TOPOSES ARE COHOMOLOGICALLY EQUIVALENT TO SPACES

By A. JOYAL and I. MOERDIJK¹

This purpose of this paper is to prove that for every Grothendieck topos \mathscr{C} there exist a space X and a covering $\varphi: X \to \mathscr{C}$ which induces an isomorphism in cohomology

$$H^n(\mathscr{C}, A) \xrightarrow{\sim} H^n(X, \varphi^*A) \qquad (n \ge 0)$$

for any abelian group A in \mathscr{C} . Moreover for n = 1 this is also true for nonabelian A. This implies, by a result of Artin and Mazur, that φ induces an isomorphism of etale homotopy groups.

1. Construction of the cover. Let \mathscr{C} be a Grothendieck topos, and let G be an object of \mathscr{C} . En(G) is the space (in this paper 'space' means space in the sense of [JT], chapter IV, unless explicitly said otherwise) of infinite-to-one partial enumerations of G; in other words, En(G) is characterized by the property that for any map $f: \mathscr{F} \to \mathscr{C}$ of toposes, the points of the induced space $f^*(En(G))$ in \mathscr{F} correspond to diagrams $\mathbf{N} \ll U \longrightarrow f^*G$ in \mathscr{F} with the property that for any $n \in \mathbf{N}$, U - $\{0, \ldots, n\} \to f^*G$ is still epi. We write $\mathscr{C}[En(G)]$ for the category of sheaves in \mathscr{C} on the space En(G), and $\varphi: \mathscr{C}(En(G)] \to \mathscr{C}$ for the corresponding geometric morphism. The properties of the space En(G) and the map φ were extensively discussed in [JM]. For the present purpose, we recall the following basic facts. First of all, for a suitable object G of \mathscr{C} , $\mathscr{C}[En(G)]$ is equivalent to the topos Sh($X_{\mathscr{C}}$) of sheaves on a space $X_{\mathscr{C}}$ in Sets, so that φ corresponds to a cover

(1)
$$\varphi: \operatorname{Sh}(X_{\mathscr{C}}) \to \mathscr{C}.$$

Manuscript received 6 November 1988.

¹Supported by a Huygens Fellowship of the NWO.

American Journal of Mathematics 112 (1990), 87-95.

This geometric morphism is connected and locally connected; in particular, $\varphi^* : \mathscr{C} \to \operatorname{Sh}(X_{\mathscr{C}})$ has a left adjoint $\varphi_!$ such that for any $E \in \mathscr{C}$ and $S \in \operatorname{Sh}(X_{\mathscr{C}})$,

(2)
$$\varphi_!(\varphi^*(E) \times S) \cong E \times \varphi_!(S).$$

For any G in \mathscr{C} , there exists a surjective geometric morphism $p:\mathfrak{B} \to \mathscr{C}$ where \mathfrak{B} is the category of sheaves on a complete Boolean algebra (Barr's theorem, [B]), such that p^*G is countable (cf. [JT]). \mathfrak{B} is a model of set theory, and the induced space $\operatorname{En}(p^*G) \cong p^*(\operatorname{En}(G))$ in \mathfrak{B} has enough points, i.e. is an ordinary topological space, which can be described as follows: the points of $\operatorname{En}(p^*(G))$ are functions $\alpha: U \to p^*G$ with $U \subset \mathbb{N}$ and $\alpha^{-1}(g)$ infinite for all $g \in p^*(G)$; the basic open sets are the sets of the form $V_u = \{\alpha | \forall i \in \operatorname{domain}(u): i \in U \text{ and } \alpha(i) = u(i)\}$, where u ranges over all functions $u: K \to p^*G$ defined on a finite set $K \subset \mathbb{N}$. It is not difficult to prove that each basic open set V_u (in particular, the space itself, V_{ϕ}) is contractible ([JM]).

2. Relative Čech cohomology. In this section, let Y be a space in a topos \mathscr{C} . One can define the relative Čech cohomology groups of Y with coefficients in an abelian group object in $\mathscr{C}[Y]$, i.e. a sheaf (or in fact, just a presheaf) of abelian groups on Y in \mathscr{C} ,

$$\check{H}^n_{\mathscr{C}}(Y, A).$$

These cohomology groups are group objects in \mathscr{C} . Their construction is completely parallel to the usual construction of the Čech cohomology groups of a topological space; indeed, the latter construction immediately translates to the context of a space in a topos \mathscr{C} , by viewing \mathscr{C} as a universe for (constructive) set theory (cf. [BJ]).

More explicitly, let $S \in \mathscr{C}$ and let $\mathscr{U}: S \to \mathbb{O}(Y)$ be an open cover of Y indexed by S. Let A be a (pre)sheaf of abelian groups on Y in \mathscr{C} ; so A is given by a map $A \to \mathbb{O}(Y)$ in \mathscr{C} equipped with the structure of a (pre)sheaf. Let

$$\mathfrak{A}_p: S_p = S \times \cdots \times S \xrightarrow{\mathfrak{A}_p^{p+1}} \mathfrak{O}(Y)^{p+1} \xrightarrow{\wedge} \mathfrak{O}(Y)$$

be the map in $\mathscr E$ obtained from $\mathscr U$ by intersection in Y, and let

(3)
$$C^{p}(\mathfrak{A}, A) = \prod_{S_{p}} (A \underset{\mathfrak{O}(Y)}{\times} S_{p} \to S_{p})$$

where $\Pi_{S_p}: \mathscr{C}/S_p \to \mathscr{C}$ is the right adjoint of the functor $S_p^*: \mathscr{C} \to \mathscr{C}/S_p$ (cf. [J], p. 36). The $C^p(\mathfrak{A}, A), p \ge 0$, give a cochain complex $C^0(\mathfrak{A}, A) \to C^1(\mathfrak{A}, A) \to \cdots$ in the usual way, with the differential defined via alternating sums. The cohomology groups of this complex are denoted by $H^n_{\mathscr{C}}(\mathfrak{A}, A)$. One may now take the colimit of these groups over the *internal* diagram in \mathscr{C} of all open covers of $\mathbb{O}(Y)$ (so this involves internal covers of Y in \mathscr{C}/E for arbitrary E!), and obtain the relative Čech cohomology groups

(4)
$$\check{H}^n_{\mathfrak{C}}(Y,A) = \lim_{\to \mathfrak{N}_{\mathfrak{U}}} H^p_{\mathfrak{C}}(\mathfrak{A},A) \qquad (p \ge 0).$$

Straightforward modifications of the standard argument show that these cohomology groups have the usual properties. For instance, if we write $\varphi: \mathscr{C}[Y] \to \mathscr{C}$ for the canonical geometric morphism and $e_E: \mathscr{C}/E \to \mathscr{C}$ for the geometric morphism given by $e_E^* = E^* = (X \mapsto X \times E \stackrel{\pi_2}{\to} E)$, then for any open cover \mathscr{U} of $e_E^*(Y)$ in \mathscr{C}/E ,

(5)
$$H^0_{\mathscr{C}/\mathscr{E}}(\mathscr{U}, e^*_{\mathscr{E}}(A)) \cong e^*_{\mathscr{E}}\varphi_*A,$$

where E is any object of \mathscr{C} ; hence

(6)
$$H^0_{\mathfrak{C}}(Y,A) \cong \varphi_*A.$$

And for an injective object I of the category $\underline{Ab} \ \mathscr{C}[Y]$ of abelian sheaves on Y in \mathscr{C} ,

(7)
$$H^n_{\mathscr{C}/E}(\mathscr{U}, e^*_E I) = 0 \quad (n > 0)$$

for any E in \mathscr{E} and any open cover \mathscr{U} of $e_{E}^{\#}(Y)$ in \mathscr{E}/E , so

(8)
$$\check{H}^{n}_{\mathscr{C}}(Y, I) = 0 \quad (n > 0)$$

3. A relative Cartan-Leray spectral sequence. As before, let Y be a space in a topos \mathscr{C} , and let $\varphi : \mathscr{C}[Y] \to \mathscr{C}$ be the corresponding

geometric morphism. $\mathscr{C}[Y]$ is a subtopos of the topos $\mathscr{C}^{0(Y)^{op}}$ of presheaves on $\mathscr{O}(Y)$ in \mathscr{C} , and we write $i:\mathscr{C}[Y] \hookrightarrow \mathscr{C}^{0(Y)^{op}}$ for the inclusion. The following is a relative version of SGA4, exp V, p. 24.

LEMMA 1. For any abelian group A in $\mathscr{C}[Y]$, there exists a spectral sequence

$$E_2^{p,q} = \check{H}^p_{\mathscr{C}}(Y, R^q i_*(A)) \Rightarrow R^{p+q} \varphi_*(A).$$

Proof. Let $0 \to A \to I$ be an injective resolution of A in <u>Ab</u> $\mathscr{E}[Y]$. For an open cover \mathscr{U} of Y in \mathscr{E} , one has a double complex of abelian groups $C^{p,q}(\mathscr{U}) = C^p(\mathscr{U}, I^q)$ (cf. (3)). By (5) and (7) above, the cohomology of the total complex is $H^n H^0(C^{**}(\mathscr{U})) = R^n \varphi_*(A)$, so we obtain a spectral sequence

$$(9) \qquad E_2^{p,q}(\mathfrak{U}) = H^p H^q(C^{**}(\mathfrak{U})) = H^p_{\mathscr{C}}(\mathfrak{U}, R^q i_*A) \Rightarrow R^{p+q} \varphi_*(A)$$

in the standard way ([G]). The same applies to open covers of $e_E^{\#}(Y)$ in \mathscr{C}/E for any object E of \mathscr{C} , so by taking the internal colimit in \mathscr{C} over all open covers of Y, we obtain a spectral sequence as stated in the lemma.

Now let $\mathbf{B} \subset \mathbb{O}(Y)$ be a basis for Y in \mathscr{C} which is closed under binary meets. Call **B** A-acyclic if for every morphism $B: E \to \mathbf{B}$ in \mathscr{C} ,

(10)
$$\check{H}^{p}_{\mathscr{C}/E}(B, A | B) = 0.$$
 $(q > 0)$

In (10), B stands for the open subspace of $e_E^{\#}(Y)$ determined by the given morphism $B: E \to \mathbf{B} \subset \mathcal{O}(Y)$, and $A \mid B \in \underline{Ab}((\mathscr{C}/E)[B])$ is the sheaf induced by A.

LEMMA 2. If **B** is an A-acyclic basis for Y as above, then $\check{H}^{p}_{\mathscr{C}}(Y, A) \cong R^{p}\varphi_{\ast}A$, for all $p \geq 0$.

Proof. We show by induction on *n* that $E_{2,n}^{p,q} = 0$ for all *p* and all *q* with 0 < q < n, in the spectral sequence of Lemma 1. Suppose this holds for *n*. Then (cf. [CE], p. 328) $\check{H}_{*}^{i}(Y, A) = R^{i}\varphi_{*}A$ for i < n, and there is an exact sequence $0 \rightarrow \check{H}_{*}^{n}(Y, A) \rightarrow R^{i}\varphi_{*}A \rightarrow E_{2}^{0,n} \rightarrow \check{H}_{*}^{n+1}(Y, A) \rightarrow R^{n+1}\varphi_{*}A$. But $E_{2,n}^{0,n} = \check{H}_{*}^{0}(Y, R^{n}i_{*}A) > \varphi_{*}i^{*}R^{n}i_{*}(A) = \varphi_{*}R^{n}i^{*}i_{*}(A) = \varphi_{*}(0) = 0$ (n > 0), so $\check{H}_{*}^{n}(Y, A) \cong R^{n}\varphi_{*}A$. Applying this argument not to *Y*, but to any open subspace *B* (for any morphism $B: E \rightarrow B$, cf the diagram (11)), our assumption on **B** gives that $R^{n}i_{*}(A) | \mathbf{B} = 0$, where $(-) | \mathbf{B}$ denotes the restriction functor $\mathscr{C}^{0(X)^{op}} \rightarrow \mathscr{C}^{\mathbf{B}^{op}}$. Thus if in the spectral sequence (9) above, \mathscr{U} is a cover consisting of basic opens are cofinal in the internal system of all covers, it follows by passing to the colimit that $E_{2,n}^{p,n} = 0$ (all *p*) in the spectral sequence of Lemma 1. So the inductive statement in the beginning of the proof holds for n + 1, and Lemma 2 is proved.

Remark. Let Y be a space in \mathscr{C} , as above. Recall (see [JT]) that an open $U \subset Y$ is called surjective if it holds in \mathscr{C} that every cover of U is inhabited. If A is a sheaf on Y and $\{U_{\alpha}: \alpha \in \mathscr{A}\}$ is a family of opens, then $\Pi\{A(U_{\alpha}) | \alpha \in \mathscr{A}\} \cong \Pi\{A(U_{\alpha}) | \alpha \in \mathscr{A}, U_{\alpha} \text{ surjective}\}$ (where Π is the internal product $\mathscr{C}/\mathscr{A} \to \mathscr{C}$, as in Section 2). This is analogous to the fact that for $\mathscr{C} = \text{Sets}, A(U) = \{^*\}$ if the empty set covers U. Therefore in Lemma 2 it is enough to assume that **B** is closed under surjective binary meets (i.e. $B \land B' \in \mathbf{B}$ whenever B and $B' \in \mathbf{B}$ and $B \land B'$ is surjective), since by this isomorphism, surjective intersections are the only ones that need to be considered in the complexes $C^{p,q}(\mathfrak{A})$.

4. The main theorem. Let \mathscr{E} be a Grothendieck topos, and let $X_{\mathscr{E}}$ be the space constructed in Section 1. In the following theorem, $H^q(X_{\mathscr{E}}, -)$ denotes the sheaf cohomology of $X_{\mathscr{E}}$.

THEOREM. The geometric morphism φ : Sh $(X_{\&}) \rightarrow \&$ has the property that for any abelian group A in &, $R^{q}\varphi_{*}(\varphi^{*}A) = 0$ for q > 0 (for $q = 0, R^{q}\varphi_{*}(\varphi^{*}A) \cong A$); consequently, φ induces an isomorphism

$$H^{q}(\mathscr{C}, A) \xrightarrow{\sim} H^{q}(X_{\mathscr{C}}, \varphi^{*}A)$$

for each $q \ge 0$.

Proof. The second statement follows from the first by the Leray spectral sequence (SGA4, exp V, p. 35). The first statement is a special case (by construction of $X_{\&}$) of the general fact that for any object G in &, the corresponding geometric morphism $\varphi : \&[\operatorname{En}(G)] \to \&$ induces isomorphisms $H^q(\&, A) \xrightarrow{\sim} H^q(\&[E(G)], \varphi^*A)$, for any abelian group A in & and any $q \ge 0$. Let **B** be the basis consisting of opens of the form V_u (u a finite partial function from **N** to G, cf. [JM]). $\operatorname{En}(G) = V_{\varphi} \in$ **B**, and $V_u \wedge V_w$ is surjective iff u and w are compatible finite functions, and in that case $V_u \wedge V_w = V_{u \cup w}$, so **B** is closed under surjective finite meets (cf. the remark in Section 3).

We will show that for any injective object I of $\underline{Ab}(\mathscr{C})$ and any q > 0

(12)
$$R^{q}\varphi_{*}(\varphi^{*}I) = 0.$$

This is enough, because φ is connected, i.e. $\varphi_*\varphi^* \cong id$, and (12) says that φ^* maps injectives to φ_* -acyclic objects, so there is a spectral sequence ([G]) for the composition $\varphi^* \circ \varphi_*$, $E_2^{p,q} = (R^p \varphi_*)(R^q \varphi^*)A \Rightarrow$ $R^{p+q}(\varphi_*\varphi^*)A$; φ^* is exact and $\varphi_*\varphi^* \cong id$, so $E_2^{p,q} = 0$ for q > 0 and $E_2^{p,0} = R^p(id)(A) = 0$ for p > 0. Thus $R^p \varphi_*(\varphi^*A) = 0$ for p > 0.

To prove (12), let *I* be an injective in <u>Ab</u> \mathcal{E} , and let \mathcal{U} be an open cover of En(*G*) by basic opens, say $\mathcal{U}: S \to \mathbf{B} \subset \mathbb{O}(Y)$ as in Section 2. Let us consider the nerve $N(\mathcal{U})$ of \mathcal{U} . This is the simplicial complex in \mathcal{E} defined as follows: $S. = (S_p, p \ge 0)$ is a simplicial complex in \mathcal{E} , with as face $d_i: S_p \to S_{p-1}$ the projection $S^{p+1} \to S^p$ which deletes the *i*-th coordinate. The morphism $\mathcal{U}_p: S_p \to \mathbf{B} \subset \mathbb{O}(Y)$ can be viewed as an S_p indexed sum of subobjects of the terminal object 1 of $\mathcal{E}[Y]$, and we write $\Sigma_{S_n} \mathcal{U}_p$ for their internal sum. Then

$$N_p(\mathfrak{U}) = \varphi_!(\sum_{S_p} \mathfrak{U}_p),$$

and the faces and degeneracies of S. give $N(\mathcal{U})$ the structure of a simplicial complex over \mathscr{C} . Moreover,

(13)
$$C^{p}(\mathfrak{A}, \varphi^{*}I) \cong I^{N_{p}(\mathfrak{A})}.$$

(cf. (2)), where the differentials on the left correspond to the differentials obtained on the right by alternating sums from the cofaces of the co-

simplicial object $I^{N(\mathfrak{A})}$. We claim that $C^{p}(\mathfrak{A}, \varphi^{*}I)$ is an acyclic complex. Since *I* is injective, it suffices to prove that $\operatorname{Free}(N.\mathfrak{A})$ is an acyclic chain complex in <u>Ab</u>(\mathscr{C}), where $\operatorname{Free}(-)$ denotes the free abelian group functor. To this end, let $p:\mathfrak{B} \to \mathscr{C}$ be a Boolean extension as at the end of Section 1, and consider the pullback square

ℬ[En(<i>p</i> *0	$G] \xrightarrow{p} \mathscr{C}$	[En(G)]
ψ		φ
y B	\xrightarrow{p}	¥ E.

Since φ is locally connected so is ψ , and the Beck-Chevalley condition holds, i.e.

$$p^* \varphi_! \cong \psi_! p^*.$$

Consequently, if we write \mathfrak{U}' for the cover of $\operatorname{En}(p^*G)$ induced by \mathfrak{U} via pullback along p, we have $p^*(\operatorname{Free}(N.\mathfrak{U})) \cong \operatorname{Free}(N.\mathfrak{U}')$. But \mathfrak{B} is a model for set theory (with the axiom of choice), so we are now in a position to apply results from classical topology: the cover \mathfrak{U}' of $\operatorname{En}(p^*G)$ is a cover by basic opens, and $\operatorname{En}(p^*G)$ as well as each of its basic open subspaces are contractible, so the nerve $N(\mathfrak{U}')$ of this cover is a contractible simplicial set, and $\operatorname{Free}(N\mathfrak{U}')$ is an acyclic chain complex. Since $p^*(\operatorname{Free} N\mathfrak{U}) = \operatorname{Free}(N\mathfrak{U}')$ and p^* is faithful, it follows that $\operatorname{Free}(N\mathfrak{U})$ is acyclic, as was to be shown.

Now apply this argument not just to En(G), but to any basic open $B \subset e_E^{\#}(En(G))$ and any $E \in \mathscr{C}$ (cf (11), where Y = En(G) now). Then we conclude that **B** is an *I*-acyclic basis. (12) now follows by Lemma 2, since the whole space En(G) is a member of **B**. This completes the proof of the theorem.

5. Torsors. Let G be a group in a topos \mathscr{E} . A G-torsor in \mathscr{E} (or principal G-bundle over \mathscr{E}) is an object T of \mathscr{E} equipped with an action $\mu: G \times T \to T$ of G such that $T \to 1$ is epi and $(\mu, \pi_2): G \times T \to T \times T$ is an isomorphism. Recall ([Gi]) that $H^1(\mathscr{E}, G)$ is the pointed set of isomorphism classes of G-torsors (this is a group if G is abelian). For a space X and a sheaf of groups G on X, $H^1(X, G)$ stands for $H^1(Sh(X), G)$.

THEOREM. Let \mathscr{E} be a topos, and let $\varphi: \operatorname{Sh}(X_{\mathscr{E}}) \to \mathscr{E}$ be the cover of Section 1. For any group G in \mathscr{E} , φ induces an isomorphism

$$H^1(\mathscr{C}, G) \xrightarrow{\sim} H^1(X_{\mathscr{C}}, \varphi^*G)$$

Proof. The functor $\varphi^* : \mathscr{C} \to \operatorname{Sh}(X_{\mathscr{C}})$ is fully faithful, so it restricts to a fully faithful functor from the category of *G*-torsors in \mathscr{C} to that of φ^*G -torsors in $\operatorname{Sh}(X_{\mathscr{C}})$. It thus suffices to show that this restriction of φ^* is essentially surjective. By [JM], there is a class $P \subset (X_{\mathscr{C}})^I$ of paths, such that \mathscr{C} is equivalent to the full subcategory of $\operatorname{Sh}(X_{\mathscr{C}})$ consisting of those sheaves on $X_{\mathscr{C}}$ which are constant along the paths in *P*. Let *T* be a φ^*G -torsor in $\operatorname{Sh}(X_{\mathscr{C}})$. Then *T* is locally isomorphic to $\varphi^*(G)$, and $\varphi^*(G)$ is constant along all the paths in *P*. So *T* is locally constant along the paths in *P*, and hence constant along those paths (since the interval *I* is simply connected).

6. Etale homotopy. Let \mathscr{C} be a locally connected topos, and let p be a point of \mathscr{C} . Artin and Mazur ([AM]) define the etale homotopy groups $\pi_n(\mathscr{C}, p)$ $(n \ge 0)$, and prove a Whitehead theorem for toposes: a geometric morphism $(\mathscr{F}, q) \rightarrow (\mathscr{C}, p)$ of pointed locally connected toposes induces isomorphisms of etale homotopy groups iff it induces isomorphisms of cohomology groups with coefficients in a locally constant abelian group A in \mathscr{C} , as well as an isomorphism of the fundamental progroups $\pi_1(\mathscr{F}, q) \rightarrow \pi_1(\mathscr{C}, p)$. Our previous results give:

COROLLARY. For any locally connected pointed topos (\mathcal{E}, p) there exists a pointed space $(X_{\mathfrak{E}}, q)$ and a cover $\varphi: (Sh(X_{\mathfrak{E}}), q) \rightarrow (\mathcal{E}, p)$ which induces isomorphisms in etale homotopy,

$$\pi_n(X_{\mathfrak{C}}, q) \xrightarrow{\sim} \pi_n(\mathfrak{C}, p) \qquad (n \ge 0)$$

Proof. First of all, we need to modify the construction of the space $X_{\mathscr{C}}$ slightly, in order to lift the point p: if we replace the set \mathbb{N} of natural numbers by an arbitrary infinite set S in the construction of Section 1 (and the space of infinite-to-one enumerations $\mathbb{N} \le U \longrightarrow G$ by that of infinite-to-one partial maps $\Delta(S) \le U \longrightarrow G$, where ΔS denotes the constant object of \mathscr{C} corresponding to the set S), we obtain a cover (again called) $\varphi: X_{\mathscr{C}} \to \mathscr{C}$ with exactly the same properties as before. A straightforward classifying-topos argument shows that if we

choose the cardinality of S sufficiently large (at least that of p^*G) then the given point p can be lifted to a point q of this (modified) space $X_{\mathscr{C}}$. $X_{\mathscr{C}}$ is locally connected since \mathscr{C} is, and φ is a locally connected map. Now the result of Section 5 shows that φ induces an isomorphism in π_1 (since $H^1(\mathscr{C}, G) \cong \text{Hom}(\pi_1(\mathscr{C}, p), G)$, cf [AM], Section 10). The corollary follows by the Whitehead theorem just quoted and the theorem of Section 4.

UNIVERSITÉ DU QUÉBEC À MONTREAL, CANADA UNIVERSITY OF CHICAGO

REFERENCES

- [AM] M. Artin and B. Mazur, Etale Homotopy, Springer LNM, 100 (1969).
- [B] M. Barr, Toposes without points, J. Pure and Applied Alg., 5 (1974), 265-280.
- [BJ] A. Boileau and A. Joyal, La logique des topos, J. Symb. Logic, 46 (1981), 6-16.
- [CE] H. Cartan and S. Eilenberg, Homological Algebra, Princeton (1956).
- [Gi] J. Giraud, Cohomologie Non-Abélienne, Springer Verlag (1971).
- [G] A. Grothendieck, Sur quelques points d'algèbre homologique, Tohokû Math. J., 9 (1957), 119-221.
- [J] P. T. Johnstone, Topos Theory, Academic Press (1977).
- [JM] A. Joyal and I. Moerdijk, Toposes as homotopy groupoids, (to appear in Advances in Math.).
- [JT] A. Joyal and M. Tierney, An extension of the Galois theory of Grothendieck, Memoirs AMS, 309 (1984).
- [V] J.-L. Verdier, Cohomologie dans les topos, SGA 4, exposé V, Springer LNM, 270 (1972).