1({v})/∼4 (8)

We define the set of the connected components of the wc-
image I as

Cwc[I] = I−1({1})/∼4 ∪ I−1({0})/∼4 (9)
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(a) I1 ∈ ImB (b) C(8,4)[I1] (c) C(4,8)[I1] (d) I1 ∈ WCB

(e) I2 ∈ ImB (f) C(8,4)[I2] (g) C(4,8)[I2] (h) I2 /∈ WCB

Fig. 1. (a) An image I1 ∈ ImB. (b) The 8-connected components of

Ω = I−1
1 ({1}) and the 4-connected components of Ω = I−1

1 ({0}).
(c) The 4-connected components of Ω and the 8-connected components of
Ω. Note that I1 has the same topological structure as a (8, 4)- and as a
(4, 8)-image. (d) Then, I1 can also be considered in the well-composedness
model: the boundaries shared by its foreground and background regions,
depicted in green, are 1-manifolds. (e) An image I2 ∈ ImB. (f) The 8-

connected components of Ω = I−1
2 ({1}) and the 4-connected components

of Ω = I−1
2 ({0}). (g) The 4-connected components of Ω and the 8-connected

components of Ω. Note that I2 does not have the same topological structure
as a (8, 4)- and as a (4, 8)-image. (h) Then, I2 cannot be considered in
the well-composedness model: the boundaries shared by its foreground and
background regions, depicted in green, are not 1-manifolds (see the red dots).
(a,d,e,h) Ω is depicted in black, and Ω in white. (b,c,f,g) For the sake of
readability, each connected component is represented by a different colour.

The set of the finite well-composed binary images is noted

WCB.

Remark 4: When “interpreting” digital topology in a con-

tinuous framework [17], an image is well-composed iff the

boundaries shared by the foreground and background regions

are manifolds [23] (see Fig. 1(d,h)).

Remark 5: The well-composedness model is more restric-

tive than the dual adjacency one. Indeed, any I ∈ ImB can be

considered in the dual adjacency model, but not necessarily in

the well-composedness one, i.e.

WCB ⊂ ImB (10)

III. PURPOSE AND CHOICES

Let us consider an image I ∈ ImV, a transformation T :
Z2 → Z2, and the transformed image IT ∈ ImV obtained

from I and T . A frequent question in image analysis is: “Does

T preserve the topology between I and IT ?” It is generally

answered by considering topological invariants of the images.

The most simple ones are, e.g., the Euler-Poincaré charac-

teristic, or the Betti Numbers. However, they are too weak to

correctly model the “topology preservation” between images.

It is then mandatory to consider stronger topological invariants,

e.g., the (digital) fundamental group [24], the homotopy-type

(considered via notions of simple points/sets [25], [26], [27],

[28]), or the adjacency-tree [29].

Our first goal is to provide conditions under which 2D digi-

tal images preserve their topological properties under any rigid

transformation. In this context, a crucial issue is the choice

of the topological invariant used to formalise this problem.

Any of those presented above describe topology preservation

in a global fashion, and do not model accurately the possible

local modifications of the image topological structure. Broadly

speaking, I and IT may have the same fundamental group,

homotopy-type and/or adjacency-tree while there exist some

topological differences between some regions of I and IT that

are in correspondence with respect to T (see, e.g., [30]).

In the sequel, we propose some conditions that reach that

first goal. Our conjecture is that these conditions are necessary

and sufficient to locally preserve image topological properties

under any rigid transformation. However, in this article, we

only establish that they are sufficient to globally preserve

image topological properties under any rigid transformation.

Indeed, on the one hand, the proof of the whole conjecture

would require to develop a heavy theoretical framework, that

falls out of the scope of this journal (see Sec.VI). On the other

hand, the sufficiency of these conditions is the part of the result

that is actually useful to justify and develop methodological

tools for image (pre)processing, that is the second purpose of

this article, and probably the most interesting for the reader.

We will consider, as (global) topological invariant, the

adjacency-tree [29]. The motivation of this choice is twofold:

(i) the understanding of this topological invariant is probably

easier for most readers; and (ii) in the 2D case, its preservation

is equivalent [31] to the preservation of the homotopy-type,

that is the most commonly used topological invariant in image

processing. We now recall the definition of the adjacency-tree.

Let I ∈ ImB (resp. WCB). Let Ω1,Ω2 ∈ C(k,k)[I] (resp.

Cwc[I]), with Ω1 6= Ω2. We note Ω1 a
(k,k)
I Ω2 (resp. Ω1 awc

I

Ω2) if there exist p ∈ Ω1 and q ∈ Ω2 such that p a4 q.

It is plain that a
(k,k)
I (resp. awc

I ) is an adjacency relation,

and that Ω1 a
(k,k)
I Ω2 implies that Ω1 ∈ I−1({1})/∼k and

Ω2 ∈ I−1({0})/∼
k

or vice versa. We define the (k, k)- (resp.

wc-) adjacency graph of I as G(k,k)(I) = (C(k,k)[I],a
(k,k)
I )

(resp. Gwc(I) = (Cwc[I],awc
I )). This graph is connected and

acyclic, and is indeed a tree. It can be equipped with a root

that is the (only) infinite connected component of C(k,k)[I]
(resp. Cwc[I]), thus leading to the following definition.

Definition 6 (Adjacency tree [29]): Let I ∈ ImB (resp.

WCB). The (k, k)- (resp. wc-) adjacency tree of I is the triple

T(k,k)(I) =
(

C(k,k)[I],a
(k,k)
I , B

(k,k)
I

)

(11)

(resp. Twc(I) =
(

Cwc[I],awc
I , Bwc

I

)

) (12)

where B
(k,k)
I ∈ C(k,k)[I] (resp. Bwc

I ∈ Cwc[I]) is the unique

infinite connected component of I .

We are now ready to present our definition of topology-

preservation under rigid transformation.

Definition 7 (Topological invariance): Let I ∈ ImB (resp.

WCB). We say that I is (k, k)- (resp. wc-) topologically

invariant if any T ∈ RigZ2 induces an isomorphism between

T(k,k)(I) (resp. Twc(I)) and T(k,k)(I ◦T ) (resp. Twc(I ◦T )),

and if I ◦ T ∈ ImB (resp. WCB). We note Inv
(k,k)
B

(resp.

Invwc
B ) the set of the (k, k)- (resp. wc-) topologically invariant

binary images.
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IV. THEORETICAL RESULTS

In this section, we define a notion of regularity (Sec. IV-C)

that provides conditions under which binary images are topo-

logically invariant (Sec. IV-D). We then derive analogue con-

ditions for grey-level (Sec. IV-E) and label images (Sec. IV-F).

A. Preliminary remarks

As stated above, we consider the Eulerian transformation

model (Sec. II-B), and we first focus on binary images. In

other words, given an image I ∈ ImB and a discrete rigid

transfomation T ∈ RigZ2 (intrinsically associated to a rigid

transformation T ∈ RigR2), we consider the transformed

image IT ∈ ImB defined as

IT = I ◦ T = I ◦ D ◦ T|Z2 (13)

By setting Ω = I−1({1}), Ω = I−1({0}) and ΩT =
I−1
T ({1}), ΩT = I−1

T ({0}), Eq. (13) rewrites as

ΩT = Z
2 ∩ T −1(Ω⊕�) (14)

ΩT = Z
2 ∩ T −1(Ω⊕�) (15)

where ⊕ is the dilation operator defined in mathematical

morphology (see, e.g., [32]-Ch. 1), and � ⊂ R2 is the unit

square, namely a pixel. These equations can lead to different

results depending on the definition of this pixel, that may be

� = [− 1
2 ,

1
2 ]

2 or ]− 1
2 ,

1
2 [

2. This motivates the next remark.

Remark 8: In this work, we assume that T and T are such

that Z2 does not intersect any transformed pixel border. In

other words, we consider that Eqs. (13)–(15) lead to equal

results for both definitions of �. From a theoretical view-

point, this allows us to develop a general discussion without

confusing variants related to D. From a pratical viewpoint, this

assumption is compliant with computer-based applications,

that generally rely on floating point arithmetic.

B. Image space restrictions

We first state that the binary images considered for the study

of topological invariance can be chosen in a subspace of ImB.

Remark 9: We restrict our study of (k, k)-topological in-

variance within the binary images to the subspace WCB ⊂
ImB. This restriction is motivated1 by the fact that any

I ∈ ImB \ WCB presents configurations (see Th. 23) that

may be non-compliant with the definition of (k, k)-topological

invariance.

We now introduce a notion of singularity, and we establish

that singular images cannot be topologically invariant, thus

reducing the image subspace to consider.

Definition 10 ((Non-)singular image): Let I ∈ ImB. We

say that I is a singular image if

∃p ∈ Z
2, ∀q ∈ Z

2,
(

q a4 p
)

=⇒
(

I(p) 6= I(q)
)

(16)

We note NSB the set of the well-composed images that are

not singular.

1This restriction, presented as a motivated –but arbitrary– choice when
considering a global topological invariant, may however be proved when
considering a local one. As discussed in Sec. III, such a proof is beyond
the scope of this article.

Proposition 11: We have

Invwc
B ⊆

(

Inv
(k,k)
B

∩WCB

)

⊆ NSB (17)

In the sequel, we then carry out our study of topological in-

variance within the set of well-composed non-singular images,

independently from the considered (dual adjacency, or well-

composedness) model.

C. Regularity

Let us now introduce a new notion that strenghtens the

notion of well-composedness.

Definition 12 (Regularity): Let I ∈ NSB. We say that I is

k-regular (resp. k-regular) if for any p,q ∈ I−1({1}) (resp.

I−1({0})), we have
(

p a4 q
)

=⇒ ∃⊞ ⊆ I−1({1}),p,q ∈ ⊞ (18)

(resp.
(

p a4 q
)

=⇒ ∃⊞ ⊆ I−1({0}),p,q ∈ ⊞ ) (19)

where ⊞ is a “square” element, i.e., ⊞ = {x, x+1}×{y, y+1},

for (x, y) ∈ Z2. We say that I is regular if it is both k- and

k-regular. We note RegkB (resp. RegkB, resp. RegB) the set of

the k-regular (resp. k-regular, resp. regular) binary images.

Remark 13: Following mathematical morphology terminol-

ogy and notations (see, e.g., [32]-Ch. 1), if I is k- (resp. k-)

regular, then Ω = I−1({1}) (resp. Ω = I−1({0})) is open by

any structuring element ⊞, i.e.

γ⊞(Ω) = Ω⊖⊞⊕⊞ = Ω (20)

D. Topological invariance: the binary case

We now establish our main result for binary images, that

states that regularity implies topological invariance.

Theorem 14:

RegkB ⊆ Inv
(8,4)
B

(21)

RegkB ⊆ Inv
(4,8)
B

(22)

RegB ⊆ Invwc
B (23)

E. Topological invariance: the grey-level case

In Sec. II-C, it has been observed that a grey-level image

takes its values in a finite (and totally ordered) subset of Z or

R. Any such image is then equivalent to an image I : Z2 → G,

where G = [[0,m]] ⊂ Z is a finite interval, and ⊥ = 0. Without

loss of generality, we then focus on such images.

A grey-level image I ∈ ImG can unambiguously be mod-

eled by the finite set of its binary level set images λv(I) ∈ ImB

defined, for any v ∈ G as
∣

∣

∣

∣

∣

∣

λv(I) : Z → B

p 7→

{

1 if v 6 I(p)
0 otherwise

(24)

The image I can then be reconstructed as the supremum of

these |G| level set images, with respect to the pointwise order

≤ on functions induced by the order 6 on G

I =

≤
∨

v∈V

v.λv(I) (25)
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Based on this modelling of I ∈ ImG by the set {λv(I)}v∈G,

the notions previously introduced for binary images can be

extended to grey-level ones2. In particular, we have

WCG =
{

I ∈ ImG | ∀v ∈ G, λv(I) ∈ WCB

}

(26)

NSG =
{

I ∈ WCG | ∀v ∈ G, λv(I) ∈ NSB

}

(27)

Moreover, we define the analogues of the binary notions of

topological invariance (Def. 7) and regularity (Def. 12).

Definition 15 (Grey-level topological invariance): Let I ∈
NSG. We say that I is (k, k)- (resp. wc-) topologically

invariant if for any v ∈ G, λv(I) ∈ Inv
(k,k)
B

(resp. Invwc
B ).

We note Inv
(k,k)
G

(resp. Invwc
G ) the set of the (k, k)- (resp.

wc-) topologically invariant grey-level images.

Definition 16 (Grey-level regularity): Let I ∈ NSG. We

say that I is k-regular (resp. k-regular, resp. regular) if for

any v ∈ G, λv(I) ∈ RegkB (resp. RegkB, resp. RegB). We note

RegkG (resp. RegkG, resp. RegG) the set of the k-regular (resp.

k-regular, resp. regular) grey-level images.

The following theorem, that is the grey-level analogue of

Th. 14, straightforwardly derives from this last theorem, and

Defs. 15, 16.

Theorem 17:

RegkG ⊆ Inv
(8,4)
G

(28)

RegkG ⊆ Inv
(4,8)
G

(29)

RegG ⊆ Invwc
G (30)

Remark 18: The topological invariance (and thus, the reg-

ularity) of I ∈ ImG also leads to the preservation of the

hierarchy of its connected components between successive

levels. More precisely, the (k, k)- (resp. wc-) topological

invariance implies that for any T ∈ RigZ2 , the images I and

I ◦ T have isomorphic component-trees [34]. This assertion

is easy to prove, based on the fact that (i) T establishes a

bijection between the connected components of the initial and

transformed level set images (Prop. 35), and (ii) T preserves,

by construction (see Eqs. (3), (24)–(25)), the inclusion rela-

tion between these components at successive levels. A more

complete discussion on this topic is beyond the scope of this

article; the reader is referred, e.g., to [34], [35] or [32]-Ch. 7

(and the references therein) for complementary information.

F. Topological invariance: the label case

Similarly to the case of grey-level images, it has been

observed in Sec. II-C that a label image takes its values in

a finite set. Any such image is then equivalent to an image

I : Z2 → L, where L is finite and ⊥ ∈ L. Without loss of

generality, we now focus on such images.

Several attempts have been made to propose topological

frameworks for label images, and more precisely to define

what is the exact meaning of the “topology preservation” in

such images [36], [37], [5], [38]. In this work, we follow

a recent and general proposal [39], [40], that consists of

considering the values of L as “proto-labels”, and any subsets

of such values as the actual labels of the image. In other words,

2A notion of grey-level well-composedness has also been proposed in [33].

the topology of a label image I ∈ ImL, and its potential

preservation, are considered by observing all the binary images

exhaustively induced by labels Λ that are the elements of the

power set 2L. This leads to the following notions.

A label image I ∈ ImL can unambiguously be modeled by

the finite set of its binary characteristic images χΛ(I) ∈ ImB

defined, for any Λ ∈ 2L as
∣

∣

∣

∣

∣

∣

χΛ(I) : Z → B

p 7→

{

1 if I(p) ∈ Λ
0 otherwise

(31)

In particular, by identifying (i) the sets {l}l∈L and {{l}}l∈L,

and (ii) the monoids (B, .) and ({L, ∅},∪), the image I can be

reconstructed –similarly to the case of grey-level images (see

Eq. (25))– as the infimum of these 2|L| characteristic images,

with respect to the pointwise order ⊑ on functions induced by

the inclusion order ⊆ on 2L

I =

⊑
∧

Λ∈2L

Λ.χΛ(I) (32)

Based on this modelling of I ∈ ImL by the set

{χΛ(I)}Λ∈2L , the notions previously introduced for binary

images can be extended3 to label ones. In particular, we have

WCL =
{

I ∈ ImL | ∀Λ ∈ 2L, χΛ(I) ∈ WCB

}

(33)

NSL =
{

I ∈ WCL | ∀Λ ∈ 2L, χΛ(I) ∈ NSB

}

(34)

Moreover, we define the analogues of the binary notions of

topological invariance (Def. 7) and regularity (Def. 12).

Definition 19 (Label topological invariance): Let

I ∈ NSL. We say that I is (k, k)- (resp. wc-) topologically

invariant if for any Λ ∈ 2L, χΛ(I) ∈ Inv
(k,k)
B

(resp. Invwc
B ).

We note Inv
(k,k)
L

(resp. Invwc
L ) the set of the (k, k)- (resp.

wc-) topologically invariant label images.

Remark 20: In the sequel, we restrict4 our study to the case

of wc-topological invariance for label images.

Definition 21 (Label regularity): Let I ∈ NSL. We say

that I is regular if for any Λ ∈ 2L, χΛ(I) ∈ RegB. We note

RegL the set of regular label images.

The following theorem, that is the label analogue of Th. 14,

straightforwardly derives from this last theorem, and Defs. 19,

21.

Theorem 22:

RegL ⊆ Invwc
L (35)

V. METHODOGY

In Sec. IV, we have established sufficient conditions for

guaranteeing topological invariance, thanks to the notion of

regularity (Ths. 14, 17, 22). From this theoretical study, we

first propose simple algorithms to characterise the regularity of

3The definition of well-composedness for label images proposed here (see
Eq. (33)) slightly differs from the one introduced in [36], that only requires
that χ{l}(I) ∈ WCB for any proto-label l ∈ L.

4As in Rem. 9 and the associated footnote, this restriction is motivated
by the fact that the (8, 4)- and (4, 8)-topological invariance (that are equal,
from there very definitions) may be proved to be equal to the wc-topological
invariance. Once again, the proof of this assertion is beyond the scope of this
article.
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(a) (b) (c)

Fig. 2. Forbidden patterns in WCB (a) and in Regk
B

(a–c), up to π/2 rotations

and symmetries. The patterns forbidden in Regk
B

are obtained from (a–c) by
value inversion. Black (resp. white) points have value 1 (resp. 0).

an image (Sec. V-A). Then, we describe some preprocessing

strategies that enable to turn a non-regular image into a regular

(and then topologically invariant) one (Sec. V-B).

A. Pattern-based characterisation of regular images

In this section, we show that the regularity of a 2D digital

image can be easily determined by considering a small set

of specific patterns. This result straightforwardly leads to an

algorithm of optimal time and space complexity.

1) Well-composedness characterisation: Regular images

are defined within the set of well-composed ones. A pre-

requisite is then to characterise WCB. This is tractable by

considering a specific 2× 2 pattern [23].

Theorem 23 ([23]): Let I ∈ ImB. We have I /∈ WCB iff

there exist distinct points p,q, r, s ∈ Z2, with p a4 q a4

r a4 s a4 p, that verify

I(p) 6= I(q) 6= I(r) 6= I(s) (36)

Based on Th. 23 and Defs. 15, 19, we straightforwardly derive

characterisations of grey-level and label well-composedness.

Corollary 24: Let I ∈ ImG. We have I /∈ WCG iff there

exist distinct points p,q, r, s ∈ Z
2, with p a4 q a4 r a4

s a4 p, that verify

I(p) > I(q) < I(r) > I(s) < I(p) (37)

Corollary 25: Let I ∈ ImL. We have I /∈ WCL iff there

exist distinct points p,q, r, s ∈ Z2, with p a4 q a4 r a4

s a4 p, that verify

I(p) 6= I(q) 6= I(r) 6= I(s) 6= I(p) (38)

The characterisation of binary, grey-level and label images

as well-composed ones can then be carried out by simply

checking that they do not contain the forbidden patterns

induced by the binary pattern depicted in Fig. 2(a).

2) Regularity characterisation: We now propose a pattern-

based characterisation of regular binary images.

Proposition 26: Let I ∈ WCB. We have I /∈ RegkB (resp.

RegkB), and a fortiori RegB, iff there exists p ∈ I−1({1})
(resp. I−1({0})) that satisfies at least one of the following

two conditions (up to π/2 rotations and symmetries)

I(p− (1, 0)) 6= I(p) 6= I(p+ (1, 0)) (39)

I(p+ (0, 1)) = I(p) 6= I(p− (1, 0)) = I(p+ (1, 1)) (40)

Based on Prop. 26 and Defs. 15, 19, we straightforwardly

derive characterisations of grey-level and label regularity.

Corollary 27: Let I ∈ WCG. We have I /∈ RegkG (resp.

RegkG), and a fortiori RegG, iff there exists p ∈ Z2 that

satisfies at least one of the following two conditions (up to

π/2 rotations and symmetries)

I(p− (1, 0)) < I(p) > I(p+ (1, 0)) (41)

(resp. I(p− (1, 0)) > I(p) < I(p+ (1, 0))) (42)

I(p+ (0, 1)) > I(p) > I(p− (1, 0)) > I(p+ (1, 1))
(43)

(resp. I(p+ (0, 1)) 6 I(p) < I(p− (1, 0)) 6 I(p+ (1, 1)))
(44)

Corollary 28: Let I ∈ WCL. We have I /∈ RegL iff there

exists p ∈ Z that satisfies at least one of the following two

conditions (up to π/2 rotations and symmetries)

I(p− (1, 0)) 6= I(p) 6= I(p+ (1, 0)) (45)

I(p) 6= I(p− (1, 0)) 6= I(p+ (0, 1)) 6= I(p+ (1, 1)) 6= I(p)
(46)

The characterisation of binary, grey-level and label images

as regular ones can then be carried out by simply checking

that they do not contain the forbidden patterns induced by the

binary patterns depicted in Fig. 2(a–c).

3) Complexity: The following result straightforwardly de-

rives from Th. 23, Prop. 26, and their respective corollaries.

Proposition 29: Let I ∈ WCV (with V = B, G or L). Let

S ⊂ Z2 be such that I−1(V \ {⊥}) ⊆ S (practically, S is the

finite set where I is defined in a computer-based application).

Then, the algorithm that determines the (non-)regularity of I ,

has a time complexity O(|S|), and a space complexity O(1).

B. Image regularisation

We now propose two strategies for preprocessing images

in order to obtain regular –and then topologically invariant–

ones, before further rigid transformation. Such regularisation

strategies (i) must preserve the topological properties of the

images, and (ii) should preserve as much as possible their

geometric properties.

1) Iterative homotopic regularisation: A first strategy con-

sists of locally modifying the image to eliminate the forbidden

configurations defined in Eqs. (36)–(46) and Fig. 2.

Let I ∈ ImV (or WCV, if we aim to obtain regularity, and

not only k or k-one). The problem to tackle can be expressed

as a constrained optimisation one, described by

R(I) = arg min
Reg⋆

V
(I)

DI (47)

where R(I) is the regularised version of I; Reg⋆V(I) is the

subset of Reg⋆V ∈ {RegkV,RegkV,RegV} composed by the

images that have the same topology as I; and DI : ImV → R+

is a cost function that describes the “distance” from I , from a

geometric viewpoint. (The definition of DI actually depends

on the targeted application, and can rely, e.g., on Hausdorff

distance, or any standard (dis)similarity measure.)

In real applications, I is defined on a finite set S ⊂ Z2, and

so is the space of (potential) solutions of Eq. (47). However,

the size O(|V||S|) of this space is huge. Then, one has to

accept to only look for an approximate solution of Eq. (47),

instead of an exact one. In this context, a tractable strategy is to

consider the homotopy-guided approach initially developped
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Fig. 3. Some well-composed images that cannot be regularised without a
super-resolution approach, due to fine texture effects.

for monotonic transformations [41], and then adapted to non-

monotonic ones [42], [43], [6], [38].

This strategy starts from the image I , and iteratively elimi-

nates forbidden configurations by modifying the value of one

point p ∈ S at each iteration, until stability. The choice of p

is guided (i) by the position of the forbidden configurations,

(ii) by DI , and (iii) by choosing p as a simple point. This

is feasible for V = B, G or L since notions of simple points

have been proposed in binary [44], grey-level [45] and label

cases [39].

The obtained algorithm can be seen as an extension of the

ones presented in [31], [46] for well-composedness recovery,

to the case of regularity recovery. In particular, it presents the

same strenghts and weaknesses. Indeed, in most application

cases, it will converge in linear time with respect to the number

of forbidden configurations, that are often sparsely distributed

within images. Nevertheless, in pathological cases (e.g., in

presence of fine textures, see Fig. 3), it may not converge,

or even fail. To deal with this issue, we propose hereafter a

second –super-resolution– regularisation strategy.

2) Super-resolution regularisation: Let I ∈ ImV (with

V = B or G) be a (k, k)-image. Even before the issue of

regularisation, it may happen that I cannot be modified into

a topologically-equivalent well-composed image, when using

a strategy such as the one presented above. It is then possible

to oversample I by explicitely representing its “interpixel”

topological structure. This can be done by embedding I into

the Khalimsky space [18], then leading to a new image I
(k,k)
K

defined as
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

I
(8,4)
K : Z2 → V

2.p 7→ I(p)

2.p+ (0, 1) 7→
∨6

I(p+ {0} × {0, 1})

2.p+ (1, 0) 7→
∨6 I(p+ {0, 1} × {0})

2.p+ (1, 1) 7→
∨6

I(p+ {0, 1} × {0, 1})
(48)

(The image I
(4,8)
K is defined by substituting

∧

to
∨

in

Eq. (48).) The proof of the following result straightforwardly

derives from these definitions.

Proposition 30: Let I ∈ ImV (with V = B or G). Then we

have I
(k,k)
K ∈ WCV. Moreover, I

(k,k)
K and I have the same

homotopy-type, when considered as (k, k)-images.

From now on, we then assume that I ∈ WCV (with V = B,

G or L). It may happen that I cannot be modified into a

regular image when using homotopic iterative regularisation.

Once again, an oversampling strategy can be alternatively

proposed. This strategy no longer relies on Khalimsky space

embedding, but simply on a 2× 2 super-resolution approach.

More precisely, from I ∈ WCV, we can define a new image
∣

∣

∣

∣

I2×2 : Z2 → V

p = (x, y) 7→ I((⌊x/2⌋, ⌊y/2⌋))
(49)

The proof of the following result straightforwardly derives

from this definition.

Proposition 31: Let I ∈ WCV (with V = B, G or L). Then

we have I2×2 ∈ RegV. Moreover, I2×2 and I have the same

homotopy-type when considered as (k, k)- (resp. wc-) images.

Finally, Eqs. (48)–(49) provide a global super-resolution

strategy that enables to redefine any (8, 4)-, (4, 8)-, or wc-
image as a regular –and thus topologically invariant– one. By

opposition to the previous strategy, this one has the advantages

of being deterministic and geometrically preserving (up to

a possible “thickening” of the interpixel space). Its main

drawback, by opposition to the first strategy, is its higher

spatial cost, as it models an image of size |S| as a new one of

size 4.|S| (and 16.|S| in the worst cases).

VI. CONCLUSION

We have investigated the notion of topology preservation

of 2D digital images under rigid transformation. Based on

theoretical results established in the digital topology frame-

work, we have derived efficient algorithms for analysing and

preprocessing such images. The genericity of these results and

methods, in terms of topological models (dual adjacency and

well-composedness) and values (binary, grey-level and label

images), authorise their actual use in real applications.

A short term purpose will be to prove that the notion of

regularity provides not only sufficient, but also necessary con-

ditions for topological invariance (in other words, that the ⊆
symbols in Ths. 14, 17 and 22, are indeed = symbols). To this

end, it will be necessary to define a relevant local topological

invariant, relying, e.g., on the topological structure that can be

defined on tilings of Z2 induced by rigid transformations.

We will also investigate the links between our results,

established in a discrete framework, and some results obtained

in the research field of digitisation, that intrinsically merges

both discrete and continuous frameworks. Indeed, as suggested

by Eqs. (14)–(15) the rigid transformation of a digital image

can be interpreted as the (re)digitisation of its associated

continuous pixel-based representation. Based on this assertion,

our notion of regularity may be seen as a discrete analogue of

the notion of r-regularity developped fifteen years ago [47],

[48], for topology-preserving digitisation purpose. These links,

that are easy to intuit, are less trivial to formally establish.

From a more methodological viewpoint, the next step will

consist of passing from Z
2 to Z

3. This raises supplementary

difficulties, related to the more complex definitions of topo-

logical models [49] and topological invariants [30]. To cope

with this challenge, various ways may be considered. A first

one relies on the possible analogy between regularity and r-

regularity (see above). A second one relies on a morphological

interpretation of regularity. Indeed, as stated in Rem. 13,

regular images are open for square structuring elements, but

the counterpart is not true. A specific class of open images, for

which the opening relies on homotopic erosions and dilations,
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may be considered and compared to the family of regular

images, in a morpho-topological framework [50], [51], [52].
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APPENDIX

A. Auxiliary properties

The following two properties deal with configurations that

have already been discussed in the literature (see, e.g., [14],

[15]. Their proofs, that do not present much difficulties, are left

to the reader. (We recall that we are still under the hypotheses

of Rem. 8.)

Property 32: Let p ∈ Z2. There exists T ∈ RigZ2 such

that

p /∈ T (Z2) (50)

Let T be such a transformation. Let {n, e, s,w} = {q ∈ Z
2 |

p a4 q}, with n a8 e a8 s a8 w. There exist distinct points

n′, e′, s′,w′ ∈ Z2, with n′ a4 e′ a4 s′ a4 w′ a4 n′, such

that

∀q ∈ {n, e, s,w},q = T (q′) (51)

Property 33: Let C = {x, x + 1} × {y, y + 1} ⊂ Z2. Let

T ∈ RigZ2 . Then we have T−1(C)/∼4 = {T−1(C)}.

B. Proof of Proposition 11

Let I ∈ WCB. Let us suppose that I /∈ NSB. Let p ∈ Z2

be such that ∀q ∈ Z2, (q a4 p) ⇒ (I(p) 6= I(q)) (Def. 10).

Then, Th. 23 implies that ∀q ∈ Z2, (q a8 p) ⇒ (I(p) 6=
I(q)), i.e., {p} ∈ C(k,k)[I]. From Prop. 32 (Eq. (50)), there

exists T ∈ RigZ2 such that p /∈ T (Z2). Such a transfor-

mation T does not induce a bijection between C(k,k)[I] and

C(k,k)[I ◦T ], and a fortiori an isomorphism between T(k,k)(I)

and T(k,k)(I ◦T ), and thus we have I /∈ Inv
(k,k)
B

(Def. 7). By

contraposition, we have (Inv
(k,k)
B

∩ WCB) ⊆ NSB. Finally,

Invwc
B ⊆ Inv

(k,k)
B

is a straightforward consequence of Defs. 3,

7. �

C. Proof of Proposition 26

Let I ∈ RegkB. Let p ∈ I−1({1}). Since I ∈ NSB

(Def. 12), there exists q ∈ I−1({1}) such that p a4 q. Then

Eq. (18) forbids Eqs. (39)–(40).

Let us suppose that for all p ∈ I−1({1}) Eqs. (39)–(40)

are not verified. Let p ∈ I−1({1}). As p does not verify

Eq. (39), we choose q ∈ I−1({1}) such that p a4 q. Up to

π/2 rotations, we can set q = p + (0, 1). Since p does not

verify Eq. (39), we have p+(1, 0) or p−(1, 0) ∈ I−1({1}). Up

to symmetries, we can set p+(1, 0) ∈ I−1({1}). If p+(1, 1) ∈
I−1({1}), then, p,q satisfy the RHS of Eq. (18). Let us now

suppose that p + (1, 1) ∈ I−1({0}). Since q does not verify

Eq. (39), we have p + (−1, 1) ∈ I−1({1}). But Eq. (40)

implies p− (1, 0) ∈ I−1({1}), and p,q then satisfy the RHS

of Eq. (18). Then, I ∈ RegkB.

The result follows by contraposition. The same reasonning

holds for RegkB. �

D. Proof of Theorem 14

Proposition 34: Let I ∈ RegkB (resp. RegkB, resp. RegB).

Let T ∈ RigZ2 . Then T|(I◦T )−1({1}) establishes a homomor-

phism from ((I ◦ T )−1({1}),a4) (resp. ((I ◦ T )−1({1}),a8

), resp. ((I ◦ T )−1({1}),a4)) to (I−1({1}),∼4) (resp.

(I−1({1}),∼8), resp. (I−1({1}),∼4)), while T|(I◦T )−1({0})

establishes a homomorphism from ((I ◦ T )−1({0}),a8)
(resp. ((I ◦ T )−1({0}),a4), resp. ((I ◦ T )−1({0}),a4)) to

(I−1({0}),∼8) (resp. (I−1({0}),∼4), resp. (I−1({0}),∼4)).
Proof Let I ∈ RegB. Let p′,q′ ∈ (I ◦ T )−1({1}), with

p′ a4 q′. Let p = T (p′), q = T (q′). From Eq. (13), two

cases can occur: (i) p = q, and then p ∼4 q; (ii) p a8 q,

that implies p ∼4 q (Def. 3), and then p ∼4 q. The same

reasonning holds for I ∈ RegB and (I ◦T )−1({0}); I ∈ RegkB
and (I ◦ T )−1({1}); and I ∈ RegkB and (I ◦ T )−1({0}).

Let I ∈ RegkB. Let p′,q′ ∈ (I ◦ T )−1({0}), with p′ a8 q
′.

Let p = T (p′), q = T (q′). From Eq. (13), three cases can

occur: (i) p = q, and then p ∼8 q; (ii) p a8 q, and then

p ∼8 q; or (iii) p = q+ (2, 0) or (2, 1), up to π/2 rotations

and symmetries, and then p ∼8 q derives from Prop. 26. The

same reasonning holds for I ∈ RegkB and (I ◦ T )−1({1}). �
We can then licitely define the following notions. Let I ∈

WCB and T ∈ RigZ2 . Let us consider the function T ⋆
I (with

⋆ = (k, k) or wc) defined as
∣

∣

∣

∣

T ⋆
I : C⋆[I ◦ T ] → C⋆[I]

C 7→ CT ⊇ T (C)
(52)

We are now ready to establish the first part of the iso-

morphism, namely the one-to-one correspondence between the

connected components of the initial and transformed images.

Proposition 35: Let I ∈ RegkB (resp. RegkB, resp. RegB).

Let T ∈ RigZ2 . Then T
(4,8)
I (resp. T

(8,4)
I , resp. Twc

I ) is a

bijection.

Proof Let C ∈ C⋆[I] and p ∈ C. Since I /∈ NSB, we

can choose q ∈ C such that p a4 q. Then, from Prop. 32

(Eq. (50)), there exists p′ ∈ Z2 such that T (p′) ∈ {p,q} ⊆ C.

Thus, T ⋆
I is a surjection.

We assume that I ∈ RegB. Let p′,q′ ∈ (I ◦ T )−1({1}).
Let p = T (p′), q = T (q′). Let us suppose that p,q ∈ C ∈
I−1({1})/∼4. We have p ∼4 q, i.e., there exists a set {pi}ki=0

(k > 0) such that p0 = p, pk = q, pi ∈ I−1({1}) for any i ∈
[[0, k]], and pi a4 pi+1 for any i ∈ [[0, k−1]]. Let i ∈ [[0, k−1]].
If pi,pi+1 ∈ T (Z2), we set p′

i,p
′
i+1 ∈ (I ◦ T )−1({1}) such

that T (p′
i) = pi and T (p′

i+1) = pi+1; it then derives from

Prop. 33 and Def. 12 that p′
i ∼4 p′

i+1. Let us now suppose that

pi or pi+1 /∈ T (Z2), for instance pi+1 /∈ T (Z2). It derives

from Prop. 32 (Eq. (51)) that pi+2 ∈ T (Z2) (for the same

reasons, we cannot have pi,pi+1 /∈ T (Z2)). We set p′
i,p

′
i+2 ∈

(I ◦ T )−1({1}) such that T (p′
i) = pi and T (p′

i+2) = pi+2.

From Prop. 32 (Eq. (51)), we then have p′
i ∼4 p′

i+2. Then

Π = T−1({pi}ki=0) is such that p′,q′ ∈ Π ⊆ (I ◦ T )−1({1})
and that there exists CT ∈ (I ◦ T )−1({1})/∼4 such that Π ⊆
CT . The same reasonning holds for RegB and (I ◦T )−1({0});

RegkB and (I ◦ T )−1({1}); and RegkB and (I ◦ T )−1({0}).
We now assume that I ∈ RegkB. Let p′,q′ ∈ (I◦T )−1({0}).

Let p = T (p′), q = T (q′). Let us suppose that p,q ∈
C ∈ I−1({0})/∼8. As I ∈ WCB, we actually have C ∈
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I−1({0})/∼4. Then, we have p ∼4 q, i.e., there exists a set

{pi}ki=0 (k > 0) such that p0 = p, pk = q, pi ∈ I−1({0})
for any i ∈ [[0, k]], and pi a4 pi+1 for any i ∈ [[0, k − 1]].
Let i ∈ [[0, k − 1]]. If pi,pi+1 ∈ T (Z2), we set p′

i,p
′
i+1

such that T (p′
i) = pi and T (p′

i+1) = pi+1; it then derives

from Eq. (13) that p′
i ∼8 p′

i+1. Let us now suppose that pi

or pi+1 /∈ T (Z2), for instance pi+1 /∈ T (Z2). It derives

from Prop. 32 (Eq. (51)) that pi+2 ∈ T (Z2) (for the same

reasons, we cannot have pi,pi+1 /∈ T (Z2)). We set p′
i,p

′
i+2

such that T (p′
i) = pi and T (p′

i+2) = pi+2. From Prop. 32

(Eq. (51)), we then have p′
i ∼4 p

′
i+2. Then Π = T−1({pi}ki=0)

is such that p′,q′ ∈ Π ⊆ (I ◦ T )−1({0}) and that there

exists CT ∈ (I ◦ T )−1({0})/∼8 such that Π ⊆ CT . The

same reasonning holds for RegkB and (I ◦ T )−1({1}).
It straightforwardly follows from these two sub-reasonnings

that T ⋆
I is indeed an injection. �

The following proposition is a consequence of this result.

Proposition 36: Let I ∈ RegkB (resp. RegkB, resp. RegB).

Let T ∈ RigZ2 . We have I ◦ T ∈ ImB (resp. ImB, resp.

WCB). Moreover, we have T ⋆
I (B

⋆
I◦T ) = B⋆

I .

Proof The fact that I ◦ T ∈ ImB straightforwardly derives

from the fact that T ⋆
I is a bijection, and from the definition

of T (Eq. (13)), that implies that for any p ∈ Z2, T−1({p})
is finite. We have T ⋆

I (B
⋆
I◦T ) = B⋆

I for the very same reasons.

Let us now consider that I ◦ T /∈ WCB. Then, from Th. 23,

there exist distinct points n, e, s,w ∈ Z2, with n a4 e a4

s a4 w a4 n, that verify Eq. (36). From Eq. (13), we then

derive that there exist distinct points n′, e′, s′,w′ ∈ Z2 such

that T (n) = n′, T (e) = e′, T (s) = s′, T (w) = w′. Still

from Eq. (13), we have moreover n′ a8 e′ a8 s′ a8 w′ a8

n′. These equalities authorise only three configurations, up

to π/2 rotations and symmetries: (i) e′ = n′ + (1, 0), s′ =
n′ + (2,−1), w′ = n′ + (1,−1); (ii) e′ = n′ + (1, 0), s′ =
n′+(1,−1), w′ = n′+(0,−1); (iii) e′ = n′+(1,−1), s′ =
n′ − (2, 0), w′ = n′ − (1, 1). Configuration (i) corresponds

to Eq. (40), configuration (ii) corresponds to Eq. (36), and

configuration (iii) corresponds to Eq. (39); in each case, we

have I /∈ RegB. By contrapotision, I /∈ RegB implies that

I ◦ T ∈ WCB. �

We are now ready to establish the last part of the isomor-

phism, namely the preservation of the adjacency relation.

Proposition 37: Let I ∈ RegkB (resp. RegkB, resp. RegB).

Let T ∈ RigZ2 . Let C1, C2 ∈ C⋆[I ◦ T ] with ⋆ = (4, 8) (resp.

(8, 4), resp. wc). We have

(

C1 a⋆
I◦T C2

)

⇐⇒
(

T ⋆
I (C1) a

⋆
I T ⋆

I (C2)
)

(53)

Proof Let C1 a⋆
I◦T C2. Up to reindexing, we have C1 ⊆

(I ◦ T )−1({0}) and C2 ⊆ (I ◦ T )−1({1}). Let p′ ∈ C1,

q′ ∈ C2 be such that p′ a4 q′. Let p = T (p′) ∈ T ⋆
I (C1),

q = T (q′) ∈ T ⋆
I (C1). From Eq. (13), we can have: (i) p a4 q

and then T ⋆
I (C1) a⋆

I T ⋆
I (C2); or (ii) p a8 q and p 6a4 q.

In that second case, let r ∈ Z2 be such that p a4 r a4 q.

We have either r ∈ T ⋆
I (C1) or T ⋆

I (C2), and then T ⋆
I (C1) a

⋆
I

T ⋆
I (C2).
Let T ⋆

I (C1) a⋆
I T ⋆

I (C2). Up to reindexing, we have

T ⋆
I (C1) ⊆ T−1({0}) and T ⋆

I (C2) ⊆ T−1({1}). Let p ∈
T ⋆
I (C1), q ∈ T ⋆

I (C2) be such that p a4 q. Case 1: there

exist p′ ∈ C1 such that T (p′) = p, and q′ ∈ C2 such that

T (q′) = q. From Eq. (13), three possibilities can occur: (i)
p′ a4 q′ and then C1 a⋆

I C2; (ii) p′ a8 q′ and p′ 6a4 q′, and

by choosing r′ ∈ Z2 such that p′ a4 r′ a4 q′, we have either

r′ ∈ C1 or C2, and then C1 a⋆
I C2; (iii) q′ = p′ + (2, 0), up

to π/2 rotations, and by choosing r′ = p′ + (1, 0), we have

either r′ ∈ C1 or C2, and then C1 a⋆
I C2. Case 2: p /∈ T (Z2)

(the same holds for q /∈ T (Z2)). Since I ∈ NSB, there exists

r ∈ T ⋆
I (C1) and s ∈ T ⋆

I (C2) such that p a4 r a8 s a4 p.

Then, from Prop. 32 (Eq. (51)), there exists r′ ∈ C1 such that

T (r′) = r, and s′ ∈ C2 such that T (s′) = s, and r′ a4 s′,

and then C1 a⋆
I C2. �

By gathering Props. 35–37, we obtain Th. 14.
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