
Topology Switching for Data Center Networks

Kevin C. Webb, Alex C. Snoeren, and Kenneth Yocum
UC San Diego

Abstract

Emerging data-center network designs seek to provide
physical topologies with high bandwidth, large bisection
capacities, and many alternative data paths. Yet, existing
protocols present a one-size-fits-all approach for forward-
ing packets. Traditionally, the routing process chooses
one “best” route for each end-point pair. While some
modern protocols support multiple paths through tech-
niques like ECMP, each path continues to be selected us-
ing the same optimization metric. However, today’s data
centers host applications with a diverse universe of net-
working needs; a single-minded forwarding approach is
likely to either let paths go unused, sacrificing reliability
and performance, or make the entire network available to
all applications, sacrificing needs such as isolation.

This paper introducestopology switchingto return con-
trol to individual applications for deciding best how to
route data among their nodes. Topology switching formal-
izes the simultaneous use of multiple routing mechanisms
in a data center, allowing applications to define multiple
routing systemsand deploy individualizedrouting tasks
at small time scales. We introduce the topology switch-
ing abstraction and illustrate how it can provide both net-
work efficiency and individual application performance,
and admit flexible network management strategies.

1 Introduction
Data center networking architectures are rapidly evolv-

ing to accommodate the demands of the “cloud comput-
ing” model, where cloud providers dynamically rent raw
computing resources or application services to clients. In
particular, data center networks support an increasingly
sophisticated environment that includes storage, monitor-
ing, data processing, and virtual machine management
software. These services place different performance, re-
liability, and management demands on the underlying net-
work. For example, while caching services (e.g., mem-
cached [6]) or HPC workloads prize low latency com-
munication, data processing applications (e.g., MapRe-
duce [4]) require high bisection bandwidth.

Unfortunately, application performance and network
management suffer from the one-size-fits-all routing de-
sign prevalent in today’s data center networks. A common

approach to managing data center networks is to segregate
traffic into separate VLANs, based on application or orga-
nizational unit. However, inside a VLAN each application
suffers the same fate: a single orunified routing process
chooses the “best” route for each end-point pair irrespec-
tive of the applications running in the VLAN. Thus the
fate of all VLAN communication, no matter how differ-
ent, is bound to the properties of one routing system. For
example, traditional switched Ethernet domains provide
silos of transparent connectivity, routing across a single
spanning tree, resulting in non-shortest paths, idle alter-
native paths, and high link stress at the tree root.

This paper makes the case fortopology switching(TS),
a fundamentally different way for data center applications
to interact with the network. A topology-switched net-
work supports multiple, simultaneous application-specific
routing tasks, somewhat like VLANs. Unlike VLANs,
however, within each routing task, the application can de-
fine distinct topologies, naming, and routing conventions
specifically tailored to their unique reliability, perfor-
mance, and scalability requirements, providing enhanced
performance at the expense of certain routing attributes
that may not be critical to the routing task at hand. Thus,
the data center network no longer needs to balance routing
consistency, failure resilience, high performance forward-
ing, flexible policy enforcement, and security across all
the applications in the data center.

Topology switching attempts to address the challenges
raised by two key data center network management pro-
cesses: VM placement and network evolution. While vir-
tualization allows any server to host any VM, the net-
work is often a key performance bottleneck [11]. The
majority of proposed data center networks try to decou-
ple placement from performance by maximizing band-
width between server pairs through symmetric topologies.
While this strategy admits considerable flexibility in as-
signing work across the data center, there are cases in
which skewed communication patterns dominate. We ar-
gue that for these workloads it is far more effective to se-
lect application-specific routing systems to make efficient
use of physical resources.

Individual VM pools can host a variety of services
that each present different networking demands. For ex-
ample, the hosted services themselves may be clustered,

edge

fat-tree core

aggregation

MR MRT T MR MRT T

(a) The physical data center network.

edge

fat-tree core

aggregation

MR MR MR MR

(b) A topology for a MapReduce task.

edge

fat-tree core

aggregation

T T T T

(c) A topology for a trading platform.

Figure 1: Optimizing topologies for individual applications, topology switching finds a fat-tree subgraph for MapReduce (MR) and
an isolated spanning tree for the trading platform (T).

multi-tiered, or replicated. Each of these design pat-
terns performs best on a distinct routing system—a well-
connected, low-diameter mesh, a high-bandwidth tree of
arbitrary depth, and an edge-disjoint, redundant multi-
graph, respectively.

Additionally, real-world data center infrastructures
grow and evolve, often becoming less homogeneous and
symmetric. This heterogeneity may result from growth,
limited budgets, physical wiring constraints, or the pres-
ence of dynamic link allocation via optics [5] or wire-
less [14]. As the topology distorts, routing designs based
upon a systematic network design may begin to perform
poorly—or not at all. Topology switching functions over
any physical topology, allowing applications to optimize
for the network at hand. Finally, the needs of data center
applications are changing quickly. For example, Amazon
recently introduced explicit support for high-performance
computing (HPC, applications that often have latency-
bound phases) instances on EC2, presumably in response
to sufficiently strong economic incentives.

This paper lays the groundwork for the design and de-
velopment of a topology-switched network architecture.
We use a simulation framework to show that topology
switching allows routing systems to optimize for different
metrics, even for a randomized placement of hosts across
the physical infrastructure. Many implementation chal-
lenges remain, however, including managing the costs and
complexity of dynamic reconfiguration in real switching
hardware, as well as designing a management interface
that provides a straightforward way for operators to con-
figure and debug topology switched networks.

2 Topology switching

Topology switching allows applications to create cus-
tom network topologies to meet their specific require-
ments. Consider the fat-tree data center network in Fig-
ure 1(a) connecting eight physical hosts. Various emerg-
ing multi-path routing systems support well-provisioned
networks [1, 3, 13, 20], but their unified routing systems
remain blind to individual application needs. Such net-
works may host a range of applications inside distinct VM
pools, such as a bandwidth-hungry MapReduce/Hadoop

global network
view

data center network

topology server

install task
routes / rules

allocator

filtered network
view

logical to physical
path mapping

Task hosts: A, B, C

Logical topo: mesh

Figure 2: A topology server mediates access to the network,
compiling individual tasks and performing admission control.

cluster (MR) and a queuing-sensitive trading platform
(T). While the MapReduce application is generally bot-
tlenecked by the available bisection bandwidth in the
network, trading platforms demand the consistent low-
latency performance of isolated network paths [2].

In contrast, a topology-switched network treats these
two applications as distinct routingtasks. Each routing
task runs an instance of a particular routingsystemthat
best addresses the communication pattern and preferences
of that particular task. A routing system includes anallo-
cator that determines the subset of the physical network
that will connect the application endpoints in its task. In
this case, the MapReduce task in Figure 1(b) searches for
high-bandwidth physical paths between mappers and re-
ducers to optimize the performance of the shuffle phase.
In contrast, the trading platform in Figure 1(c) allocates
for isolation, building an exclusively-owned spanning
tree. Routing systems also define a set of route selection
rules that allow switches to make application-specific for-
warding decisions across multiple paths.

Figure 2 illustrates the process of compiling routing
tasks in a topology-switched network. Routing tasks spec-
ify the set of communicating end hosts within the data
center, a desired logical topology to construct between
those hosts, and a routing system to manage link allo-
cation and route selection. A logically centralized (but
possibly replicated) topology server registers each system,
compiles routing tasks, and manages individual task de-
ployment. Topology allocators take as input the node set,
a desired logical topology, and a view of physical network
connectivity from the topology server. The allocator then
maps one or more physical paths to each link in the logical

topology to achieve its performance objectives. Alloca-
tion occurs in an on-line fashion, and individual allocators
are not allowed to change existing allocations.

The topology server influences allocation in many
ways. First, the server may prune links or switches from
the physical network view before passing it to the allo-
cator, allowing network administrators to export different
views to each routing task. This mechanism makes it triv-
ial to physically separate traffic from other tasks. For ex-
ample, the topology server can remove the spanning tree
links in Figure 1(c) from the network view passed to the
MapReduce allocator. The server may also perform ad-
mission control on the task, refusing to deploy the rout-
ing task or revoking instantiated tasks. This flexibility ad-
ditionally gives administrators a mechanism by which to
upgrade the physical network between task allocations.

3 Allocation strategies

Topology switching allows network operators to cus-
tomize tasks along three primary axes: logical topology,
allocator, and route selection rules. Here, we set aside
route selection and employ simple, hash-based multi-path
route selection for all tasks. Additionally, we only con-
sider logical mesh networks. Other logical topologies,
such as rings (for chain replication) or trees (for aggre-
gation or file distribution), could leverage allocation to
customize the arrangement of the topology, e.g., to build
an efficient aggregation tree. Within these constraints, we
present three allocators that optimize for resilience, isola-
tion, and bandwidth, respectively.

Allocators have three components. First, each allocator
uses one or more metrics to define an objective function
that drives the mapping process. The second component
is an allocation algorithm to maximize or minimize the
objective function. The third component annotates and
optionally filters the network substrate. Since allocationis
an on-line process, an allocation’s goodness may decrease
as other allocations (optimizing for different metrics) are
made. Thus the allocator may wish to store additional
annotations on the substrate views passed to future allo-
cations. The topology server may optionally filter links
based on these annotations, ensuring that other allocators
do not decrease the mapping quality for prior allocations
(for an example see Section 3.3).

Formally, the physical network is a graphP = {V,E},
whereV is the set of hosts and switches andE is the set of
physical links. A logical topologyT = {H,L} is a set of
hostsH ⊆ V and logical linksL connecting hosts inH.
Given a view of the substrate,P view, allocators map each
logical link li to a set of pathspi in that view. The topol-
ogy server maintains a set of annotations for each physical
link ei ∈ E, including the total number of tasks mapped
to this link, its physical capacity (Ci), and a number of
claims(Mi) made to that capacity (Section 3.1).

3.1 Bandwidth
Capacity is often a core objective of unified routing ar-

chitectures. These topologies are well suited for parallel
data processing tasks that optimize for low all-to-all trans-
fer times and high bisection bandwidth. Other bandwidth-
oriented tasks include data backup, video and audio serv-
ing, and VM image distribution.

Metric: Two metrics used to evaluate data center net-
work designs are bisection bandwidth and all-to-all trans-
fer time. The bisection bandwidth of a topology is the
amount of bandwidth a bijection of hosts can transfer to
one another; it is a rough measure of a topology’s ability
to handle many concurrent transfers. All-to-all transfer
time, in contrast, measures the time taken for each node
to transfer anx MB file to every other node. It reflects
a worst-case communication scenario and the effects of
applied load.

Allocation: An allocation strategy may consider either
single or multiple path solutions, where multiple physical
paths support the logical link. In either case, one alloca-
tion strategy is to maximize the total flow possible along
links (end-to-end paths) in the logical topology. How-
ever, even a single-path solution must consider how other
logical links in this task have been mapped, otherwise
many logical links could be mapped onto the same phys-
ical links. This approach can be modeled as a maximum
multi-commodity flow problem, where polynomial time
solutions exist when allowing fractional flow allocations.

However, for simplicity we approximate this alloca-
tion by using a single-path allocator. This allocator uses
a maximum spanning tree to find the current maximal
path [16]. The allocator depends upon an estimate of
available bandwidth on each link, which depends on the
number ofclaimsto the link’s capacity.

Substrate annotation/filtering: The topology server
manages claim annotations,Mi, and uses them to set the
available capacity on links asCi

Mi

. In this work, bandwidth
tasks incrementMi by one for each physical link mapped
to a logical link. In contrast, resilience and isolation allo-
cators incrementMi by 1/N when a logical link is backed
by N physical paths, dividing a bandwidth share equally
across them. This allows the bandwidth allocator to take
advantage of the capacity left by allocations that are not
bandwidth constrained. This does assume that the net-
work has the ability to rate-limit endpoints, perhaps using
emerging VM-based technologies [9, 19].

3.2 r resilience
An allocator may also wish to increase the overall phys-

ical path diversity available to its logical topology. For ex-
ample, consider aggregation trees used for scalable mon-
itoring [15]. These tasks are willing to traverse longer
paths in return for increased failure resilience, ensuring
more hosts are connected during failures or congestion.

The large numbers of components in modern data center
networks means that some level of failure is virtually al-
ways present [7]. This is perhaps even more of a concern
with emerging topologies that depend on end hosts to par-
ticipate in switching [8, 10].

Metric: Here we measure resilience as the number of
cutsr in the physical substrate required to break a logi-
cal link. Since hosts have a single up-link to their top-of-
rack switch in the physical topologies we study, we ignore
cuts to those access links for pairs of hosts on different
switches. We note that this approach provides an aggres-
sive notion of resilience, providingr disjoint paths (not
including access links) between nodes.

Allocation: Here we use shortest paths to find a suit-
able set ofr paths between endpoints. For each logical
link we repeatedly find a shortest path with respect to hop
count, add it to the set of possible paths, and remove its
links from consideration (a residual graph onP view). The
task may also specify an average resilience that allocation
must reach to succeed, allowing some logical paths to be
backed by fewer thanr disjoint physical paths.

Substrate annotation/filtering: Beyond setting the
link claims as described above, this allocator does not re-
quire additional annotations. Future allocations will not
decrease the resilience of allocated tasks.

3.3 k isolation
Isolation between tasks may be used to ensure con-

sistent levels of network performance, or to isolate crit-
ical services from potentially disruptive external traffic
sources. However, modern data center switches are of-
ten limited in their ability to provide per flow isolation.
While there may be hundreds to thousands of separate
routing tasks, current switches support only a handful of
fair queuing classes (8 according to [19]). Applications
may use the isolation allocator to ensure sufficient re-
sources exist to provide isolation.

Metric: We measure isolation on each physical link as
the number of routing tasks with a logical path on that
link. Here each task specifies the maximum number of
other tasks that may share a link,k. k may either reflect
the maximum number of service classes the physical net-
work can support or it may be set to one to provide com-
plete isolation from other traffic.1

Allocation: To increase isolation, we wish to find a
topology that connects the task’s nodes that is minimally
shared with other tasks. We approximate the aggregate
level of sharing by summing the total number of tasks
allocated across the chosen physical links. This task is
equivalent to finding a minimum-cost tree connecting the
hosts, a Steiner tree on an existing graph, an NP-hard
problem. We employ the minimum spanning tree heuris-
tic, with a worst-case performance ratio of 2.

1A similar scheme could provide isolation on a per-switch basis.

The allocator computes the minimum spanning tree on
the substrate, using the number of current tasks as the
edge weight. The allocator then removes all physical links
and switches from this spanning tree that are not used in
the paths between nodes in the task. Each link used in the
mapped topology increases its task count.

Substrate annotation/filtering: Unfortunately, subse-
quent allocations may violate the isolation requirement.
To prevent this, the topology server can remove links from
consideration. In this case, the topology server first re-
moves links whose number of tasks is alreadyk. To do
so, the topology server records the minimumk used by
an isolation task for each link.k = inf for links with no
isolation tasks. Note that removing links may disconnect
P view and subsequent allocations may fail.

4 Simulations

A fundamental question posed by topology switching
is whether allocating paths for specific objectives can im-
prove the networks for all tasks relative to a unified rout-
ing system. To begin to answer, we built a simulator that
takes as input a physical network graph,P , and multiple
routing tasks. We simulate the three allocators described
in Section 3 and report how well each task met its objec-
tive (and those of the other allocators).

Obviously, the results depend on the particular physical
topology and set of routing tasks. Hence, the resulting
metrics are only meaningful in comparison to an alter-
native design. While traditional Ethernet’s single span-
ning tree is an obvious choice, it is an exceptionally weak
strawman as it fails to take advantage of the path diver-
sity and resulting bisection bandwidth made available by
recently proposed physical topologies.

Instead, we compare our topology switched allocations
to a unified routing system modeled after recent proposals
such as Trill [20], 802.1aq [13], and Cisco’s FabricPath
product [3]. These systems route layer-2 frames using
multiple shortest paths calculated by instances of the IS-
IS routing protocol. We emulate this ECMP approach by
calculating all shortest paths in substrateP for each pair
of end hosts. We then assume that the pair can achieve the
maximum flow along the union of those paths. This out-
performs standard hash-based ECMP, which is oblivious
to available capacity and limits the number of considered
paths (16 for FabricPath).

We evaluate allocations based on metrics for bisection
bandwidth, isolation, and resilience. We calculate isola-
tion using the number of logical paths each task assigned
to each physical link. For a given routing task, we cal-
culate isolation as the ratio of the task’s paths to the total
path count on the link, averaged across all physical links.
A value of 1 indicates a highly isolated allocation while
near zero values indicate that other tasks dominate the
link. We measure resilience as described in Section 3.2.

TSwitch VLAN+ECMP
0.0

0.2

0.4

0.6

0.8

1.0
Isolation

TSwitch VLAN+ECMP
0
1
2
3
4
5
6
7
8

Resilience

TSwitch VLAN+ECMP
0

10
20
30
40
50
60
70
80
90

Bisection BW (Gbit/s)

Isolation Tasks Resilience Tasks Bandwidth Tasks

(a) Performance of a 2i-2r-2b task mix.

TSwitch VLAN+ECMP
0.0

0.2

0.4

0.6

0.8

1.0
Isolation

TSwitch VLAN+ECMP
0
1
2
3
4
5
6
7
8

Resilience

TSwitch VLAN+ECMP
0
5

10
15
20
25
30

Bisection BW (Gbit/s)

Isolation Tasks Resilience Tasks Bandwidth Tasks

(b) Performance of a 7i-5r-4b task mix.

Figure 3: Topology switching versus ECMP emulation on ak = 16 fat tree with 1024 hosts.

To judge the bandwidth quality of the mapped logical
topology, we consider each task’seffectivebisection band-
width. Since task allocation often results in asymmetric
topologies, we calculate bisection bandwidth as the aver-
age maximum flow between two randomly chosen sets of
|H|/2 nodes (repeated 200 times). Note that maximum
flow depends upon the capacity of the physical links in
the mapped logical topology. To take into account the ex-
istence of the other tasks, we weight the physical capacity
by the total claims (Section 3.1) made on this link by this
task divided by all claims made on the link.

4.1 Experiments

We study topology switching on ak = 16 fat tree with
16-port switches and 16 pods. All links are 1 Gb/s in ca-
pacity. We create a pool of routing tasks, each allocated
using one of our three routing systems. Each task uses an
exclusive set of end hosts randomly distributed across the
physical network. We use this “network oblivious” host-
to-task assignment to determine if topology switching can
meet different objectives without optimizing physical lay-
out. All tasks have equal node count and use a mesh log-
ical network. Finally, our experiments allocate isolation
before resilience and bandwidth tasks, ensuring that those
tasks findk = 1 isolations.2 Note that ECMP emulation
uses the isolation allocator to identify a VLAN, as if an
administrator planned the task. However, unlike the iso-
lation allocator, ECMP emulation allows successive tasks
to use links from previously allocated “VLANs.”

We first investigate allocations for six tasks: two isola-
tion, two resilience, and two bandwidth (2i-2r-2b). Fig-
ure 3(a) shows the average results for each metric for
the isolation, resilience, and bandwidth tasks respectively.
Looking at topology switching (“TSwitch”), all tasks
achieve their goals. First, isolation tasks achieve their tar-
get (k = 1). In contrast, “VLAN+ECMP” provides less
isolation for all tasks, though our allocator increases iso-
lation relative to the other tasks. Interestingly, topology
switching provides increased isolation for the resilience
and bandwidth tasks as well. This is likely because we

2This emulates a topology server that runs isolation tasks on anet-
work view that only shows isolation allocations. It would then re-
allocate other tasks that conflict with the new mapping.

remove isolation task links from consideration and our
bandwidth allocator uses fewer paths than ECMP.

Second, in topology switching, resilience tasks receive
exactlyr = 3 disjoint paths through the topology. ECMP
on the other hand treats resilience and bandwidth tasks
identically, spreading logical paths across as many short-
est paths as exist, giving both high resilience. Finally,
the topology-switched bandwidth tasks receive the highest
effective bisection bandwidth, illustrating that the other
allocators are giving up bandwidth relative to their opti-
mization goals.

It is also important to qualify the kind of bandwidth
ECMP emulation reports. In a fat tree, this emulation
gives near optimal effective bisection bandwidth by using
every minimum hop-count path, and the average number
of multiple paths for ECMP emulation is over 60 (std. dev.
of 13.5) per logical path for both 2i-2r-2b and 7i-5r-4b
task mixes. Second, the topology-switched isolation tasks
receive more bandwidth than their counterpart tasks un-
der ECMP emulation. More importantly, that bandwidth
is not sharedwith any other tasks mapped to the topology.
In other words, the “trading platform” from Section 2 gets
high performance by virtue of its isolation.

The results are similar, Figure 3(b), when allocating
seven isolation, five resilience, and four bandwidth tasks
(7i-5r-4b). However, by using seven isolation tasks, seven
of the 8 uplinks of the fat tree’s edge switch cannot be
allocated to other tasks when using topology switching.
This reduces the ability of topology switching to deliver
high effective bisection bandwidth to the bandwidth task,
a 31% decrease relative to the ECMP emulation.3 How-
ever, the topology-switched isolation tasks continue to re-
ceive superior capacity; a trade-off a unified routing sys-
tem cannot achieve. This could be further improved with
a multi-commodity flow bandwidth allocator, rather than
our current approximation scheme.

Finally, topology switching and ECMP utilize the net-
work similarly for the 2i-2r-2b mix. However, topology
switching the 7i-5r-4b task mix allows 10% of the links to
go unused in the fat tree. This is essentially the penalty of
supporting many isolation requests.

3Note that by hosting 16 tasks of 64 nodes, the maximum possible
bisection bandwidth is 32 Gb/s.

5 Related work

Several recently proposed systems find paths from a
global view of the network, but they use a bandwidth-
centric heuristic for all routes. For instance, SPAIN’s [17]
path discovery is closely related to ourr resilience alloca-
tor. Hedera [1] estimates flow demand to assign flows to
paths in multi-rooted tree topologies to increase through-
put for large flows. Similar throughput-maximizing allo-
cations dynamically provision the physical network topol-
ogy in systems like Helios [5] (optics) and Flyway [14]
(wireless). Part of our future work is exploring the sub-
strate filtering polices network operators could use to pro-
vision dynamic resources between routing tasks.

One project that presents a unique allocator (that is not
maximally bandwidth driven) is ElasticTree [12]. Elas-
ticTree allocates a “minimal-power” network subset that
attempts to satisfy the current traffic matrix while mini-
mizing the use of power-hungry physical network compo-
nents. The authors observe that load varies over time for
particular applications in their data center traces, allowing
them to identify network components to shut down. In
contrast, a topology-switched network would find other
routing tasks that could benefit from the free resources.

The allocation phase of topology switching is closely
related to the virtual network embedding problem found
in many virtualized network models [18, 21]. In those sys-
tems, users provide precise network requirements: spe-
cific links, capacities, delay, and router processing re-
sources. Such systems either guarantee a network slice
with those requirements or reject the request; the focus is
to support a modest number of arbitrary network proto-
cols, providing each an isolated network that persists for
extended periods. In contrast, a topology-switched net-
work multiplexes tens to hundreds of application-specific
topologies that are requested in terms of relative network
characteristics and may have short lifetimes (minutes).

6 Conclusion

As Section 4 discusses, a range of routing technologies
now exist to route across the multiple paths found in well-
connected topologies. While they increase performance
by spreading flows for all applications in a similar fashion,
such unified treatment makes it difficult or impossible to
deliver qualitatively different (fewer, longer but fatter, or
less-well-provisioned) paths to applications.

Topology switching rejects the one-size-fits-all ap-
proach to path selection to provide applications with the
ability to have a stake in their routing decisions. We de-
scribe one possible set of allocators that allow applica-
tions to take advantage of paths that others choose not to
utilize. Further, our initial results show that we can lever-
age almost the full diversity of a fat tree topology to meet
application objectives.

References
[1] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang,

and A. Vahdat. Hedera: Dynamic flow scheduling for data
center networks. InNSDI, 2010.

[2] A. Bach. Higher- and faster-than-ever trading to transform
data center networks. Datacenter Dynamics, 2009.

[3] Cisco. Scaling Data Centers with FabricPath and the
Cisco FabricPath Switching System, 2010.

[4] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. InOSDI, 2004.

[5] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Baz-
zaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vah-
dat. Helios: a hybrid electrical/optical switch architecture
for modular data centers. InSIGCOMM, 2010.

[6] B. Fitzpatrick. Distributed caching with memcached.
Linux Journal, (124), 2004.

[7] A. Greenberg, J. R. Hamilton, et al. VL2: A scalable and
flexible data center network. InSIGCOMM, 2009.

[8] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian,
Y. Zhang, and S. Lu. Bcube: A high performance, server-
centric network architecture for modular data centers.SIG-
COMM, 2009.

[9] C. Guo, G. Lu, H. Wang, S. Yang, C. Kong, P. Sun, and
W. n. Z. Y. Wu. Secondnet: A data center network virtu-
alization architecture with bandwidth guarantees. InACM
CoNEXT, 2010.

[10] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu.
DCell: A scalable and fault-tolerant network structure for
data centers. InSIGCOMM, 2008.

[11] J. Hamilton. Data center networks are in my way. Talk:
Stanford Clean Slate CTO Summit, 2009.

[12] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis,
P. Sharma, S. Banerjee, and N. McKeown. ElasticTree:
saving energy in data center networks. InNSDI, 2010.

[13] IEEE. 802.1aq - shortest path bridging, 2010.
http://www.ieee802.org/1/pages/802.1aq.html.

[14] S. Kandula, J. Padhye, and P. Bahl. Flyways to de-congest
data center networks. InHotNets, 2009.

[15] D. Logothetis and K. Yocum. Wide-scale data stream man-
agement. InUSENIX, 2008.

[16] N. Malpani and J. Chen. A note on practical construction
of maximum bandwidth paths.Inf. Process. Lett., 83:175–
180, August 2002.

[17] J. Mudigonda, P. Yalagandula, M. Al-fares, and J. C.
Mogul. Spain: Cots data-center ethernet for multipathing
over arbitrary topologies. InNSDI, 2010.

[18] R. Ricci, C. Alfeld, and J. Lepreau. A solver for the net-
work testbed mapping problem.ACM SIGCOMM CCR,
32(2), 2003.

[19] A. Shieh, S. Kandula, A. Greenberg, and C. Kim. Seawall:
performance isolation for cloud datacenter networks. In
HotCloud, 2010.

[20] J. Touch and R. Perlman. RFC 5556: Transparent inter-
connection of lots of links (TRILL), May 2009.

[21] M. Yu, Y. Yi, J. Rexford, and M. Chiang. Rethinking vir-
tual network embedding: Substrate support for path split-
ting and migration.ACM SIGCOMM CCR, 38(2), April
2008.

