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Abstract

Although deep learning approaches have had tremendous success in image, video and

audio processing, computer vision, and speech recognition, their applications to three-

dimensional (3D) biomolecular structural data sets have been hindered by the geometric

and biological complexity. To address this problem we introduce the element-specific

persistent homology (ESPH) method. ESPH represents 3D complex geometry by one-

dimensional (1D) topological invariants and retains important biological information via a

multichannel image-like representation. This representation reveals hidden structure-func-

tion relationships in biomolecules. We further integrate ESPH and deep convolutional neural

networks to construct a multichannel topological neural network (TopologyNet) for the pre-

dictions of protein-ligand binding affinities and protein stability changes upon mutation. To

overcome the deep learning limitations from small and noisy training sets, we propose a

multi-task multichannel topological convolutional neural network (MM-TCNN). We demon-

strate that TopologyNet outperforms the latest methods in the prediction of protein-ligand

binding affinities, mutation induced globular protein folding free energy changes, and muta-

tion induced membrane protein folding free energy changes. Availability: weilab.math.msu.

edu/TDL/

Author summary

The predictions of biomolecular functions and properties from biomolecular structures

are of fundamental importance in computational biophysics. The structural and biological

complexities of biomolecules and their interactions hinder successful predictions.

Machine learning has become an important tool for such predictions. Recent advances in

deep learning architectures, particularly convolutional neural network (CNN), have pro-

foundly impacted a number of disciplines, such as image classification and voice recogni-

tion. Though CNN can be directly applied to molecular sciences by using a three-

dimensional (3D) image-like brute-force representation, it is computationally intractable

when applied to large biomolecules and large datasets. We propose a topological strategy
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to significantly reduce the structural and biological complexity of biomolecules and pro-

vide an efficient topology based CNN architecture. Element-specific persistent homology,

a new algebraic topology, has been developed to cast biomolecules in a multichannel

image-like representation suitable for CNN. The power of the proposed topology based

neural network (TopologyNet) is further enhanced by auxiliary descriptors and a multi-

task deep learning architecture. It has been demonstrated that TopologyNet framework

outperforms other methods in the predictions of protein-ligand binding affinities and

mutation induced protein stability changes.

This is a PLOS Computational BiologyMethods paper.

Introduction

Understanding the structure-function relationships of biomolecules is fundamentally impor-

tant in computational biophysics and experimental biology. As such, methods that can

robustly predict biomolecular properties, such as protein-ligand binding affinity and protein

stability change upon mutation from three-dimensional (3D) structures are important tools to

help us understand this relationship. Numerous approaches have been developed to unveil the

structure-function relationship. Physics based models make use of fundamental laws of phys-

ics, i.e., quantum mechanics, molecular mechanics, continuum mechanics, multiscale model-

ing, statistical mechanics, thermodynamics, etc, to investigate structure-function relationships

and predict function from structure. Physical methods provide important insights and are

indispensable for understanding the relationships between protein structure and function.

The exponential growth of biological data has set the stage for data-driven discovery of

structure-function relationships. Indeed, the Protein Data Bank (PDB) has accumulated near

130,000 tertiary structures. The availability of 3D structural data enables knowledge based

approaches to offer complementary and competitive predictions of structure-function relation-

ships. Recent advances in machine learning algorithms have made data driven approaches

more competitive and powerful than ever. Arguably, machine learning is one of the most

important developments in data analysis. Machine learning has become an indispensable tool

in biomolecular data analysis and prediction. Virtually every computational problem in

computational biology and biophysics, such as the prediction of solvation free energies, pro-

tein-ligand binding affinities, mutation impacts, pKa values, etc, has a class of knowledge based

approaches that are either parallel or complementary to physics based approaches. The ability

to recognize nonlinear and high-order interactions among features as well as the capability of

handling data with underlying spatial dimensions hierarchically has lead to breakthroughs in

deep convolutional neural networks in image processing, video, audio and computer vision

[1, 2]. Likewise, recurrent nets have shed light on sequential data such as text and speech [3, 4].

Deep learning has fueled the rapid growth in several areas of data science [3, 4]. Machine learn-

ing based approaches are advantageous due to their ability to handle large data sets and nonlin-

ear relationships in physically derived descriptors. Notably, deep learning can automatically

extract optimal high level features and discover intricate structures in large data sets.

Given multiple learning tasks, multi-task learning (MTL) [5] provides a powerful tool to

exploit the intrinsic relatedness among learning tasks, transfer predictive information among
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tasks, and achieve better generalized performance than single task learning. During the learn-

ing stage, MTL algorithms seek to learn a shared representation (e.g., shared distribution of a

given hyper-parameter [6], shared low-rank subspace [7], shared feature subset [8] and clus-

tered task structure [9]), and use the shared representation to bridge between tasks and trans-

fer knowledge. MTL has applications to the bioactivity of small molecular drugs [10–12] and

genomics [13]. Linear regression based MTL heavily depends on well crafted features, while

neural network based MTL allows more flexible task coupling and is able to deliver satisfactory

results with a large number of low level features provided such features have the representative

power of the problem.

For complex 3D biomolecular data, the physical features used in machine learning vary

greatly in their nature. Typical features are generated from geometric properties, electrostatics,

atom types, atomic partial charges, and graph theory based properties [14]. Such manually

extracted features can be used in a deep neural network, but the performance heavily relies on

feature engineering. In contrast, convolutional neural networks learn to extract high level rep-

resentations hierarchically from low level features while maintaining the underlying spatial

relationships. However, the cost is huge for directly applying convolutional neural network to

the 3D biomolecules, especially if long-range interactions are included. A major obstacle in the

development of deep learning nets for 3D biomolecular data is their entanglement between

geometric complexity and biological complexity.

Most theoretical models for the study of structure-function relationships of biomolecules

are based on geometric modeling techniques. Mathematically, these approaches exploit local

geometric information, i.e., coordinates, distances, angles, areas, and sometimes curvatures

[15] for the physical modeling of biomolecular systems. Indeed, the importance of geometric

modeling for structural biology [16], and biophysics cannot be overemphasized. However,

geometry based models often contain too much structural detail and are frequently computa-

tionally intractable for large structures or datasets. In many biological problems, such as the

opening or closing of ion channels, the association or dissociation of binding ligands, the fold-

ing or unfolding of proteins, and the symmetry breaking or formation of virus capsids, obvious

topological changes exist. In fact, one only needs qualitative topological information to under-

stand many physical and biological functions. In short, topology-function relationships exist in

many biomolecular systems.

Topology offers entirely different approaches and could provide significant simplification

of biomolecular data [17–24]. The study of topology deals with the connectivity of different

components in a space, and characterizes independent entities, rings and higher dimensional

faces within the space [25]. Topological methods produce a high level of abstraction to many

biological processes. For example, the opening and closing of ion channels, the assembly or

disassembly of virus capsids, the folding and unfolding of proteins, and the association or dis-

sociation of ligands are reflected by topological changes. The fundamental task of topological

data analysis is to extract topological invariants, namely the intrinsic features of the underlying

space, of a given data set without additional structure information. Examples include covalent

bonds, hydrogen bonds, van der Waals interactions, etc. A fundamental concept in algebraic

topology is simplicial homology, which concerns the identification of topological invariants

from a set of discrete node coordinates such as atomic coordinates in a protein or a protein-

ligand complex. For a given (protein) configuration, number of independent components,

rings and cavities are topological invariants and they are refered to as Betti-0, Betti-1 and

Betti-2 numbers respectively. Conventional topology or homology is truly free of metrics or

coordinates, and thus retains too little geometric information to be practically useful for the

predictions of biomolecular properties. To address this issue, spatial scales are embeded in the

topology, which equips the topological representations with geometric information.

TopologyNet for biomolecular property predictions
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Persistent homology is a relatively new branch of algebraic topology that embeds multiscale

geometric information in topological invariants to achieve an interplay between geometry and

topology. It creates a variety of topologies of a given object by varying a filtration parameter,

such as the radii of balls centered at the nodes or the level set of a surface function. As a result,

persistent homology can capture topological structures continuously over a range of spatial

scales. Unlike commonly used computational homology which results in truly metric free rep-

resentations, persistent homology embeds geometric information in topological invariants,

e.g., Betti numbers so that “birth” and “death” of isolated components, circles, rings, voids or

cavities can be monitored at any geometric scale by topological measurements. In the past

decade, persistent homology has been developed as a new multiscale representation of topo-

logical features. The 0-th dimensional version was originally introduced for computer vision

applications under the name “size function” [26, 27]. Persistent homology theory and subse-

quent algorithms were formulated by Edelsbrunner et al. [28]. Later, a more general theory

was developed by Zomorodian and Carlsson [18]. Since that time, there have been significant

theoretical development [29–37] as well as various computational algorithms [38–43]. Persis-

tent homology is often visualized by the use of barcodes [44, 45], where horizontal line seg-

ments or bars represent homology generators that survive over different filtration scales.

Persistent homology has been applied to computational biology [46–48], in the mathemati-

cal modeling and prediction of nano particles, proteins and other biomolecules [47, 49, 50].

Previously, we have introduced molecular topological fingerprint (TF) to reveal topology-

function relationships in protein folding and protein flexibility [49]. Contrary to many other

fields where short-lived topological events are considered noise, we have shown that such

short-lived properties are in fact important components in biomolecular analysis and should

be included in molecular topological fingerprints. Quantitative topological analysis has been

cultivated to predict the curvature energy of fullerene isomers [50, 51] and protein folding sta-

bility [49]. Differential geometry based persistent homology [51], multidimensional persis-

tence [52], and multiresolutional persistent homology [53, 54] have been proposed to better

characterize biomolecular data [52], detect protein cavities [55], and resolve ill-posed inverse

problems in cryo-EM structure determination [56]. A persistent homology based machine

learning algorithm has also been developed for protein structural classification [57]. However,

ordinary persistent homology oversimplifies biological information. Consequently, persistent

homology based machine learning algorithms are not as competitive as other conventional

techniques in protein structural classification [57, 58].

The objective of the present work is to introduce a new framework for the structure based

biomolecular property predictions using element-specific persistent homology, and convolu-

tional and multi-task neural networks. In this framework, element-specific persistent homol-

ogy reduces geometric and biological complexities and provides a sufficient and structured

low level representation for neural networks. Given this representation, convolutional neural

networks can then learn from data to extract high level representations of the biomolecular

systems, while retaining the spatial relationships, and construct mappings from these represen-

tations to the target properties. For the prediction problems whose available datasets are small,

multi-task learning by jointly learning the related prediction problems with larger available

datasets helps to extract a proper high level representation for the target applications. The ele-

ment-specific treatment is inspired by the RF-score method [59] for binding affinity predic-

tion. Element-specific persistent homology is originated in our previous work using classic

machine learning methods. [60, 61] In this work, we further develop topology based neural

network (TopologyNet) models for the predictions of biomolecular structure-function rela-

tionships. Specifically, we integrate ESPH and convolutional neural networks (CNNs) to

improve modern methods for protein-ligand binding affinity and protein mutation impact

TopologyNet for biomolecular property predictions
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predictions from 3D biomolecular data. In this approach, topological invariants are used to

reduce the dimensionality of 3D biomolecular data. Additionally, element-specific persistent

barcodes offer image-like topological representations to facilitate convolutional deep neural

networks. Moreover, biological information is retained by element-specific topological finger-

prints and described in multichannels in our image like representation. Furthermore, convolu-

tional neural networks uncover hidden relationships between biomolecular topological

invariants and biological functions. Finally, a multi-task multichannel topological convolu-

tional neural network (MM-TCNN) framework is introduced to exploit the relations among

various structure-function predictions and enhance the prediction for problems with small

and noisy training data. Our hypothesis is that many biomolecular predictions share a com-

mon set of topological fingerprints representations and are highly correlated to each other. As

a result, multi-task deep learning by simultaneous training for globular proteins and mem-

brane proteins improves upon existing predictions for the mutation induced stability changes

of membrane proteins whose training data size is relatively small.

Results

Deep learning prediction of protein-ligand binding affinities

Protein-ligand binding is a fundamental biological process in cells and involves detailed

molecular recognition, synergistic protein-ligand interaction, and may involve protein confor-

mational changes. Agonist binding is crucial to receptor functions and typically triggers a

physiological response, such as transmitter-mediated signal transduction, hormone and

growth factor regulated metabolic pathways, stimulus-initiated gene expression, enzyme pro-

duction, cell secretion, etc. Understanding protein-ligand interactions has been a fundamental

issue in molecular biophysics, structural biology and medicine. A specific task in drug and pro-

tein design is to predict protein-ligand binding affinity from given structural information [62]

Protein-ligand binding affinity is a measurement of rate of binding which indicates the degree

of occupancy of a ligand at the corresponding protein binding site and is affected by several

factors including intermolecular interaction strength and solvation effects. The ability to pre-

dict protein-ligand binding affinity to a desired accuracy is a prerequisite for the success of

many applications in biochemistry such as protein-ligand docking and drug discovery. In gen-

eral, there are three types of binding affinity predictors (commonly called scoring functions):

physics based [63, 64], empirical [65–72], and knowledge based [73–75]. In general, physics

based scoring functions invoke QM and QM/MM approaches [76, 77] to provide unique

insights into the molecular mechanism of protein-ligand interactions. A prevalent view is that

binding involves intermolecular forces, such as steric contacts, ionic bonds, hydrogen bonds,

hydrophobic effects and van der Waals interactions. Empirical scoring functions work well but

require carefully selected data sets and parametrization [65–68]. However, both physics based

scoring functions and empirical scoring functions employ linear superposition principles that

are not explicitly designed to deal with exponentially growing and increasingly diverse experi-

mental data sets. Knowledge based scoring functions use modern machine learning tech-

niques, which utilize nonlinear regression and exploit large data sets to uncover underlying

patterns within the data sets. Given the current massive and complex data challenges, knowl-

edge based scoring functions outperform other scoring functions. [65].

In this study, the proposed method is tested on the PDBBind 2007 data set [78]. The

PDBBind 2007 core set of 195 protein-ligand complexes is used as the test set and the PDBBind

2007 refined set, excluding the PDBBind 2007 core set, is used as the training set with 1105

protein-ligand complexes. A comparison between our TNet-binding predictor (TNet-BP) and

other binding affinity predictors is summarized in Table 1. TNet-BP outperforms all the other

TopologyNet for biomolecular property predictions
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scoring functions reported by Li et al [59] on the task of binding affinity prediction from

structures.

TNet-BP is also validated on a larger dataset, PDBBind v2016 refined set of 4057 complexes,

where the training set contains 3767 samples which is the refined set minus the core set, and

the testing set is the core set with 290 samples. All the model parameters and training proce-

dures are the same as that used for v2007 dataset except that the epoch number is set to 500

instead of 2000 due to the larger data size. The median RP and RMSE are 0.81 and 1.34 pKd/

pKi units, respectively.

Deep learning prediction of protein folding free energy changes upon
mutation

Apart from some unusual exceptions, proteins fold into specific three-dimensional structures

to provide the structural basis for living organisms. Protein functions, i.e., acting as enzymes,

cell signaling mediators, ligand receptors, and structural supports, are typical consequences of

a delicate balance between protein structural stability and flexibility. Mutation that changes

protein amino acid sequences through non-synonymous single nucleotide substitutions

Table 1. Performance comparisons of TNet-BP and other methods.

Method RP RMSE

TNet-BP 0.826a 1.37

RF::VinaElem 0.803 1.42

RF:Vina 0.739 1.61

Cyscore 0.660 1.79

X-Score::HMScore 0.644 1.83

MLR::Vina 0.622 1.87

HYDE2.0::HbondsHydrophobic 0.620 1.89

DrugScore 0.569 1.96

SYBYL::ChemScore 0.555 1.98

AutoDock Vina 0.554 1.99

DS::PLP1 0.545 2.00

GOLD::ASP 0.534 2.02

SYBYL::G-Score 0.492 2.08

DS::LUDI3 0.487 2.09

DS:LigScore2 0.464 2.12

GlideScore-XP 0.457 2.14

DS::PMF 0.445 2.14

GOLD::ChemScore 0.441 2.15

PHOENIX 0.616 2.16

SYBYL::D-Score 0.392 2.19

DS::Jain 0.316 2.24

IMP::RankScore 0.322 2.25

GOLD::GoldScore 0.295 2.29

SYBYL::PMF-Score 0.268 2.29

SYBYL::F-Score 0.216 2.35

Comparison of optimal Pearson correlation coefficients RP and RMSEs (pKd/pKi) of various scoring

functions for the prediction of protein-ligand binding affinity of the PDBBind 2007 core set. Except for the

result of our TNet-BP, all other results are adopted from Li et al [59].
a Median results (The best RP = 0.828 and best RMSE = 1.37 for this method).

https://doi.org/10.1371/journal.pcbi.1005690.t001
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(nsSNPs) plays a fundamental role in selective evolution. Such substitutions may lead to the

loss or the modification of certain functions. Mutations are often associated with various

human diseases [79, 80]. For example, mutations in proteases and their natural inhibitors

result in more than 60 human hereditary diseases [81]. Additionally, mutation can also lead to

drug resistance [82]. Artificially designed mutations are used to understand mutation impacts

to protein structural stability, flexibility and function, as well as mutagenic diseases, and evolu-

tion pathways of organisms [83]. However, mutagenesis experiments are typically costly and

time-consuming. Computational prediction of mutation impacts is able to systematically

explore protein structural instabilities, functions, disease connections, and organismal evolu-

tion pathways [84] and provide an economical, fast, and potentially accurate alternative to

mutagenesis experiments. Many computational methods have been developed in the past

decade, including support vector machine based approach [85], statistical potentials based

approach [86], knowledge-modified MM/PBSA approach [87], Rosetta protocols [88], FoldX

(3.0, beta 6.1) [84], SDM [89], DUET [90], PPSC (Prediction of Protein Stability, version 1.0)

with the 8 (M8) and 47 (M47) feature sets [91], PROVEAN [92], ELASPIC [93], STRUM [94],

and EASE-MM [95].

The proposed method is tested on a data set of 2648 mutation instances of 131 proteins

named “S2648” data set [86] in a 5-fold cross validation task over the “S2648” set and a task of

prediction of the “S350” set which is a subset of “S2648” set. The “S2648” set, excluding the

“S350” subset, is used as the training set in the prediction of the “S350” set. All thermodynamic

data are obtained from the ProTherm database [96]. A comparison of the performance of vari-

ous methods is summarized in Table 2. Among them, STRUM [94] is based on structural, evo-

lutionary and sequence information and results in excellent performance. We therefore have

Table 2. Performance comparisons of TNet-MP and other methods.

Method S350 S2648

n
d

RP RMSE n
d

RP RMSE

TNet-MP-2 350 0.81 0.94 2648 0.77 0.94

STRUMb 350 0.79 0.98 2647 0.77 0.94

TNet-MP-1 350 0.74 1.07 2648 0.72 1.02

mCSMb,c 350 0.73 1.08 2643 0.69 1.07

INPSb,c 350 0.68 1.25 2648 0.56 1.26

PoPMuSiC 2.0b 350 0.67 1.16 2647 0.61 1.17

PoPMuSiC 1.0a 350 0.62 1.23 - - -

I-Mutant 3.0b 338 0.53 1.35 2636 0.60 1.19

Dmutanta 350 0.48 1.38 - - -

Automutea 315 0.46 1.42 - - -

CUPSATa 346 0.37 1.46 - - -

Erisa 334 0.35 1.49 - - -

I-Mutant 2.0a 346 0.29 1.50 - - -

Comparison of Pearson correlation coefficients (RP) and RMSEs (kcal/mol) of various methods on the prediction task of the “S350” set and 5-fold cross

validation of the “S2648”. TNet-MP-1 is our multichannel topological convolutional neural network model that solely utilizes topological information. TNet-

MP-2 is our model that complements TNet-MP-1 with auxiliary features.
a Data directly obtained fromWorth et al [89].
b Data obtained from Quan et al [94].
c The results reported in the publications are listed in the table. According to Ref. [94], the data from the online server has Rp (RMSE) of 0.59 (1.28) and 0.70

(1.13) for INPS and mCSM respectively in the task of S350 set.
d Number of samples successfully processed.

https://doi.org/10.1371/journal.pcbi.1005690.t002
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constructed two topology based neural network mutation predictors (TNet-MPs). TNet-MP-1

is solely based on topological information while TNet-MP-2 is aided by auxiliary features char-

acterizing electrostatics, evolutionary, and sequence information, which is merged into the

convolutional neural network at one of the fully connected layers. TNet-MP-2 is able to signifi-

cantly improve our original topological prediction, indicating the importance of the aforemen-

tioned auxiliary information to mutation prediction. The details of handcrafted features can

be found in S1 Text. Handcrafted features.

Multi-task deep learning prediction of membrane protein mutation
impacts

Multi-task learning offers an efficient way to improve the predictions associated with small

data sets by taking the advantage of other larger data sets [97]. Although a large amount of

thermodynamic data is available for globular protein mutations, the mutation data set for

membrane proteins is relatively small, between 200 and 300 proteins [98]. The small size of

membrane protein mutation data limits the success of data driven approaches, such as ensem-

ble of trees. While the popular multi-task learning framework built on linear regression with

regularization techniques lacks the ability to extract the relationship between very low level

descriptors and the target quantity. A neural network with a hierarchical structure provides a

promising option for such problems. We add the prediction of globular protein stability

changes upon mutation as an auxiliary task for the prediction of membrane protein stability

changes upon mutation. In the designed network architecture, two tasks share convolution

layers and the network splits into two branches with fully connected layers for the two tasks.

Intuitively, the task of globular protein mutation predictions help to extract higher level fea-

tures from low level topological representations. Thus, the branch for membrane protein

mutation predictions learns the feature-target relationship from the learned high level features.

The proposed method is tested on a set of 223 mutation instances of membrane proteins

covering 7 protein families named “M223” data set [98] with 5-fold cross validation. A com-

parison with other methods is shown in Table 3. TNet-MMP-1 employes multichannel topo-

logical convolutional neural networks with topological features from the “M223” data set,

while TNet-MMP-2 is a multi-task multichannel topological convolutional neural network

(MM-TCNN) architecture. Unlike TNet-MP-2, both TNet-MMP-1 and TNet-MMP-2 do not

use auxiliary features. Our goal is to test the performance of the multi-task architecture on the

improvement of high level feature extraction from low level features. Pearson correlation coef-

ficient of membrane protein mutation prediction is improved by 9.6%, i.e., from 0.52 to 0.57

by the multi-task algorithm that trains and predicts the present “M223” data set with the

“S2648” date set. As noted by Kroncke et al, there is no reliable methods for the prediction of

membrane protein mutation impacts at the present [98]. Our TNet results, though not satisfac-

tory, are the best among the methods tested on this problem.

Discussion

The adoption of convolutional neural network concepts in this work is motivated by the

underlying spatial relationship along the distance scale (filtration) dimension. Properties that

reside in different distance scales are heterogeneous so unlike images or videos, there is no

obvious transferable property of the convolution filters along the convolution dimension in

the proposed method. To take this into consideration, the convolution layers are substituted

with “locally connected layers”, where the local connection properties are conserved whilst the

filters applied to different distance scales are allowed to be different. The RMSE is in kcal/mol

for the mutation problems and pKd/pKi units for the protein-ligand binding problem. The

TopologyNet for biomolecular property predictions
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performance in RP (RMSE) significantly decreases from 0.81 (0.94) to 0.77 (1.02) for the task

of “S350” set prediction in the mutation impact example. This shows that the construction of

lower level features in the lower sparse layers benefits from sharing filters along the distance

scale and indicates the existence of some common rules for feature extractions at different dis-

tance scales.

Intuitively, the dimension 0 inputs describe pairwise atomic interactions, which clearly con-

tribute to the prediction of the target properties. In contrast, dimension 1 and dimension 2

topological features characterize the hydrophobic network and geometric rings and voids. To

understand to what extent the higher topological dimensions help the characterization of bio-

molecules, we separate the dimension 0 inputs from higher dimensional inputs in the predic-

tion of “S350” set in the mutation impact on protein stability example and in the protein-

ligand binding affinity prediction for v2007 set example. To compare the performance of dif-

ferent sets of features, 50 single models are trained for each feature set. Twenty of the 50

trained models are randomly chosen and bagged, and this procedure is repeated 100 times

with the median results reported. The individual performances measured by RP (RMSE) for

dimension 0 features are 0.73 (1.09) and 0.82 (1.40), respectively for the mutation and binding

predictions. For dimensions 1 and 2 features, RP (RMSE) are 0.66 (1.21) and 0.78 (1.54),

respectively for the mutation and binding predictions. The combination of all dimension fea-

tures results in better RP (RMSE) of 0.74 (1.08) and 0.83 (1.37), respectively for the mutation

and binding predictions, showing that two sets of features both contribute to predictions. The

alpha complex is used for geometric characterization and therefore is inR3 with Betti number

up to dimension 2. It is possible that the higher dimensional Betti numbers in a more abstract

Table 3. Performance comparisons of TNet-MMP and other methods.

Method RP RMSE

TNet-MMP-2d 0.57 1.09

TNet-MMP-1c 0.52 1.15

Rosetta-MP 0.31 -

Rosetta (High)a 0.28 -

FoldX 0.26 2.56

PROVEAN 0.26 4.23

Rosetta-MPddG 0.19 -

Rosetta (low)b 0.18 -

SDM 0.09 2.40

Comparison of Pearson correlation coefficients (RP) and RMSEs (kcal/mol) on 5-fold cross validation for the

“M223” data set for various methods. Except for the present results for TNet-MMP-1 and TNet-MMP-2, all

other results are adopted from Kroncke et al [98]. The results of Rosetta methods are obtained from Fig. S1

of Ref. [98] where RMSE is not given. The results of other methods are obtained from Table S1 of Ref. [98].

Many less competitive results of the machine learning based methods reported in Ref. [98] are not listed

since these servers were not machine learning based. Among the methods listed, only Rosetta methods

have terms describing the membrane protein system and other methods are not specifically tuned for

membrane proteins.
a High resolution.
b Low resolution.
c The multichannel topological convolutional neural network architecture with topological features from

“S223” data set.
d The multi-task multichannel topological convolutional neural network (MM-TCNN) architecture trained with

an auxiliary task of globular protein prediction using the “S2648” data set.

https://doi.org/10.1371/journal.pcbi.1005690.t003
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setup such as Vietoris-Rips complex for the characterization of an interaction network will

enrich the representation and deliver improved results.

Another popular class of machine learning methods is the ensemble of trees methods.

Many modern methods for biomolecular property prediction are based on random forest (RF)

and gradient boosting trees (GBTs). The ensemble of decision trees has the capability of learn-

ing complicated functions, but GBTs learn to partition the feature space based on the training

data which means that they do not have the ability to appropriately extrapolate the learned

function to broader situations than the provided training data. Additionally, it is generally the

case that data samples are unevenly distributed. It has been observed that in many applications,

where among the dataset, there are just a handful of samples with large absolute value for the

target property, methods of ensembles of trees tend to overestimate (underestimate) the border

cases with very negative (positive) target values. The neural network, due to its different ways

of learning the underlying function, seems to be able to deliver better results for the border

cases. Therefore, similar to the idea of bagging, methods of ensembles of trees and neural net-

work based methods may result in different error characteristics for different samples and can

potentially improve the predictive power by correcting each others’ error when the results

from different models are averaged. In the example of prediction of the “S350” set, we obtained

performance of 0.82 (0.92) for RP (RMSE) in our other work using handcrafted features with

gradient boosting trees [60]. When the results are averaged for the two methods, the perfor-

mance is improved to 0.83 (0.89) which is better than both individual methods. Similar

improvement is observed for the protein-ligand binding example with v2007 set. Our method

based on handcrafted features and gradient boosting trees with performance 0.82 (1.40) [61]

and the method presented in this work with performance 0.83 (1.37) can achieve improved

performance of 0.84 (1.35) when the two results are combined by averaging. An intuitive illus-

tration is shown in Fig 1. It can be seen from the plot that the neural network based method

presented in this work performs better than the GBT based method for samples with high ΔΔG
or with low ΔΔG. The slope of linear fitting of the predicted values to the experimental data is

0.66 for the neural network based method and 0.60 for the GBT based method which also illus-

trates that the neural network based method handles border cases better. The observed

improvement is marginal since it is mainly on a small portion of the samples.

In conclusion, the approach introduced in this work utilizes element-specific persistent

homology to efficiently characterize 3D biomolecular structures in terms of multichannel

topological invariants. Convolutional neural network facilitates the automatic feature extrac-

tion from multichannel topological invariant inputs. The flexible and hierarchical structure of

neural network allows seamless combination of automatically extracted features and hand-

crafted features. It also makes it easy to implement multi-task learning by combining related

tasks to a desired level of model sharing by tuning the layer of model branching. The proposed

topology based neural network (TopologyNet) methods have been shown to outperform other

existing methods in protein-ligand binding affinity predictions and mutation induced protein

stability change predictions. The proposed methods can be easily extended to other applica-

tions in the structural prediction of biomolecular properties. They have the potential to further

benefit from the fast accumulating biomolecular data. The combination of the proposed meth-

ods and existing RF and GBT based methods is expected to deliver improved results.

Methods

In this section, we give a brief explanation of persistent homology before introducing topologi-

cal representations of protein-ligand binding and protein changes upon mutation. Multichan-

nel topological deep learning and multi-task topological deep learning architectures are

TopologyNet for biomolecular property predictions
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constructed for binding affinity and mutation impact predictions. The source codes with

examples of feature construction for the binding problem and the mutation problem are in

S1 Code. Binding topological features and S2 Code. Mutation topological features respectively.

The network architectures, parameters, and training procedures are listed in S2 Text. Network

architectures. The description of the auxiliary features together with pseudocode for the muta-

tion application are listed in S1 Text. Handcrafted features.

Persistent homology

Simplicial homology gives a computable way to distinguish one space from another in topol-

ogy and is built on simplicial complexes which can be used to extract topological invariants in

a given data set. A simplicial complex K is a topological space that is constructed from geomet-

ric components of a data set, including discrete vertices (nodes or atoms in a protein), edges

(line segments or bonds in a biomolecule), triangles, tetrahedrons and their high dimensional

counterparts, under certain rules. Specifically, a 0-simplex is a vertex, a 1-simplex an edge, a

2-simplex a triangle, and a 3-simplex represents a tetrahedron. The identification of connectiv-

ity of a given data set can follow different rules which leads to, for example, Vietoris-Rips (VR)

complex, Čech complex and alpha complex. The linear combination of k-simplexes is called

k-chain, which is introduced to associate the topological space, i.e., simplicial complex, with

algebra groups, which further facilitate the computation of the topological invariants (i.e., Betti

numbers) in a given data set. Specifically, the set of all k-chains of a simplicial complex K are

Fig 1. A comparison of behaviors of the GBT basedmethod and the neural network basedmethod.
The plot is for the prediction task of the S350 dataset. The linear fit for GBT prediction [60] is y = 0.603x
− 0.435 and for TNet-MP-2, y = 0.657x − 0.422.

https://doi.org/10.1371/journal.pcbi.1005690.g001
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elements of a chain group, which is an abelian group with a modulo-2 addition operation rule.

Loosely speaking, a boundary operator systematically eliminates one vertex from the k-simplex

at a time, which leads to a family of abelian groups, including the kth cycle group and the kth

boundary group. The quotient group of the kth cycle group and the kth boundary group is

called the kth homology group. The kth Betti number is computed for the rank of the kth

homology group.

Persistent homology is constructed via a filtration process, in which the connectivity of the

given data set is systematically reset according to a scale parameter. More specifically, a nested

sequence of subcomplexes is defined via a filtration parameter, such as the growing radius of

protein atoms located at their initial coordinates. For each subcomplex, homology groups and

the corresponding Betti numbers can be computed. Therefore, the evolution of topological

invariants over the filtration process can be recorded as a barcode [45] or a persistence dia-

gram. For a given data set, barcodes represent the persistence of its topological features over

different spatial scales.

Topological representation of biomolecules

Topological fingerprints. A basic assumption of persistent homology as applied to bio-

molecular function prediction is that 1D biomolecular persistent barcodes are able to effec-

tively characterize 3D biomolecular structures. We call such barcodes topological fingerprints

(TFs) [49, 50]. Fig 2 illustrates the TFs of a wild type protein (PDB:1hmk) and its mutant

obtained from persistent homology calculations using the VR complex. The mutation (W60A)

occurred at residue 60 from Trp to Ala is shown at Fig 2a and 2b. A large residue (Trp) at the

Fig 2. An illustration of barcode changes fromwild type to mutant proteins. a The wild type protein
(PDB:1hmk) with residue 60 as Trp. b The mutant with residue 60 as Ala. cWild type protein barcodes for
heavy atoms within 6 Å of the mutation site. Three panels from top to bottom are Betti-0, Betti-1, and Betti-2
barcodes, respectively. The horizontal axis is the filtration radius (Å). dMutant protein barcodes obtained
similarly to those of the wild type.

https://doi.org/10.1371/journal.pcbi.1005690.g002
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protein surface is replaced by a relatively small one (Ala). The corresponding barcodes are

given in Fig 2c and 2d, where three panels from top to bottom are for Betti-0, Betti-1, and

Betti-2, respectively. The barcodes for the wild type are generated using heavy atoms within

6Å from the mutation site. The mutant barcodes are obtained with the same set of heavy

atoms in the protein except for those in the mutated residue. In two Betti-0 panels, the differ-

ence in the number of bars is equal to the difference in the number of heavy atoms between

the wild type and mutant. Broadly speaking, the lengths of short bars reflect the bond length of

the corresponding heavy atom. Therefore, in both the wild type protein and the mutant, bond

lengths for most heavy atoms are smaller than 1.8Å. Additionally, bars that end between 1.8Å
and 3.8 Åmight correlate with hydrogen bonds. Comparing c and d, one can easily note the

increase in the number of bars that end in the range of 1.8–3.8 Å in the mutant, which indi-

cates a less compact atom arrangement. In Betti-1 and Betti-2 panels, the mutant has fewer

bars than the wild type does because a smaller surface residue at 60 creates fewer ring and cav-

ity contacts with the rest of the protein.

Element-specific persistent homology. The all heavy atom topological representation of

proteins does not provide enough biological information about protein structures, such as

bond length distribution of a given type of atoms, hydrogen bonds, hydrophobic and hydro-

philic effects, etc. Therefore, we use the element-specific topological fingerprint (ESTF) to

offer a more detailed characterization of protein-ligand binding and protein mutation. For

example, Betti-1 and Betti-2 ESTFs from carbon atoms are associated with hydrophobic inter-

action networks in biomolecules. Similarly ESTFs between nitrogen and oxygen atoms corre-

late to hydrophilic interactions and/or hydrogen bonds in biomolcules. However, hydrogen

atoms are typically absent from structures in the PDB and thus are not used in our data driven

ESTF description. For proteins, commonly occurring heavy atom types include C, N, O, and S.

For ligands, we use 9 commonly occurring atom types, namely C, N, O, S, P, F, Cl, Br, and I.

To characterize the interactions between protein and ligand binding, we construct cross pro-

tein-ligand ESTFs such that one type of heavy atoms is chosen from the protein and the other

from the ligand. Therefore, there are a total of 36 sets of ESTFs in each topological dimension.

For mutation characterization, we describe the interactions between mutated residue and

the rest of the protein and arrive at 9 sets of ESTFs in each topological dimension considering

{ C, N, O } for protein atoms. Similarly, we generate 9 sets of cross ESTFs in each topological

dimension from the wild type protein to study the interactions between the residue to be

mutated and the rest of the protein. However, high dimensional Betti-1 and Betti-2 invariants

require the formation of high order complexes. As non-carbon atoms do not occur very often,

Betti-1 and Betti-2 ESTFs are generated for all carbon atoms or all heavy atoms, except

specified.

The TFs and ESTFs are originally stored as collections of barcodes denoted by Bða; C;DÞ
with α labeling the selection of atoms depending on atom types and affiliations (i.e., protein,

ligand or mutated residue). C denotes the type of simplicial complex (i.e., VR complex or alpha

complex) andD indicates the dimension, such as Betti-0, Betti-1, or Betti-2. A collection of

barcodes can have any number of barcodes and thus can not be directly fed to deep learning

models. Additionally, as shown in Fig 2, it is important to keep track of the birth, death, and

persistence patterns of the barcodes, because this information is associated with the bond

length, ring or cavity size, flexibility and steric effect. Moreover, Jeffrey suggested that there

are strong, moderate and weak hydrogen bond interactions with donor-acceptor distances of

2.2-2.5Å, 2.5-3.2Å, and 3.2-4.0Å, respectively [99]. To this end, we construct structured vectors
Vb, Vd, and Vp to respectively describe the birth, death, and persistent patterns of the barcodes

in various spatial dimensions. Practically, the filtration interval [0, L] is divided into n equal

length subintervals and the patterns are characterized on each subinterval. The description
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vectors are defined as

V
b
i ¼k fðbj; djÞ 2 Bða; C;DÞjði� 1ÞL=n � bj � iL=ng k; 1 � i < n;

V
d
i ¼k fðbj; djÞ 2 Bða; C;DÞjði� 1ÞL=n � dj � iL=ng k; 1 � i < n;

V
p
i ¼k fðbj; djÞ 2 Bða; C;DÞjði� 1ÞL=n � bj; iL=n � djg k; 1 � i � n;

ð1Þ

where k�k is cardinality of sets. Here bj, dj are birth and death of bar j. The three types of repre-

sentation vectors are computed for sets of Betti-1 and Betti-2 bars. For Betti-0 bars, since their

birth positions are uniformly 0, only Vd needs to be addressed. To characterize pairwise inter-

actions between atoms, it is convenient to simply use pairwise distance information between

atoms. The corresponding image-like representation, denoted by Vr, can be constructed simi-

larly to Vd by substituting the set of barcodes by a collection of distances between the atom

pairs of interest. It should be noted that Vr is not equivalent to Vd in most simplicial complex

setups. Generally speaking, Vr also reflects the 0th order topological connectivity information.

It is used as the characterization of 0th order connectivity of the biomolecules in the applica-

tions shown in this work. Finally, we let Xs denote all the feature vectors for the sth sample and

let Ys denote the corresponding target value.

Image-like multichannel topological representation. To feed the outputs of TFs into the

convolutional neural network, the barcodes are transformed to a 1D-image-like representation

with multiple channels. Topological feature vectors, Vb, Vd, and Vp, can be viewed as one-

dimensional (1D) images. Each subinterval in the filtration axis represents a digit (or pixel) in

the 1D-image-like representation. Such a treatment of topological features describes the topo-

logical information with appropriately chosen resolution of L/n. Meanwhile, the chemical

information in the ESTFs of Bða; C;DÞ are described by multiple channels in the 1D-image-

like representation, which is similar to the RGB color image representation. However, in our

description, each pixel is associated withm channels to describe different element type, protein

mutation status (i.e., wild type and mutant), topological dimension (i.e., Betti-0, Betti-1 and

Betti-2), and topological event (i.e., birth, death, and persistence). Each element in the 1D-

image-like representation is standardized to have zero mean and unit variance among the data

sets. This 1D-image-like topological representation can be easily transferred among problems

such as protein-ligand binding affinity modeling and prediction of protein stability change

upon mutation. Traditional machine learning approaches require manual extraction of fea-

tures for each domain of application. When the convolutional neural network is applied, the

convolution layers identify local patterns of atomic interactions and the fully connected layers

then extract higher level descriptions of the system by combining local patterns at various dis-

tance scales.

Multichannel topological invariants for protein-ligand binding prediction. In

computation, the binding affinity, or alternatively the binding free energy, can be modeled

via an energy cycle as shown in Fig 3 where the main contributors to the process are intermo-

lecular interactions and solvation effects. In this work, we consider the set of element types

Le ¼ fC;N;O; S;P; F;Cl;Br; Ig contained in ligands and Pe ¼ fC;N;O; Sg contained in pro-

teins. We define an opposition distance between two atoms ai and aj as

dopðai; ajÞ ¼

(

dðai; ajÞ ;AðaiÞ 6¼ AðajÞ

1 ;AðaiÞ ¼ AðajÞ
; ð2Þ

where d(�, �) is Euclidean distance between two atoms and A(�) denotes the affiliation of an

atom which is either a protein or a ligand.
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The ESTFs used in this application are summarized in Table 4. The structured description

vectors of the ESTFs are generated according to the definition given in Eq (1). As shown in

Table 4, five sets of ESTFs are constructed. The differences between the description vectors

arising from Set 2 and Set 3, and between those arising from Set 4 and Set 5 are also employed

as representation vectors to address the impact of ligand binding resulting in a total of 72

representation vectors (i.e., channels) forming the 1D-image-like representation of the

protein-ligand complex. Pairwise interactions are characterized for the 36 element pairs with

{C, N, O, S} for the protein and {C, N, O, S, F, P, Cl, Br, I} for the ligand with Vd providing 36

channels. The birth (Vb), death (Vd), and persistence (Vp) for Betti-1 and Betti-2 barcodes are

computed for carbon atoms and all heavy atoms of the protein and the protein-ligand complex

which results in 24 channels. The difference between the characterization of the protein and

the protein-ligand complex accounts for another 12 channels. Thus, we have a total of 72 chan-

nels. Here, 0-dimensional TFs describe intramolecular interactions between the protein and

ligand. All heavy atom TFs delineate the geometric effect of protein-ligand binding. The TFs of

carbon atoms account for hydrophobic effects and also implicitly reflect the solvation effects.

The distance scale interval, [0, 50] Å is divided into bins of length 0.25 Å.

Fig 3. Energy cycle of protein-ligand binding free energymodeling.

https://doi.org/10.1371/journal.pcbi.1005690.g003

Table 4. Topological representations of protein-ligand complexes.

Set Atoms used Distance Complex Dimension

1 fa 2 PjTðaÞ ¼ ePg [ fa 2 LjTðaÞ ¼ eLg; eP 2 P
e; eL 2 L

e dop - 0

2 fa 2 PjTðaÞ 2 Peg Euclidean Alpha 1,2

3 fa 2 PjTðaÞ 2 Peg [ fa 2 LjTðaÞ 2 Leg Euclidean Alpha 1,2

4 fa 2 PjTðaÞ ¼ Cg Euclidean Alpha 1,2

5 fa 2 PjTðaÞ ¼ Cg [ fa 2 LjTðaÞ ¼ Cg Euclidean Alpha 1,2

P and L are sets of atoms in protein and in ligand. T(�) denotes element type of an atom. eP is an element type in protein and eL is an element type in ligand.

“Complex” refers to the type of simplicial complex used and “Dimension” refers to the dimensionality of a topological invariant.

https://doi.org/10.1371/journal.pcbi.1005690.t004
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Multichannel topological invariants for the prediction of protein folding free energy

change upon mutation. Modeling protein folding free energy change upon mutation basi-

cally involves the unfolded states and folded structures of the mutant and the wild type as

shown in Fig 4. Since unfolded states of proteins are highly dynamic which significantly

increases the modeling cost due to the need of sampling over large conformation space, we

only analyze the folded states of the mutants and the wild type proteins in this application.

Similar to the protein-ligand binding affinity prediction, atomic interactions between specific

element types, geometric effects, and hydrophobic effects are characterized. The persistent

homology analysis performed in this application is summarized in Table 5. The differences

between the description vectors arising from Sets 1 and 2, and between those arising from Sets

3 and 4 are also included to account for changes caused by mutation. The 1D-image-like repre-

sentation in this application thus has a channel size of 45. The pairwise interaction pattern is

characterized for 9 element pairs from the element set {C, N, O }. For example, the interactions

Fig 4. Mutation induced protein folding free energy changes.

https://doi.org/10.1371/journal.pcbi.1005690.g004

Table 5. Topological representations for proteinmutation problem.

Set Atoms selected Distance Complex Dimension

1 fa 2 PWnMWjTðaÞ ¼ ePg [ fa 2MWjTðaÞ ¼ eMg; eP; eM 2 Pe dop - 0

2 fa 2 PMnMMjTðaÞ ¼ ePg [ fa 2MMjTðaÞ ¼ eMg; eP; eM 2 Pe dop - 0

3 fa 2 PWjTðaÞ 2 Peg Euclidean Alpha 1,2

4 fa 2 PMjTðaÞ 2 Peg Euclidean Alpha 1,2

Here PW, PM,MW, andMM are sets of atoms of wild type protein, mutant protein, mutation site in the wild type protein, and mutated site in the mutant protein.

Here Pe ¼ fC;N;Og and T(�) is the same as defined in Table 4. The distance function dop is similar to the one defined in Eq (2), while the affiliation function

A(�) returns eitherM or PnM.

https://doi.org/10.1371/journal.pcbi.1005690.t005
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between the carbon atoms of the mutation site and the nitrogen atoms from the rest of the pro-

tein. Such characterization for mutant protein, wild protein, and the difference between these

characterizations account for 27 channels. The birth, death, and bar persistence are character-

ized for Betti-1 and Betti-2 barcodes for all heavy atoms of both the wild type protein and the

mutant protein resulting in 12 channels. The difference between the mutant and the wild type,

which accounts for 6 channels, is also included. Thus, we have a total of 45 channels. The dis-

tance scale interval, [0, 12] Å is divided into bins of length 0.25 Å. An example of the persistent

homology barcodes of a mutant and its wild type is given in Fig 2.

Multichannel topological convolutional neural network

The preprocessed multichannel topological image is standardized with mean 0 and standard

deviation 1 for use in the convolutional neural network. A convolutional neural network with

a few 1D convolution layers, followed by several fully connected layers, is used to extract

higher level features from multichannel topological images and to perform regression with the

learned features. An illustration of the convolutional neural network structure is shown in

Fig 5. A brief review of multichannel topological convolutional neural network concepts is

given in the case of 1D-image-like inputs. Convolution operation, optimization method for

feedforward neural networks, and dropout out technique which prevents overfitting are dis-

cussed. One of the advantages of multichannel topological convolutional deep neural networks

is their ability to extract features hierarchically from low level topological representations.

Convolution operation. Consider an n ×m second order tensor V, where n is the number

of topological feature pixels andm is number of channels for each pixel. In this approach, n

corresponds to the radius filtration dimension of the biomolecular topological analysis andm

corresponds the number of representation vectors used which are defined in Eq (1). With a

predefined window size w, a convolutional filter F can be represented by a w ×m second order

tensor. By moving the window of size w along the radius filtration direction of V, a sequence

of Nf second order tensors, which are subtensors of V, are obtained and can be concatenated to

form an Nf × w ×m third order tensor T. The filter F operated on T results in a first order ten-

sor TijkFjk by tensor contraction. Concatenating the outputs of nf filters gives an Nf × nf second
order tensor. Generally speaking, a 1D convolution layer takes an n ×m tensor and outputs an

Nf × nf tensor.
Optimization. Feedforward neural networks are usually trained by backpropagation

where the error of the output layer is calculated and is propagated backward through the net-

work to update its weights. For structured neural networks, conventional L2 minimization

does not work. One popular approach of training a neural network is the stochastic gradient

decent (SGD) method. Let Θ be the parameters in the network and LðYÞ be the objective

function or learning kernel that is to be minimized. SGDmethod updates Θi to Θi+1 from step

Fig 5. An illustration of the 1D convolutional neural network. The network consists of repeated
convolution layers and pooling layers followed by several fully connected layers.

https://doi.org/10.1371/journal.pcbi.1005690.g005
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i to step i + 1 as

Yiþ1 ¼ Yi � tr
Y
LðYi;Xs;YsÞ; ð3Þ

where τ is the learning rate, Xs and Ys are the input and target of the sth sample of the training

set. In practice, the training set (X, Y) is often split into mini-batches {(Xs, Ys)}s2S. SGDmethod

then goes through each mini-batch instead of going through only one example at a time.

When the landscape of the objective function is like a long steep valley, momentum is added to

accelerate convergence of the algorithm. The updating scheme can therefore be changed to

DYi ¼ Yi �Yi�1;

Yiþ1 ¼ Yi � ð1� ZÞtr
Y
LðYi;X

i
s;Y

i
sÞ þ ZDYi;

ð4Þ

where 0� η � 1 is a scalar coefficient for the momentum term.

Dropout. Neural networks with several convolution layers and fully connected layers pos-

sess a large number of degrees of freedom which can easily lead to overfitting. The dropout

technique is an easy way of preventing network overfitting [100]. During the training process,

hidden units are randomly chosen to feed zero values to their connected neighbors in the next

layer. Suppose that a percentage of neurons at a certain layer are chosen to be dropped during

training. Then, in the testing process, the output of this layer is computed by multiplying a

coefficient such as 1 − λ, where λ is the dropout rate, to approximate the average of the net-

work after dropout in each training step.

Bagging (bootstrap aggregating). In addition to dropout technique which regularizes

each individual model, bagging is a technique to combine the output of several models trained

separately by averaging to reduce generalization error. This is based on the assumption that

models with randomness in the training process likely make different errors on testing data.

Generally, bagging trains different models on different subsets of the training set. Specifically,

as neural networks have relatively high underlying randomness caused by factors including

the random weights initialization and the randommini-batch partition, it can benefit from

bagging even if the individual models are trained on the same dataset. In this work, bagging of

neural network models trained individually with the same architecture and training dataset is

used.

Incorporating non-image-like features. Deep learning architecture also allows the use of

non-image-like features together with image or image-like features. In this work, additional

auxiliary features, which are important to mutation analysis, are incorporated after the convo-

lution layers as shown in Fig 6. This approach leads to a 9% improvement to mutation predic-

tion of the “S2648” data set.

Multi-task deep learning. We construct a multi-task multichannel topological convolu-

tional neural network (MM-TCNN) architecture to carry out simultaneous training and pre-

diction. The common topological attributes and underlying physical interactions in features

provide a basis for multi-task predictions. Because the deep neural networks are jointly trained

from multiple prediction tasks, we expect the networks to generate robust high-level represen-

tations from low level TFs for prediction problems. We also expect that the refined representa-

tion would lead to prediction models with improved generalized performance. From the

proposed deep learning models, we hope to gain insights into how the nonlinear and nonlocal

interactions among topological features impact various prediction tasks, which could further

lead to better understanding towards the interactions among biomolecular prediction tasks.

Finally, tasks with insufficient training data sets will be more likely to benefit from the infor-

mation collected from tasks with large training sets in a multi-task learning framework. Fig 7
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illustrates our multi-task multichannel topological deep learning architecture for simultaneous

training and prediction of globular protein and membrane protein mutation impacts.

In the present mutation analysis, there are two data sets. The mutation data of the large

data set for globular proteins are more reliable, while those of the small data set for membrane

proteins are noisy and less reliable due to the fact that the current technologies for membrane

protein mutagenesis experiments are immature. The prediction for membrane proteins bene-

fits from joint learning with the prediction for globular proteins. The coupling of the two pre-

dictions through a neural network is shown in Fig 8.

The general objective function to minimize for multi-task learning through neural net-

works can be decomposed into training loss, similarity penalty for shared layers, and regulari-

zation term as

LðY;X;YÞ ¼
X

N

j¼1

J jðYSj;YBj;Xj;YjÞ

þ PðYS1; � � � ;YSNÞ

þ RðYÞ;

ð5Þ

Fig 6. The deep learning architecture for the application to globular proteins. The non-image-like
features are incorporated in the multichannel topological convolutional deep neural network by merging the
features into the network at one of the fully connected layers.

https://doi.org/10.1371/journal.pcbi.1005690.g006
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where Θ is the collection of all parameters to be updated, ΘSj is the set of parameters for the jth

task of the shared layers, ΘBj is the set of parameters for the jth branch of neurons dedicated

for the jth task, and (Xj, Yj) are training data for the jth task. Here P is the penalty function

which penalizes the difference among N sets of parameters. FinallyRð�Þ is the regularization

Fig 7. Workflow of themulti-task topological deep learningmodel. Themulti-task multichannel
topological convolutional neural network model shares and transforms topological information for the
simultaneous training and prediction of globular protein and membrane protein mutation impacts on protein
stability.

https://doi.org/10.1371/journal.pcbi.1005690.g007

Fig 8. Themulti-task deep learning architecture for membrane proteins.Using globular protein stability
change upon mutation as an auxiliary task to improve the task of membrane protein mutation prediction. The
globular protein stability change upon mutation prediction is used as an auxiliary task to improve the task of
predicting membrane protein stability changes uponmutation. The solid arrows show the path of information
passing when the model is applied for predictions. The dotted and dashed arrowsmark the paths of
backpropagation when the network is trained with globular protein data set and membrane protein data set
respectively.

https://doi.org/10.1371/journal.pcbi.1005690.g008
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term which prevents overfitting and J is the jth loss function. In this work, we force the shared

layers of the two problems to be the same and the regularization of the network is realized

using dropout.

Model training and prediction. Due to the complexity of the network for the mutation

example with auxiliary features, a brief parameter search is performed using Hyperopt [101]

with only 50 trials allowing flexibility in number of neurons, activation function, and weight

initialization. In the protein-ligand binding example, only around 10 sets of parameters are

selected manually and tested because of the large input size for the problem.

In the protein-ligand binding affinity predictions, we repeatedly train 100 single neural net-

works individually. To test the performance of bagging of the models, we randomly select 50

trained models from the 100 individually trained networks and output the average value of the

outputs from the 50 selected models as the prediction. The performance is then computed for

the bagging. This process is repeated 100 times and both median and best results are reported.

In the mutation induced protein stability predictions, we use the same procedure used in

the protein-ligand binding prediction, for the “S350” task, where the training and testing split

is predefined. In the case of cross validation, 10 sets of 5-fold splits are generated randomly

and 20 single models are generated for each split. The average prediction is taken over the 20

models within each split and the median result of the 10 splits is reported. Bagging of only 20

models is performed here because it is not valid to do bagging of predictors on different cross

validation splits. The bagging of 50 models will result in 50(individual models)x10(cross vali-

dation splits)x5(five folds) = 2500 training processes which is too computationally expensive.

Details of the network architectures of the three examples can be found in Multichannel topo-

logical convolutional neural network.

Software. Dionysus software [102] with CGAL library [103] is used for persistent homol-

ogy computation on alpha complex. Javaplex [104] and Dipha [43] software packages are used

for persistent homology computation on Vietoris-Rips complex. The neural networks are real-

ized using Keras [105] wrapper of Theano [106] backend. Various functions from Numpy and

Scipy [107] packages are used to process data and evaluate the performance.
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