
The VLDB Journal manuscript No.
(will be inserted by the editor)

TopX
Efficient and Versatile Top-k Query Processing for Semistructured Data

Martin Theobald · Holger Bast · Debapriyo Majumdar · Ralf Schenkel · Gerhard
Weikum

Received: date / Revised: date / Accepted: 11-06-2007

Abstract Recent IR extensions to XML query languages
such as Xpath 1.0 Full-Text or the NEXI query language
of the INEX benchmark series reflect the emerging interest
in IR-style ranked retrieval over semistructured data. TopX
is a top-k retrieval engine for text and semistructured data.
It terminates query execution as soon as it can safely deter-
mine the k top-ranked result elements according to a mono-
tonic score aggregation function with respect to a multi-
dimensional query. It efficiently supports vague search on
both content- and structure-oriented query conditions for dy-
namic query relaxation with controllable influence on the
result ranking. The main contributions of this paper unfold
into four main points: 1) fully implemented models and al-
gorithms for ranked XML retrieval with XPath Full-Text
functionality, 2) efficient and effective top-k query process-
ing for semistructured data, 3) support for integrating the-
sauri and ontologies with statistically quantified relation-
ships among concepts, leveraged for word-sense disambigua-
tion and query expansion, and 4) a comprehensive descrip-
tion of the TopX system, with performance experiments on
large-scale corpora like TREC Terabyte and INEX Wikipedia.

Keywords Efficient XML full-text search · content- and
structure-aware ranking · top-k query processing · cost-
based index access scheduling · probabilistic candidate
pruning · dynamic query expansion · DB&IR integration

Martin Theobald · Holger Bast · Debapriyo Majumdar · Ralf Schenkel ·
Gerhard Weikum
Max-Planck Institute for Informatics, Saarbrücken, Germany
E-mail: {mtb,bast,dmajumda,schenkel,weikum}@mpi-inf.mpg.de

1 Introduction

1.1 Motivation

Non-schematic XML data that comes from many different
sources and inevitably exhibits heterogeneous structures and
annotations (i.e., XML tags) cannot be adequately searched
using database query languages like XPath or XQuery. Of-
ten, queries either return too many or too few results. Rather
the ranked-retrieval paradigm is called for, with relaxable
search conditions, various forms of similarity predicates on
tags and contents, and quantitative relevance scoring.

TopX [91,92] is a search engine for ranked retrieval of
XML data. It supports a probabilistic-IR scoring model for
full-text content conditions and tag-term combinations, path
conditions for all XPath axes as exact or relaxable constraints,
and ontology-based relaxation of terms and tag names as
similarity conditions for ranked retrieval. While much of
the TopX functionality was already supported in our earlier
work on the XXL system [87,88], TopX has an improved
scoring model for better precision and recall, and a radi-
cally different architecture which makes it much more ef-
ficient and scalable. TopX has been stress-tested and exper-
imentally evaluated on a variety of datasets including the
TREC [94] Terabyte benchmark and the INEX [56] XML
information retrieval benchmark on an XML version of the
Wikipedia encyclopedia. For the INEX 2006 benchmark,
TopX served as the official reference engine for topic de-
velopment and some of the benchmarking tasks.

Research on applying IR techniques to XML data has
started about five years ago [28,43,83,87] and has mean-
while gained considerable attention (see [8,12,32] and the
references given there). The emphasis of the current paper
is on efficiently supporting vague search on element names
and terms in element contents in combination with XPath-
style path conditions.

2

A typical example query could be phrased in the NEXI
language used for the INEX benchmark [56] as follows:

//book[about(., Information Retrieval XML)

and about(.//reference, PageRank)]

//author[about(.//affiliation, Stanford)]

This twig query should find the best matches for authors of
books that contain the terms “Information Retrieval XML”
and have descendants tagged as reference and affiliation with
content terms “PageRank” and “Stanford”, respectively.
However, beyond such exact-match results, it should also
find books with similar content, like books about “statis-
tical language models for semistructured data”, but possi-
bly ranked lower than exact matches, and if no author from
Stanford qualifies it may even provide books from someone
at Berkeley as an approximate, still relevant result. In ad-
dition, as an additional feature (not expressible in NEXI),
we may consider relaxing tag names so that, for example,
monographs or even survey articles are found, too.

The challenge addressed in this paper is to process such
queries with a rich mixture of structural and content-related
conditions efficiently. The method of choice for top-k sim-
ilarity queries is the family of threshold algorithms, devel-
oped by [40,49,73] and related to various methods for pro-
cessing index lists in IR [15,23,74,13]. These methods scan
index lists for terms or attribute values in descending order
of local (i.e., per term) scores and aggregate the scores for
the same data item into a global score, using a monotonic
score aggregation function such as (weighted) summation.
Based on clever bookkeeping of score intervals and thresh-
olds for top-k candidate items, index scans can often termi-
nate early, when the top-k items are determined, and thus,
the algorithm often only has to scan short prefixes of the
inverted lists.

Applying this algorithmic paradigm to XML ranked re-
trieval is all but straightforward. The XML-specific difficul-
ties arise from the following issues:

– Scores and index lists refer to individual XML elements
and their content terms, but we want to aggregate scores
at the document level and return documents or XML
subtrees as results, thus facing two different granulari-
ties in the top-k query processing.

– Good IR scoring models for text documents cannot be
directly carried over, because they would not consider
the specificity of content terms in combination with ele-
ment or attribute tags. For example, the term “transac-
tions” in bibliographic data sets should be viewed as spe-
cific when occurring within elements of type <section>
or <caption> but is considered less informative in
<journalname>.

– Relevant intermediate results of the search conditions
must be tested as to whether they satisfy the path condi-

tions of the query, and this may incur expensive random
accesses to disk-resident index structures.

– Instead of enforcing a conjunctive query processing, it is
desirable to relax path conditions and rather rank docu-
ments by a combination of content scores and the num-
ber of structural query conditions that are satisfied.

– An efficient query evaluation strategy and the pruning
of result candidates must take into consideration the es-
timation of both aggregated scores and selectivities of
path conditions.

– It should be possible to relax search terms and, in par-
ticular, tag names, using ontology- or thesaurus-based
similarities. For example, a query for a <book> about
“XML” should also consider a <monograph> on “semi-
structured data” as a result candidate. but such a query
expansion should avoid using similarity thresholds that
are difficult to tune manually, and it must be careful to
avoid topic dilution that could result from over-expansion.

Thus, a viable solution must reconcile local scorings for
content search conditions, score aggregation, and path con-
ditions. As a key factor for efficient performance, it must be
careful about random accesses to disk-resident index struc-
tures, because random accesses are one or two orders of
magnitude more expensive than (the amortized cost of) a se-
quential access. It should exploit precomputations as much
as possible and may utilize the technology trend of fast-
growing disk space capacity (whereas disk latency and trans-
fer rates are improving only slowly). The latter makes re-
dundant data structures attractive, if they can be selectively
accessed at query run-time.

1.2 System Overview

TopX aims to bridge the fields of database systems (DB)
and information retrieval (IR). From a DB viewpoint, it pro-
vides an efficient algorithmic basis for top-k query process-
ing over multidimensional datasets, ranging from structured
data such as product catalogs (e.g., bookstores, real estate,
movies, etc.) to unstructured text documents (with keywords
or stemmed terms defining the feature space) and semistruc-
tured XML data in between. From an IR viewpoint, TopX
provides ranked retrieval based on a scoring function, with
support for flexible combinations of mandatory (conjunc-
tive) and optional (“andish”) conditions as well as advanced
text predicates such as phrases, negations, etc. The key point,
however, is that TopX combines these two viewpoints into
a unified framework and software system, with emphasis on
XML ranked retrieval.

Figure 1 depicts the main components of the TopX sys-
tem. Software components are shown as light-grey rectan-
gles; the numbered components are outlined in the follow-
ing. TopX supports three kinds of front-ends: as a servlet

3

with an HTML end-user interface, as a Web Service with
a SOAP interface, and as a Java API. It uses a relational
database engine as a storage system; the current implemen-
tation uses Oracle10g, but the JDBC interface would easily
allow other relational backends, too. The various TopX com-
ponents fall into two categories: data-entry components and
query-time components.

Corpus StatisticsCorpus Statistics
Thesaurus with

Concepts, Relations,
Statistics, etc.

Thesaurus with
Concepts, Relations,

Statistics, etc. Index List Metadata
(e.g., Histograms)

Index List Metadata
(e.g., Histograms)

Inverted Index Lists
for Tag-Term Pairs

Inverted Index Lists
for Tag-Term Pairs

R
andom

 A
ccess

Cost-based
Index Access
Scheduling

Cost-based
Index Access
Scheduling

Probabilistic
Candidate Pruning

Probabilistic
Candidate Pruning

Dynamic
Query Expansion

Dynamic
Query Expansion

Top-k
Queue
Top-k
Queue

Scan threads:
Sequential Access

in descending
order of scores

Structure
Indexes

Structure
Indexes

Candidate
Queue

& Cache

TopX Core Query Processor
• Index Scans & Random Accesses
• Incremental Path Evaluation
• Score Bookkeeping & Early Termination

TopX Core Query Processor
• Index Scans & Random Accesses
• Incremental Path Evaluation
• Score Bookkeeping & Early Termination

D
at

a-
E

nt
ry

 T
im

e
Q

ue
ry

-P
rc

ce
ss

in
g

T
im

e

Indexer
& Crawler

Indexer
& Crawler

Ontology
Service

Ontology
Service

12

3

4

5

6

Fig. 1 TopX components.

At data-entry time, when new documents are entered,
the Indexer (1) parses and analyzes the data, and builds or
updates the index structures for efficient lookups of tags,
content terms, phrases, structural patterns, etc. When deal-
ing with Web or intranet or desktop data that has href hy-
perlinks, TopX can use its built-in Crawler (1) to traverse
entire graphs and gather documents. An offline Ontology
Service (2) component manages optional thesauri or light-
weight ontologies with various kinds of semantic relation-
ships among concepts and statistical weighting of relation-
ship strengths. This component makes use of WordNet [42]
and other knowledge sources such as Wikipedia.

At query-processing time, the Query Processor (3) de-
composes queries and invokes the top-k algorithms based
on index scans. It is in charge of maintaining intermediate
top-k results and candidate items in a priority queue, and it
schedules the sequential and random accesses on the pre-
computed index lists in a multi-threaded architecture. The
Query Processor can make use of several advanced compo-
nents that can be plugged in on demand and provide means
for run-time acceleration:

– The Index Access Scheduler (4) provides a suite of sche-
duling strategies for sorted and random accesses to index
entries. This includes simple heuristics that are reason-
ably effective and have very low overhead as well as ad-
vanced strategies based on probabilistic cost models that

are even better in terms of reducing index-access costs
but incur some overhead.

– The Probabilistic Candidate Pruning (5) component is
based on mathematical models for predicting scores of
candidates (based on histogram convolution and correla-
tion estimates) and also for selectivity estimation (based
on XML tag-term and twig statistics). This allows TopX
to drop candidates that are unlikely to qualify for the
top-k results at an early stage, with a controllable risk
and probabilistic result guarantees. It gives the system a
very effective way of garbage collection on its priority
queue and other in-memory data structures.

– The Dynamic Query Expansion (6) component maps the
query keywords to concepts in the available thesaurus or
ontology and incrementally generates query expansion
candidates. This is interleaved with the actual index-based
query processing, and provides TopX with an efficient
and robust expansion technique for both content terms
and XML tag names (i.e., element or attribute
names).

1.3 Contribution and Outline

This paper provides a comprehensive view of the complete
TopX system, integrating its various technical components.
The paper is based on but significantly extends earlier con-
ference papers that relate to TopX, namely [93] on prob-
abilistic methods for efficient top-k queries, [90] on effi-
cient query expansion, [91] on index-based query processing
for semistructured data in TopX, and [18] on index-access
scheduling. More specifically, the current paper makes the
following value-added contributions that extend our own
prior work: a detailed description of our scoring model for
ranked retrieval based on an XML-specific extension of the
probabilistic-IR Okapi BM25 model [79], extended tech-
niques for efficient indexing and query processing based on
hybrid forms of tree-encoding [47,48] and data-guide-like
methods [44,60], a detailed description of integrating the-
sauri and ontologies, and experimental studies on the Wiki-
pedia XML collection of the INEX 2006 benchmark. Over-
all, the research centered around TopX makes the following
major contributions:

– comprehensive support for the ranked retrieval function-
ality of XPath Full-Text [100], including a probabilis-
tic-IR scoring model for full-text content conditions and
tag-term combinations, path conditions for all XPath axes
as exact or relaxable constraints, and ontology-based re-
laxation of terms and tag names as similarity conditions
for ranked retrieval,

– efficient and scalable techniques for content-and-struc-
ture indexing and query processing, with demonstrated
good performance on large-scale benchmarks,

4

– probabilistic models for approximate top-k query pro-
cessing that predict scores in sequential index scans and
can thus accelerate queries by earlier termination and
lower memory consumption,

– judicious scheduling of sequential and random index ac-
cesses for further run-time improvements, specifically
designed for handling XML data, and

– efficient support for integrating ontologies and thesauri,
by incremental merging of index lists for on-demand,
self-throttling query expansion.

The complete TopX system is available as open source code
from the URL http://topx.sourceforge.net .

The rest of the paper is organized as follows. Section 2
reviews related work. Section 3 presents the query-language
functionality. Section 4 presents the scoring model for
ranked retrieval. Section 5 introduces the indexes and the
query processor of TopX (components (1) and (3) of Fig-
ure 1). Sections 6 and 7 discuss techniques that improve ef-
ficiency: Section 6 is on scheduling strategies for random
accesses for testing expensive predicates such as structural
path conditions (component (4)), and Section 7 is on proba-
bilistic pruning of top-k candidates (component (5)). Section
8 presents the integrated support for thesauri and ontologies
and their efficient use in query expansion (components (2)
and (6)). Section 9 extends the basic indexing scheme by
hybrid indexes for speeding up particular kinds of queries
(extension of component (1)). Section 10 discusses imple-
mentation issues. Section 11 presents our performance ex-
periments.

2 Related Work

2.1 IR on XML Data

Efficient evaluation and ranking of XML path conditions
is a very fruitful research area. Solutions include structural
joins [3], the multi-predicate merge join [103], the Staircase
join based on index structures with pre- and postorder en-
codings of elements within document trees [47] and Holistic
Twig Joins [22,59]. The latter, aka. path stack algorithm, is
probably the most efficient method [29] for twig queries us-
ing sequential scans of index lists and linked stacks in mem-
ory. However, it does not deal with uncertain structure and
does not support ranked retrieval or top-k-style threshold-
based early termination.

Vagena et al. [96] apply structural summaries to effi-
ciently evaluate twig queries on graph-structured data, and
Polyzotis et al. [75] present an efficient algorithm for com-
puting (structurally) approximate answers for twig queries.
[64] extends XQuery to support partial knowledge of the
schema. None of these papers considers result ranking and
query optimization for retrieving the top-k results only.

Information retrieval on XML data has become popu-
lar in recent years; [12] gives a comprehensive overview
of the field. Some approaches extend traditional keyword-
style querying to XML data [31,51,54]. [25,28,43,87] in-
troduced full-fledged XML query languages with rich IR
models for ranked retrieval. [25,45,70] developed extensions
of the vector space model for keyword search on XML doc-
uments, whereas [66] use language models for this purpose.
[67,83] addressed vague structural conditions, [11] combi-
ned this theme with full-text conditions, and [10] proposed
an integrated scoring model for content and vague struc-
tural conditions. More recently, various groups have started
adding IR-style keyword conditions to existing XML query
languages. TeXQuery [7] is the foundation for the W3C’s
official Full-Text extension to XPath 2.0 and XQuery [100].
[41] extends XQuery with ranking for keyword conditions
and presents a pipelined architecture for evaluating queries
but does not consider finding only the best results. [4] in-
troduced a query algebra for XML queries that integrates
IR-style query processing.

TIX [4] and TAX [58] are query algebras for XML that
integrate IR-style query processing into a pipelined query
evaluation engine. TAX comes with an efficient algorithm
for computing structural joins. The results of a query are
scored subtrees of the data; TAX provides a threshold op-
erator that drops candidate results with low scores from the
result set. TOSS [55] is an extension of TAX that integrates
ontological similarities into the TAX algebra. XFT [9] is an
algebra for complex full-text predicates on XML that comes
together with an efficient evaluation algorithm; it can be in-
tegrated with algebras for structured XML search such as
TIX.

Recent work on making XML ranked retrieval more ef-
ficient has been carried out by [61] and [68]. [61] uses path
index operations as basic steps; these are invoked within a
TA-style top-k algorithm with eager random access to in-
verted index structures. The scoring model can incorporate
distance-based scores, but the experiments in the paper are
limited to DB-style queries over a synthetic dataset rather
than XML IR in the style of the INEX benchmark [56],
which is using a large annotated collection of IEEE Com-
puter Society publications (or, lately, an annotated version
of Wikipedia).

[68] focuses on the efficient evaluation of approximate
structural matches along the lines of [7]. It provides different
query plans and can switch the current query plan at run-
time (i.e., the join order of individual tuples following ideas
of [16]) to speed up the computation of the top-k results. The
paper considers primarily structural similarity by means of
outer joins but disregards optimizations for content search.

Our own prior work on ranked XML retrieval has been
published in [18,93,90,91], we discussed the relationship of
these papers to the current paper in Section 1.3.

5

2.2 Top-k Threshold Algorithms

The state of the art on top-k queries over large disk-resident
(inverted) index lists has been defined by seminal work on
variants of so-called Threshold Algorithms (TA) [37,39,40,
49,50,73]. Assuming that entries in an index list are sorted
in descending order of scores, TA scans all query-relevant
index lists in an interleaved manner and aims to compute
“global” scores for the encountered data items by means of
a monotonic score aggregation function such as (weighted)
sum, or maximum, etc. The algorithm maintains the worst
score among the current top-k results and the best possible
score for all other candidates and items not yet encountered.
The latter then serves as a threshold for stopping the index
scans when no candidate can exceed the score of the cur-
rently kth ranked result. The algorithm comes in three vari-
ants: 1) The original TA approach eagerly looks up all lo-
cal scores of each encountered item and thus knows the full
score immediately when it first encounters the item. 2) Since
random accesses may be expensive and, depending on the
application setting, sometimes infeasible, the alternative No-
Random-Access Algorithm (NRA) (coined Stream-Combine
in [50]) merely maintains such worstscore and bestscore
bounds for data items based on partially computed aggre-
gate scores and using a priority queue for candidate items.
Its stopping test compares the worstscore of the kth ranked
result (typically coined min-k) with the bestscore of all other
candidates. 3) Hybrid approaches, such as the Combined Al-
gorithm (CA) [38], extend NRA by a simple cost-model for
a few carefully scheduled random accesses to resolve the fi-
nal scores of the most promising candidate items.

Obviously, TA is more effective in pruning the index
scans and, thus, typically stops after a lower number of over-
all index accesses than NRA; but NRA completely avoids
expensive random accesses and, therefore, can potentially
achieve better run-times. CA, finally, aims at minimizing
the overall query cost with regard to an environment-specific
cost ratio cR/cS of random versus sorted accesses and there-
fore is the most versatile approach for a wide range of sys-
tem and middleware setups.

Numerous variants of the TA family have been studied
for multimedia similarity search [27,72,98], ranking query
results from structured databases [2], and distributed pref-
erence queries over heterogeneous Internet sources such as
digital libraries, restaurant reviews, street finders, etc. [26,
69,102]. Marian et al. [69] have particularly investigated
how to deal with restrictive sources that do not allow sorted
access to their index lists and with widely varying access
costs. To this end, heuristic scheduling approaches have been
developed, but the threshold condition for stopping the algo-
rithm is a conservative TA-style test. The IR community has
also discussed various algorithms that perform smart prun-
ing of index entries in impact-sorted or frequency-sorted

inverted lists [23,71,74,13–15]; these algorithms are very
much TA-style combined with heuristic and tuning elements.
Other top-k query algorithms in the literature include nearest-
neighbor search methods based on an R-tree-like multidi-
mensional index [5,20,30,52,53] and mapping techniques
onto multidimensional range queries [21] evaluated on tra-
ditional database indexes. In this context, probabilistic es-
timators for selecting “cutoff” values have been developed
by [30,36,86] and applied to multidimensional nearest-
neighbor queries.

3 Data Model, Query Language & Representation

This section defines our data model and presents the external
and internal representations of queries in TopX. TopX sup-
ports queries according to both the highly expressive XPath
2.0 Full-Text specification [6] and the NEXI [95] language
used in the INEX benchmark series, which is narrowing the
usage of XPath axes to only the descendant (//) and the self
(.) axes and introduces an IR-style about operator instead
of ftcontains in XPath Full-Text. In the following, we will
mostly refer to the simpler NEXI syntax, as it captures most
of the expressiveness needed for IR-style vague search of
XML data considered in this paper, and, as a special case, it
allows the formulation of traditional keyword queries over
XML elements. As we will see, we allow slight, XPath-like
extensions for the path structure of the NEXI syntax.

3.1 Data Model

As for our data model, we focus on a tree model for semi-
structured data, thus following the W3C XML 1.0 and 1.1
specifications, but disregarding any kind of meta markup
(<!..>) and links in the form of XLink or ID/IDRef at-
tributes. Attributes are treated as children of the respective
element nodes, whereas text nodes are directly associated
with their preceding element parents. Section 4 provides full
details on our special handling of text nodes. Figure 6 shows
a very simple example XML document that conforms to our
model. Currently, all index structures employed by TopX as
well as our top-k-style query processing (see Section 5) rely
on data trees; a generalization to arbitrary data graphs is sub-
ject of future work.

3.2 Query Model

Figure 2 shows an example query written in a NEXI-style
syntax1.

1 Strictly speaking, this query is not valid NEXI, since it contains
a location path of more than two steps, but it would be allowed, with
different syntax, in XPath Full-Text, and is supported by TopX.

6

//article[//bib[about(.//item, W3C)]]

//sec[about(.//title, XML retrieval)]

//par[about(.,native XML databases)]

Fig. 2 NEXI-style example query.

According to both the XPath and NEXI specifications,
the rightmost, top-level node test of a location path is called
the target element of the query; all other node tests in the lo-
cation path denote the query’s support elements. That is, the
target element of the query defines the result granularity, and
in a strict interpretation of the query structure, only those el-
ements that match the query’s target element are considered
to be valid results. In the example of Figure 2 the par ele-
ment is the target element, and the nodes labeled article,
bib, item, sec, and title are support elements.

Instead of an explicit tag name, a query may also spec-
ify a wildcard ’*’ that is matched by any tag. The special
query that consists only of a tag wildcard and some content
conditions like in

//*[about(.,native XML databases)]

corresponds to a keyword-only query; following the INEX
notation, these queries are called content-only (CO) queries,
as opposed to content-and-structure (CAS) queries that con-
tain additional structural constraints. The example in Fig-
ure 2 is a CAS query.

Using the full XPath syntax including forward and back-
ward axes, path queries form directed graphs, potentially
having cycles. However, the TopX query processor is cur-
rently restricted to directed acyclic graphs (DAGs). Note that
in NEXI, using only forward axes between location steps
and the self axis only in about operators, the formulation
of queries by the user is even restricted to trees through the
syntax.

3.3 Internal Query Representation

The query interpreter analyzes the query and decomposes it
into a number of navigational and content conditions that
form the nodes of the query DAG. These nodes are con-
nected through typed edges, which we will refer to as struc-
tural constraints, each of which corresponds to an XPath
axis such as the descendant or the self axis. In the above ex-
ample query, the occurrences of elements labeled section
and title are navigational conditions, the required occur-
rences of the terms “XML” and “retrieval” in the latter el-
ement are content conditions, and the requirement that the
section element is connected to the title element by the
descendant axis is a structural constraint.

The engine’s internal representation of the query is purely
DAG-based and – after parsing the query – becomes in-
dependent of the query-language-specific syntax. Figure 3

shows such an internal representation for the example of
Figure 2. Here, the leaf nodes capture content conditions of
each about operator, all non-leaf nodes correspond to nav-
igational conditions, and the edges capture structural condi-
tions.

articlearticle

bibbib

itemitem

secsec

“W3C”“W3C”

parpar

“XML”“XML” “native”“native”

titletitle

“retrieval”“retrieval” “XML”“XML”

“databases”“databases”

// //

//// //

self self
self

self self

self

Fig. 3 Initial tree representation of the example NEXI query.

The main building blocks for the query processing are
tag-term pairs obtained from merging the tokens in the about
operators with their immediate parents in the path query.
This also works in the DAG case, since for the content con-
ditions, the last preceding navigational tag is always unique.
As we will see later, there are very efficient ways of evaluat-
ing the tag condition and the term condition of such pairs to-
gether, and we therefore merge them into combined tag-term
content conditions in a refined version of the query DAG.

Figure 4 shows the resulting structure for our example
query of Figure 2. As this structure represents multiple term
conditions for the same element in different query nodes,
we now need to explicitly express that the query result must
bind the leaves’ parents with the same navigational condi-
tion (the parents’ tag names in this case) to the very same
element of a qualifying document. For example, the three
nodes labeled parmust be bound to the same result element.
To capture this constraint, we connect all conditions that re-
fer to the same element by a structural constraint edge that
refers to the self axis (shown as dashed lines in Figure 4).

articlearticle

bibbib secsec

item=
w3c

item=
w3c

title=
xml

title=
xml

title=
retrieval

title=
retrieval

par=
native

par=
native

par=
xml

par=
xml

par=
databases

par=
databases

self self self

//

////

// // // ////

Fig. 4 DAG representation of the example query with combined tag-
term conditions.

7

Note that the query representation of the original NEXI
query tree has now become a DAG. As TopX supports all
XPath axes and thus goes beyond NEXI, structural constraints
that do not refer to the descendant axis would require fur-
ther edges. For example, if the query had a condition that
the bib element should follow the sec element, we would
simply add an edge from the sec node to the bib node refer-
ring to the following axis of XPath. This query decompo-
sition and internal DAG representation helps us to prepare
the query for efficient evaluation by means of content and
structure indexes.

To this end, it is helpful to consider also the transitive
closure of descendant-axis edges in the query DAG. This
is important when result candidates match some but not all
of the structural constraints and we are willing to relax the
structural skeleton of the query for an approximate result,
for example, when a document has title and par elements
that contain all the specified content terms but are not de-
scendants of a sec element and there may not even be a sec
element in the document.

The DAG representation can easily capture such transi-
tive constraints, as shown in Figure 5 for the example query
(where the transitive constraints are depicted as dotted lines).
We will later see that we can now conveniently view all
nodes and their outgoing edges of this transitively expanded
query DAG as the elementary query conditions on which
the query processor can operate. In slightly oversimplified
terms, the goal of the query processor then is to find doc-
uments that match as many of these elementary query con-
ditions as possible and with high scores. The actual scoring
model will be explained in the subsequent section.

articlearticle

bibbib secsec

item=
w3c

item=
w3c

title=
xml

title=
xml

title=
retrieval

title=
retrieval

par=
native

par=
native

par=
xml

par=
xml

par=
databases

par=
databases

// // // ////
// // //

// // //

//

// //

self

self

self self

Fig. 5 Transitively expanded query DAG.

Orthogonally to the query formulation, TopX can be con-
figured to return two different granularities as results: in doc-
ument mode, TopX returns the best documents for a query,
whereas in element mode, the best target elements are re-
turned, which may include several distinct elements from
the same document.

4 Relevance Scoring Model for XML Ranked Retrieval

In this section, we define our relevance scoring model that
we use for ranked retrieval of XML data. The model cap-
tures the influence of content, navigational, and structural
query conditions as defined in the previous section for IR-
enhanced path queries written in the XPath Full-Text or
NEXI syntax.

Recall that in element mode, only matches to the tar-
get element of the query are returned as results, which may
themselves be part of larger subtrees embedded into the doc-
ument tree. That is, only par elements may be returned by
the query of Figure 2. In document mode (as demanded by
some IR applications), we consider only the best of these
subtrees in the document and return either the document root
node or some user-defined entry point which may—but does
not have to—be the target element of the query (see [77] for
an IR discussion on how to determine the best entry points).
Thus, our scoring model is based on the following building
blocks (where each of the following subsections defines in
detail what a “match” and its respective score is):

1) Content-related query conditions in about operators (or
ftcontains in XPath Full-Text, respectively) are split
into combined tag-term pairs. Each matched tag-term
pair obtains a precomputed IR-style relevance score
(Subsection 4.1).

2) XPath location steps are split into single node tests. Each
navigational query condition that is not part of a tag-term
pair contributes to the aggregated score of a matched
subtree in the document by a static score mass c if all
transitively expanded structural constraints rooted at it
can be matched (Subsection 4.2).

3) In element mode, multiple valid embeddings of the query
DAG into the document tree may be found for a each tar-
get element. In this case, we return for each target ele-
ment e in document d the maximum score of all subtrees
in d that match the query DAG and contain e (Subsec-
tion 4.3).

4) In document mode, we return for each document d the
maximum score of matched target elements in d (Sub-
section 4.4).

5) In addition, Subsection 4.5 introduces IR-style exten-
sions of this scoring model to support advanced search
features like mandatory keywords, negations, and phrase
matching inside about operators.

Processing combined tag-terms as our major building blocks
for queries yields benefits for the scoring model as well as
the query processing:

– Tags provide us with an initial context for refining the
scoring weights of a given term. For example, in a corpus
of IEEE journal papers, the tag-term pairs
par=transactionsand bib=transactionsmight re-
late to different meanings of transactions.

8

– Joint tag-term pairs tighten the processing through re-
duced query dimensionality and lower joint selectivity
as compared to processing inverted lists for the respec-
tive tags and terms separately.

This model applies to both conjunctive query interpretations,
where all query conditions must be matched, and more IR-
style, so-called “andish” interpretations, where the result
ranking is only determined through score aggregations, but
some query conditions may not be matched at all.

4.1 Content Scores

We first define the partial score that an element e obtains
when matched against a single about operator in the query.
We define an element e (i.e., a node in an XML document
tree) to satisfy a tag-term content condition if e matches the
tag name, and the subtree rooted at e contains the term. We
refer to all the terms in this subtree as the full-content of the
element. More precisely, the f ull-content(e) of element e is
the concatenation of its own textual content and the textual
contents of all its descendants (in document order if ordering
is essential, e.g., for phrase matching).

The relevance of a tag-term match (e.g., derived from
term-occurrence frequencies) influences the score of the
matching element and its final ranking. More specifically,
we make use of the following statistical measures that view
the full-content of an element e with tag name A as a bag-
of-words:

1) the full-content term frequency, f t f (t,e), of term t in
element e which is the number of occurrences of t in the
full-content of e;

2) the tag frequency, NA, of tag A which is the number of
elements with tag name A in the entire corpus;

3) the element frequency, e fA(t), of term t with regard to
tag A which is the number of elements with tag name A
that contain t in their full-contents in the entire corpus.

Figure 6 depicts an XML example document, and Figure 7
illustrates our logical view of that document, with text nodes
for each element using pre- and postorder labels [47] as node
identifiers and for tree navigation. In the example, the full
term frequency (ftf) of the term xml for the root element
article has a value of 6, which reflects that the whole
article element has a high probability of being relevant for
a query containing the term xml. The tag frequency of sec
elements is Nsec = 2, whereas the tag frequency of article
elements is Narticle = 1. The element frequency of the term
xml in sec elements is e fsec(xml) = 2. Figure 7 also shows
(fictitious) content scores for some query-relevant elements
and terms.

Now consider an elementary tag-term content condition
of the form A=t where A is a tag name and t is a term that

<article id=“ieee/w4043”>
<title>XML Data Management

and Retrieval</title>
<abs>XML data management systems vary

widely in their expressive power.

</abs>
<sec>
<st>Taking the Middle Ground</st>
<par>XML management systems should perform

well for both data-oriented and information-
retrieval type queries.</par>

</sec>

<sec>
<st>Native XML Databases</st>

<par>Native XML databases

can store schemaless data.</par>
</sec>
<bib>
<item>

XML Path Language (XPath) 1.0
<url>www.w3c.org/TR/xpath</url>

</item>
</bib>

</article>

Fig. 6 Example XML document.

should occur in the full-content of an element 2. The score
of element e with tag name A for such a content condition
should reflect:

– the f t f value of the term t, thus reflecting the occurrence
statistics of the term for the element’s content,

– the specificity of the search term, with regard to tag-
name-specific e fA(t) and NA statistics for all element
tags, and

– the size and, thus, compactness of the subtree rooted at e
that contains the search term in its full-content.

Our scoring of element e with regard to condition A=t uses
formulas of the following template:

score(e,A = t) =
occurrence · speci f icity

size(e)

Here, occurrence is captured by the f t f value, specificity is
derived from the NA and e fA(t) values, and size considers
the subtree or element size for length normalization. Note
that specificity is made XML-specific by considering com-
bined tag-term frequency statistics rather than global term
statistics only.

We could now specialize this formula into a simple
TF·IDF-style measure, but an important lesson from text IR
is that the influence of the term frequency and element fre-
quency values should be sublinearly dampened to avoid a
bias for short elements with a high term frequency of a few

2 Note that we now switch to this abbreviated notation for tokenized
tag-term conditions which would conform to A[about(., t)] in the
full NEXI syntax.

9

itemitem

articlearticle

bibbibsecsecsecsec

“xml
data
management

retrieval”

titletitle absabs

“xml data
management

systems
vary widely
expressive

power“
“native xml
databases”

“native xml
databases
system store
schemaless
data“

stst parpar

1 13

2 1 3 2 7 8

8 6 9 7

“take middle
ground”

“xml management
systems perform
well data-oriented
information retrieval
type queries“

stst parpar

4 5

5 3 6 4

urlurl

10 11

11 10

12 9

“xml path
language
xpath 1.0”

“www w3c
org tr xpath”

idid
13 12 “ieee

w4043”

0.5retrieval
0.4xml

0.6xml
0.7databases

0.9native

0.2w3c0.3xml

Fig. 7 Logical view of the document with some example full-content scores for the query-relevant elements.

rare terms. Likewise, the instantiation of compactness in the
above formula should also use a dampened form of element
size. To address these considerations, we have adopted the
popular and empirically very successful Okapi BM25 scor-
ing model (originating from probabilistic IR for text docu-
ments [79]) to our XML setting, thus leading to the follow-
ing scoring function:

score(e,A = t) = (1)

(k1 + 1) f t f (t,e)
K + f t f (t,e)

· log

(
NA − e fA(t)+ 0.5

e fA(t)+ 0.5

)

with K =

k1

(
(1−b)+ b

∑s∈ f ull content o f e f t f (s,e)
avg{∑s′ f t f (s′,e′) | e′ with tag A}

)

Note that the function includes the tunable parameters k 1

and b just like the original BM25 model. The modified func-
tion provides a dampened influence of the f t f and e f parts,
as well as a compactness-based normalization that takes the
average compactness of each element type into account.

For an about operator with multiple terms that is at-
tached to an element e, the aggregated score of e is simply
computed as the sum of the element’s scores over the indi-
vidual tag-term conditions, i.e.:

score(e,q) = (2)

score(e,A[about(.,t1, . . . ,tm)) =
m

∑
i=1

score(e,A = ti)

Note that predicates of the form about(.//A, t1, . . . ,tm)
and A[about(., t1, . . . ,tm)] are treated equivalently in our
setting (due to merging terms with their immediate parent
tag).

4.2 Structural Scores

Our structural scoring model essentially counts the number
of navigational (i.e., tag-only) query conditions that are sat-
isfied by a result candidate and thus connect the content con-
ditions matched for the different about operators. It assigns
a small, constant, and tunable score mass c for every nav-
igational condition that is matched and not itself part of a
tag-term pair. Recall that every navigational condition cor-
responds to exactly one node in the query DAG. A naviga-
tional condition is matched by an element e in document d,
if all the structural constraints, i.e., the element’s outgoing
edges, of the transitively expanded query DAG are satisfied.

To illustrate this approach, consider the example query
of Figure 2 and its transitively expanded query DAG shown
in Figure 5. The DAG has 14 descendant edges, some re-
flecting the 8 original descendant-axis conditions, some their
transitive expansions; we do not consider the self axis edges
between content conditions here. A structurally perfect re-
sult would match all 14 edges for the 3 non-leaf nodes of
the query DAG, earning a structure score of 3 ·c for the nav-
igational query conditions article, bib, and sec. When
matching the structural constraints against the document tree
in Figure 7, we see that our example document is only a
near match to the structure of the query, since the title
element matching the title=XML and title= retrieval
conditions is in fact a sibling of the sec containing a par
element that is matching the par=native, par=XML, and
par=databases conditions, rather than a descendant as de-
manded by the query. Thus, any (partial) embedding of the
query DAG into this document tree misses at least one struc-
tural score c for the unmatched navigational sec condition.

While our current use of the tunable parameter c is rel-
atively crude (our experiments simply set c = 1.0 with con-

10

tent scores being normalized to ≤ 1.0 and thus put high
emphasis on structural constraints), our scoring framework
could be easily refined in various ways. We could introduce
different c values for different types of structural constraints,
for example, specific for the tag names of a query-DAG edge
or specific for the axis that an edge captures (e.g., giving
higher weight to descendant-axis edges than to following-
axis or sibling-axis edges). Or we could even make c depen-
dent on the goodness of an approximate structural match; for
example, when a child-axis edge is not matched but the can-
didate result has a descendant-axis connection with match-
ing tag names, we may still assign a relatively high c value
(but lower than for a perfect child-axis match). Studying
such extensions is left for future work.

4.3 Element Scores

In element mode, our algorithm returns a ranked list of tar-
get elements per document, using the target element as well
as connected support elements of the query to aggregate
scores from different navigational and content conditions
that match the query DAG. For matches from multiple docu-
ments, these ranked lists of target elements are then merged
to yield the final result ranking of target elements across doc-
uments.

We define T (d) as the set of all elements in d that match
the target element of the query; for example, any par ele-
ment of d is a potential result of our example query. When
aggregating scores for a target element e∈T (d) from all ele-
mentary content conditions C (i.e., tag-term pairs) and nav-
igational conditions N that are not part of a tag-term pair,
we need to find valid embeddings of the query DAG into the
document tree in the form of connected subtrees Trees(e)
that contain e. For each such subtree, the total score is the
sum of the scores for all satisfied content and structure con-
ditions. Since there may be multiple such embeddings for
each target element, we define the score of a target element
e to be the maximum aggregated score among all these em-
beddings S ∈ Trees(e).

score(e,q) = (3)

max
S∈Trees(e)

{
∑

e′∈S∩C

score(e′,q) + ∑
e′∈S∩N

c

}

Finding these subtree embeddings is a well studied problem
in XPath query processing [3,22,47,59,103]. Details for our
incremental, top-k-style XPath algorithm are discussed in
Section 5.3.

In Figure 7, we have two matches par[6,4] and par[9,7]
of target elements for our example query. The corresponding
tree embeddings are shown in Figure 8. Here, par[6,4] only
matches the condition par=xml with a content score 0.3,
and additionally aggregates content scores of 0.2, 0.4 and

itemitem

articlearticle

bibbibsecsec

titletitle

1 13

2 1

parpar

4 5

6 4

10 11

11 10

0.5retrieval
0.4xml

0.2w3c0.3xml

itemitem

articlearticle

bibbibsecsec

titletitle

1 13

2 1

parpar

7 8

9 7

10 11

11 10

0.5retrieval
0.4xml

0.2w3c
0.6xml
0.7databases

0.9native

Fig. 8 Two embeddings of the query DAG from Figure 5 into the doc-
ument tree of Figure 7.

0.5 for the matches to item=w3c, title=xml and title=
retrieval, respectively. It additionally aggregates a struc-
tural score of 2 · c for the matches of the two article and
bib navigational conditions, as all transitive structural con-
straints rooted at these elements are satisfied. Setting c =
1.0, this yields a total score of 3.4 for par[6,4]. Similarly, the
aggregated score of par[9,7] is 0.9+0.6+0.7+0.2+0.4+0.5+1
+1=5.3, and probably yields a better result for the query.

Note that the value of the tunable constant c determines
whether we favor matching the query structure or the con-
tent conditions in the non-conjunctive (i.e., “andish”) mode.
A large value of c tends to dominate the content conditions
and will make the algorithm choose results that match the
support elements of the query and neglect lower-scored con-
tent conditions that do not match the structure. A low value
of c, on the other hand, tends to favor the content conditions
and might still accept some support elements remaining un-
matched among the top-ranked results. As an example for
this, assume that our example document contains another
item element with a high-scoring match for item=w3c, but
connected to a list parent. In this situation, there would be
another possible embedding that contains par[9,7], which
is shown in Figure 9. Using the default value c = 1.0, this
embedding would get a total score of 4.9 as it earns only
one structural score c (for the article match), even though
its content score is better than in the embedding shown in
Figure 8. If we set c = 0.2, the embedding with the list
element gets a total score of 4.1 because of its high-scoring
content match, which is higher than the score 3.7 of the other

11

embedding. In conjunctive mode, on the other hand, when
all query conditions have to be matched by all valid results,
tuning c would indeed affect the absolute scores but not the
ranking among results.

articlearticle

secsec

titletitle

1 13

2 1

parpar

7 8

9 7

0.5retrieval
0.4xml

0.6xml
0.7databases

0.9native

itemitem

listlist
12 12

13 11

0.8w3c

Fig. 9 Additional embedding in a slightly changed document.

4.4 Document Scores

In document mode, every document d inherits the score of
its highest-scoring target element e ∈ T (d), and these doc-
ument scores determine the output ranking among docu-
ments.

score(d,q) = max
e∈T (d)

{score(e,q)} (4)

For our example document and query this is p[9,7] with a
score of 5.3.

For an andish query evaluation with only partial knowl-
edge on a document’s content and structure, score(d,q)
should be a lower bound for the final score of the docu-
ment at any time of the evaluation, and this score should
monotonically increase as we gain more knowledge about
both the content and structure of a result candidate. Efficient
algorithms for this type of processing are discussed in Sec-
tion 5.

4.5 IR Extensions for Advanced Query Features

4.5.1 Mandatory Terms

Unlike in a database-style boolean query, terms marked as
mandatory reflect the user’s intention that the terms will
most likely occur in relevant documents, but there may as
well be some relevant documents that do not contain the
terms. Hence such conditions should not be evaluated as
strict boolean filters, but instead boost the score of a doc-
ument that satisfies them.

Formally, let M ⊆ {1, . . . ,m} be a set of content con-
ditions marked by a ’+’, to denote that the corresponding

terms must occur in results. Then the aggregated score of a
candidate element e of document d is defined as

score(e, ti) =

⎧⎨
⎩

(βi + si(e)) f or d ∈ Li

0 otherwise
(5)

with βi = 1 for i∈M and βi = 0 otherwise. This way, manda-
tory terms are boosted by an additional boost factor β i for
elements that occur in the inverted list for condition i. If β i

is chosen reasonably large (again in an IR-style notion of
vague search), e.g., βi = 1 for i ∈ M, elements that match
the mandatory conditions are very likely to be among the
top matches regardless of their actual local scores si(e).

4.5.2 Negations

The semantics of negations for non-conjunctive (i.e., andish)
query evaluation is all but trivial. To cite the authors of the
NEXI specification [95], “the user would be surprised if a
’−’ word is found among the retrieved results”. This leaves
some leeway for interpretation and commonly leads to the
conclusion that the negated term should merely lead to a
certain score penalty and should not completely eliminate
all documents containing one of the negated tag-term pairs
like in a conjunctive setup. Thus, for higher recall, a match
to a negated query condition does not necessarily render the
result irrelevant, if good matches to other content-related
query conditions are detected.

In contrast to mandatory search conditions, the scoring
of negated tag-term pairs is defined to be constant and inde-
pendent of the tag-term pair’s actual content score s i(d). So
a result candidate merely accumulates some additional static
score mass if it does not match the negated tag-term pair. Let
N ⊆ {1, . . . ,m} be the set of content conditions marked by
a ’−’, then the aggregated score of a candidate item e is de-
fined as

score(e, ti) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

si(e) f or i /∈ N ∧ f t f (ti,e) > 0

βi f or i ∈ N ∧ f t f (ti,e) = 0

0 otherwise

(6)

with βi = 1 for i ∈ N and 0 otherwise.

4.5.3 Phrases

Phrases in content conditions are considered as hard con-
ditions, i.e., an element is only considered a match for a
content condition with a phrase if it contains the phrase at
least once in its full content. Its score is then, for simplic-
ity, the sum of the scores of the phrase’s terms. Similarly
to the single-term negations, phrase negations are defined
to yield a static score mass βi for each candidate that does
not contain the negated phrase. Single-term occurrences of

12

the negated phrase’s terms are allowed, though, and do not
contribute to the final element score unless they are also con-
tained in the remaining query.

5 Query Processing

The TopX query processor is responsible for the index-based
top-k query processing and candidate bookkeeping. The al-
gorithmic skeleton is based on the Combined Algorithm (CA
for short, see Section 2.2), which combines sequential scans
of inverted index lists with random lookups of index entries.
CA uses a round-robin-like – but multi-threaded and batched
– sorted access (SA) procedure as a baseline. These SA’s ac-
cess the precomputed inverted lists, where each inverted list
captures all elements satisfying an elementary tag-term con-
dition, sorted by descending score (hence the name “sorted
access”).

The TopX core algorithm is extended by a random ac-
cess (RA) scheduler to resolve pending conditions by ran-
dom accesses to specific entries of the inverted lists and
other index structures. This enables TopX to resolve nav-
igational and more complex full-text query predicates like
phrase conditions that could not (or only with very high
costs) be resolved through sorted access to the inverted lists
alone.

In this section we focus on the SA procedure for query
processing and the score bookkeeping. We postpone a de-
tailed discussion of the RA scheduling to Section 6. In the
following subsections, we first introduce the index structures
and access primitives that we build on in Subsection 5.1,
then present our basic top-k query processor and its score
bookkeeping for handling text and tag-term content condi-
tions in Subsection 5.2, and finally discuss how to integrate
XPath structural conditions by incremental path evaluation
in Subsection 5.3.1.

5.1 Index Structures

TopX uses two major kinds of indexes for content conditions
and for structural conditions, and also employs a position
index for testing textual phrase conditions. All indexes are
implemented using a relational DBMS as a storage backend
and leveraging its built-in B+-trees (see Section 10).

The indexes have the following conceptual organization:

– Tag-term index: For each tag-term pair we have an in-
verted list with index entries of the form
(tag, term, docid, pre, post, level, score, maxscore)
where pre and post are the pre/postorder encoding [47]
of the element (pre is also used as a unique element id
within a document), level is its depth in the tree, score is
the element’s score for the tag-term condition, and maxs-
core is the largest score of any element within the given

document for the same tag-term condition. The entries
in an inverted list for a (tag,term) pair are sorted in a so-
phisticated order to aid the query processor, namely, in
descending order of the (maxscore, docid, score) values
(i.e., using maxscore as a primary sort criterion, docid as
a secondary criterion, and score as a tertiary criterion).

– Structure index: We encode the locations of elements in
documents in a way that gives us efficient tests for the
various XPath axes, e.g., to test whether an element is a
descendant of another element. To this end we precom-
pute for each tag index entries of the form
(tag, docid, pre, post, level)
where pre and post encode an element’s id and naviga-
tional position and level is the element’s depth in its cor-
responding document tree. These index entries are ac-
cessed only by random lookups for given elements.

– Position index: For each term we have index entries of
the form
(term, docid, pos)
where pos is the position of the term occurrence in the
document. This index is used only for random lookups
of such positions in order to test for phrase matches.

The reason for the sophisticated sort order of index en-
tries in the tag-term inverted lists is the following. Our goal
is to process matching elements in descending order of
scores, according to the TA paradigm, but in addition we
would also like to process all elements within the same doc-
ument and the same tag-term match in one batch as this sim-
plifies the testing of structural conditions (to be discussed
below). Ordering the index entries by (maxscore, docid,
score) yields the highest-scoring matches first but groups all
elements of the same document together. Thus, when fetch-
ing the next element in score order, we can automatically
prefetch all other elements from the same document (within
the same inverted list). We refer to this extension of the tra-
ditional one-entry-at-a-time scanning as sorted block-scans.

An XML element is identified by the combination of the
document identifier docid and the element’s preorder label
pre. Navigation along the various XPath axes is supported
by the pre and post attributes of the structure-index entries
using the technique by [47]. pre is the rank of an element
in a preorder traversal of the corresponding document tree,
and post is the rank in postorder traversal. This gives us an
efficient test as to whether an element e1 is an ancestor of an-
other element e2 (within the same document) by evaluating
pre(e1) < pre(e2) and post(e1) > post(e2), with analogous
support for all the 13 XPath axes, including the child axis
by extending this schema with the level information.

Among the above indexes, the tag-term index is used for
both sequential scans and random access, whereas the struc-
ture index and the position index are used for random access
only. When we scan index entries of the tag-term inverted
lists, we immediately see not only the id of an element but

13

actually its full (pre, post, level) coordinates. We can keep
this in the candidate cache in memory, and when we later
want to compare another encountered element to a previ-
ously seen one, we can perform all XPath axis tests in an
extremely efficient way. In addition, the structure-index B +-
tree provides us with random lookups when needed.

To support also plain text indexing of entire documents
(not necessarily only in XML format), we introduce a spe-
cial virtual element for each document with the reserved vir-
tual tag name *, and post a corresponding index entry to the
tag-term index. This gives us efficient support for document-
level term-only search. Similarly, tag-only lookup is sup-
ported by the structure-index access path.

5.2 Basic Top-k Query Processing

In order to find the top-k matches for a CAS query with
m content and n structural constraints, scoring, and rank-
ing them, TopX scans all tag-term index lists for the con-
tent conditions of the decomposed query in an interleaved
manner. Without loss of generality, we assume that these are
the index lists numbered L1 through Lm. In each scan step,
the engine reads a large step of b consecutive index entries
(with the tunable parameter b typically being in the order of
hundreds or thousands). These batches include one or more
element blocks that correspond to all elements of the same
document in the same index list. The element blocks are then
hash-joined with the partial results for the same document
previously seen in other index lists. These hash joins take
place in memory and immediately test the navigational con-
straints specified in the query using the pre/post encodings
stored in the inverted lists. Also, scores are aggregated and
incrementally updated into a global score at this point. Note
that the way we focus on inexpensive sequential scans leaves
uncertainty about the final scores of candidates and there-
fore implies some form of internal bookkeeping and priority
queue management not only for the intermediate top-k re-
sults, but for all candidates that may still qualify for the final
top-k.

When scanning the m index lists, the query processor
collects candidates for the query result and maintains them
in two such priority queues: one for the current top-k items,
and another one for all remaining candidates that could still
make it into the final top-k. The core query processor main-
tains the following state information:

– the current cursor position posi for each list Li,
– the score values highi at the current cursor positions,

which serve as upper bounds for the unknown scores in
the lists’ tails,

– a set of current top-k items, d1 through dk (renumbered
to reflect their current ranks) and a set of documents d j

for j = k + 1..k + q in the current candidate queue Q,
following a basic data structure containing
– a set of evaluated query dimensions (i.e., tag-term

index lists) E(d) in which d has already been seen
during the sequential scans or by random lookups,

– a set of remainder query dimensions Ē(d) for which
the score of d is still unknown,

– a lower bound worstscore(d) for the total score of d,
– an upper bound bestscore(d) for the total score of d,

which is equal to
bestscore(d) := worstscore(d)+ ∑

ν∈Ē(d)

highν (7)

(which is not actually stored but rather computed
from worstscore(d) and the current highν values
whenever needed).

Unlike the text-only case considered in the initial TA
family, we cannot derive the worstscore(d) bound for a doc-
ument d simply from the scores for the already evaluated
conditions, as this would only be a loose lower bound for the
actual value of worstscore(d). Instead, to compute worstscore(d),
we have to take into account the structural conditions which
makes computing this bound more complex. Section 5.3 ex-
plains in detail how worstscore bounds are computed in this
case.

In addition, the following information is derived at each
step:

– the minimum worstscore of the current top-k results,
coined min-k, which serves as the stopping threshold,

– and for each candidate, a score deficit δ (d) = min-k−
worstscore(d) that d would have to reach in order to
qualify for the current top-k.

The invariant that separates the top-k list from the re-
maining candidates is that the rank-k worstscore of the top-k
queue is at least as high as the best worstscore in the candi-
date queue. The algorithm can safely terminate, thus yield-
ing the correct top-k results, when the maximum bestscore
of the candidate queue is not larger than the rank-k worstscore
of the current top-k, i.e., when

min
d∈top-k

{worstscore(d)}︸ ︷︷ ︸
=: min-k

≥ max
d /∈top-k

{bestscore(d)} (8)

We will refer to Equation 8 as the min-k threshold test. More
generally, whenever a candidate in the queue Q has a
bestscore that is not higher than min-k, this candidate can
be pruned from the queue. Early termination (i.e., the point
when the queue becomes empty) is one goal of efficient
top-k processing, but early pruning to keep the queue and
its memory consumption small is an equally important goal
(and is not necessarily implied by early termination). Fig-
ure 10 illustrates the corresponding bookkeeping for the in-
termediate top-k result queue and the candidate queue.

14

sc
or

e

current top-k

min-k

candidates in Q

worstscore(d)

bestscore(d)

(d)

Fig. 10 Top-k and candidate bookkeeping.

We maintain two priority queues in memory to imple-
ment the threshold test: one for the current top-k results with
items prioritized in ascending order of worstscores, and one
for the currently best candidates with items prioritized in de-
scending order of bestscores. The first queue contains only
items whose worstscore(d) ≥ min-k and the latter has items
whose worstscore(d) ≤ min-k but whose bestscore(d) >

min-k.
Note that keeping a large candidate priority queue in

memory at any time of the query processing may be expen-
sive. Efficient implementations of the basic TA algorithm
may deviate from the strict notion of instantaneously main-
tained priority queues. Alternative approaches may use a
bounded queue or merely keep all valid candidates in an un-
sorted pool and iterate over that pool periodically, e.g., after
large batches of b sorted access steps (with b in the order of
hundreds or thousands of individual index entries) or when-
ever needed to test the stopping condition.

5.3 Incremental XPath Evaluation

Whenever the index scans have fetched a document’s ele-
ment block for an elementary content condition, we com-
pare this set against other element blocks from the same
document, namely those that we have already found through
sorted block-scans on index lists for other query conditions.
At this point, we compare element blocks for the same doc-
ument against each other, thus testing structure conditions
and aggregating local scores. This is performed efficiently
using in-memory hash joins on the pre and post labels. Doc-
uments that have at least one element in each element block
satisfying all structure conditions that can be tested so far are
kept for later testing of additional conditions; all other can-
didates can be pruned to save valuable main memory. The
document’s worstscore is defined as the highest worstscore
among the elements (and their embeddings in the document)
that match the query’s target element.

In document mode, we use the worstscore of the rank-
k document of the current top-k document list to determine
the min-k threshold as before; in element mode, we use the
worstscore of the rank-k element among the current top-k
documents to determine the min-k threshold.

5.3.1 Incremental Path Algorithm

The in-memory structural joins for a candidate d are per-
formed incrementally after each sequential block-scan on d
on a different tag-term index list, i.e., whenever we gain ad-
ditional information about a candidate document’s element
structure. In the following we describe the algorithm for
these joins in more detail. We introduce a novel approach
for incremental path testing that combines hash joins for
content-related query conditions and staircase joins (from
the XPath Accelerator work [47,48]) for the structure.

articlearticle

bibbib secsec

item=
w3c

item=
w3c

title=
xml

title=
retrieval

par=
native

par=
xml

par=
database

1.0 [1, 419]

1.0 [398, 418]

0.096 [402, 412]

1.0 [37, 46]

1.0 [49, 166]

1.0 [169, 348]

1.0 [351, 389]
1.0 [392, 395]

0.309 [50, 165]

0.211 [170, 347]

0.163 [352, 388]
0.113 [38, 45]

0.115 [352, 388] 0.173 [71, 69]

0.171 [68, 66]

0.159 [163, 161]

0.149 [347, 343]

0.136 [166, 164]

0.125 [354, 353]
0.112 [313, 311]

0.101 [55, 53]

0.099 [329, 326]

0.087 [357, 359]

0.085 [324, 321]

0.071 [389, 388]

0.068 [354, 353]
0.041 [375, 378]

0.022 [372, 371]

0.242 [354, 353]
0.185 [357, 359]

0.160 [65, 64]

Fig. 11 Path evaluation on a candidate’s element structure for the
query of Figure 2.

Figure 11 first illustrates the algorithm for a fully eval-
uated candidate document d and the example query of Fig-
ure 2; we will later extend the approach for partially evalu-
ated candidates. The figure shows all element blocks for d
depicted as (score, [pre, post]) triples for all element blocks
that have been mapped to the individual nodes of the query
DAG. This is the case when all query conditions have been
successfully tested on d by a combination of sorted and ran-
dom accesses to our indexes. We denote the element block of
document d associated with query node n as elements(d,n).
For example, the rightmost element block in Figure 11

par=database

0.071 [389, 388]
0.068 [354, 353]
0.041 [375, 378]
0.022 [372, 371]

15

refers to the element block of candidate d for the target con-
tent condition par=database (including stemming) of the
example query of Figure 2. Each of the entries represents
a distinct element of the candidate document d. The bold-
face element entry 0.068 [354, 353] refers to the par el-
ement with the pre label 354 matching the (stemmed) term
“database” among its full-contents. This element has the high-
est total content score for the three keywords “native”, “xml”,
and “database”, and in fact, this element also aggregates the
highest overall score with regard to the whole query. Thus,
it will determine the document’s final score.

The incremental path algorithm performs a recursive tree
traversal along the node structure of the query, with individ-
ual elements e ∈ elements(d,n) being joined at each query
node n for score aggregation. Note that, although d has valid
matches for each of the query conditions, it is still possible
that the entire query is not satisfied by d in a conjunctive
sense, since at least one element embedding has to form a
connected path structure that matches the whole query pat-
tern. Since only those elements that are specified as target
elements by the query are defined to be valid result elements
and to obtain a non-zero score, we have to start evaluating
the candidate at the elements matching a target query con-
dition which corresponds to the par node in our example.
Starting with these targets, we traverse the query tree in two
opposite directions to make sure we start with a valid result
element. For each of the target elements, we aim at maxi-
mizing the aggregated score of a connected path from a tar-
get leaf, via its parent nodes, and down to its valid siblings.
The top-scoring target element finally yields the document’s
score.

In the example structure of Figure 11, we initialize the
algorithm by first hash-joining (on the element id) all ele-
ment blocks for the three query conditions that refer to the
target par element, namely the par=native, par=xml and
par=databas content conditions, grouping all scores for
the same element. We see that the par=native condition
has only few matches with 3 matching elements for that can-
didate; par=xml has the highest number of results, namely,
11 matches; and par=database has 4 matches. After hash-
joining all three element blocks for that query target dimen-
sion, there are still 15 distinct target elements left, each of
which is already a valid match for the query (namely, the 15
distinct elements in the union of the three blocks for the par
element).

For each of these, we have to start a recursive tree traver-
sal for the remaining query dimensions and scores to com-
bine them with elements found for them, using staircase
joins to test the structural conditions. For simplicity, we only
consider the element with the preorder label 354 (empha-
sized in boldface) here, which yields the best aggregated
score of 0.435 so far. The parent query condition sec yields
5 more elements out of which only the one with the preorder

label 351 qualifies for further traversal by its pre- and pos-
torder labels. Navigating down from there, we find a title
element that satisfies the descendant constraint and hence
adds a content score of 0.278 to the overall score of element
354. Coming back to the sec element, element 354 accu-
mulates a structural score of 1.0 as all structural constraints
for the section element are satisfied. Similarly, the second
parent iteration yields the only article root element with
a preorder label of 1 and a static local score of 1.0. From
here, we recursively navigate down two levels via the bib
and item=w3c query conditions which are also found to pro-
vide valid element matches that contribute to the aggregated
score of element 354 with values of 1.0 and 0.096, respec-
tively, after checking their pre- and postorder labels. Finally,
element 354 obtains an aggregated score of 3.809 which also
makes it the top-scored element out of the 15 distinct target
elements for the target par condition. Note that it is also the
only element that satisfies this query in a conjunctive sense.

Conjunctive Mode: The algorithm has the option to termi-
nate an element’s evaluation in conjunctive mode if any sub-
tree recursion or single query dimension yields a local score
of 0 for the path traversal on that candidate. The evaluation
in conjunctive mode considers if at least one query condi-
tion i

1) has not been fully evaluated yet (∃i with i /∈E(d)) through
the sequential block-scans, so we do not yet know if the
candidate will still satisfy the query conjunctively, and
the candidate is kept in the queue,

2) has been tested (i.e., i ∈ E(d)), e.g., through a random
lookup, but the inverted list Li does not contain any match
for that document, and the candidate is dropped, or

3) has been tested (i.e., i ∈ E(d)), but there is no valid path
from a target element to any of the elements at dimen-
sion i based on their pre/postorder labels, and the candi-
date is dropped.

In all three cases, the document and, thus, all its tar-
get elements obtain a worstscore(d) of 0. In the first case,
bestscore(d) is assigned a positive value as the document is
not yet evaluated at all query dimensions and may still pro-
vide a valid path match for all query conditions. Note that we
may already take partial knowledge about the candidate’s
structure into account in order to provide a bestscore(d)
bound that is as tight as possible. In the latter two cases,
the document obtains also a bestscore(d) = 0, and thus the
evaluation of d terminates, and d can be safely pruned.

Andish Mode: In andish mode, the evaluation of d is not ter-
minated due to a single failed query condition, but
worstscore(d) is increased as soon as one of the query’s tar-
get elements is positively matched against d and it further
increases with more satisfied conditions for further support

16

elements that are connected to the target element. Similarly,
bestscore(d) is not reset to 0 if a single condition fails, but
the algorithm assumes that other element blocks for the re-
maining query conditions may still contribute to the doc-
ument’s score, even if we cannot match any path starting
from a target element in the sense of a Boolean XPath-like
evaluation anymore.

Unsurprisingly – but in contrast to conventional data-
base queries – conjunctive query evaluations are more ex-
pensive to evaluate for a top-k engine than the andish coun-
terpart, because the [worstscore(d),bestscore(d)] intervals
converge more slowly and low-scoring content matches can-
not be compensated for queries with a drastically reduced
conjunctive join selectivity. In the following, we will focus
on the andish evaluation strategy as the more interesting but
also more difficult case for XML IR involving incremen-
tal path validations. The conjunctive mode is kept as an op-
tion to support Boolean-XPath-like query evaluations as de-
manded by some applications.

5.3.2 Optimizations for Partially Evaluated Candidates

Now consider the situation with partially evaluated candi-
dates, i.e., with element blocks available in memory for some
but not all nodes of the query DAG. To resolve this situa-
tion, we introduce the notions of virtual support elements
and virtual target elements. They provide means for achiev-
ing tighter worstscore bounds early in the execution, so that
the pruning of candidates works more effectively.

Virtual Support Elements: With only partial knowledge about
the document structure, our query processing algorithm could
erroneously terminate evaluations when the path structure is
interrupted at any node in the query DAG (the same issue
would arise with any other XML join algorithm.). In the ex-
ample structure of Figure 12, the evaluation cannot continue
after the hash joins on the target elements as no matches for
the sec conditions are available; so the worstscore bound
would be 0.410 (which is way off from the final score of
that document, namely, 3.809). Moreover, if the query tar-
get node has not yet been evaluated, there would not even
be an anchor node to start the evaluation process, because
the remainder of the candidate’s element structure would
simply not be reachable. This would render the worstscore
and bestscore bounds overly conservative and slow down
the top-k query processor.

In order to avoid these situations, we introduce the no-
tion of virtual support elements for the inner nodes of the
query DAG with a local score of 0 and an any-match option
for the pre- and postorder-based staircase joins, thus concep-
tually attaching entries of the form

0.0 [*, *]

articlearticle

bibbib secsec

item=
w3c

item=
w3c

title=
xml

title=
retrieval

par=
native

par=
xml

par=
database

0.096 [402, 412] 0.242 [354, 353]
0.185 [357, 359]

0.160 [65, 64]

0.071 [389, 388]

0.068 [354, 353]
0.041 [375, 378]

0.022 [372, 371]

Fig. 12 Partially evaluated candidates.

to each element block. These “wildcard” elements may be
joined with any “real” element-block or with other virtual
support elements for navigation through unevaluated navi-
gational query conditions. Even after an element-block for
an inner node is fetched from disk, we keep the virtual nav-
igational element for that node. This way, the content nodes
serve as synapses for connecting subtrees, without having
to necessarily make the actual random lookup for the con-
necting path condition. In andish evaluation mode, we can
now safely increase the worstscore of a candidate d without
having to assume a connected path structure, and this allows
us to compute tighter worstscore and bestscore bounds tak-
ing into account all the evaluated query conditions. In many
cases, the bestscore of a candidate document based on its
content-related query conditions might already make it eli-
gible for pruning without having to perform the actual ran-
dom lookups for the structural conditions.

Virtual Target Elements: As mentioned above, the lack of
a target element in a candidate’s currently known element
structure would prevent our algorithm from further process-
ing the candidate and would keep the bestscore bound un-
necessarily high. Similarly to the virtual support elements,
which mainly serve to reason more accurately about a can-
didate’s worstscore, we also introduce the notion of virtual
target elements with a local score of 0 and the same any-
match option for the pre- and postorder-based staircase joins.
The difference between the two kinds of virtual elements is
that a virtual target element helps us to more accurately re-
strict a candidate’s bestscore, whereas the worstscore has to
be zero anyway as long as no valid target element has been
detected.

6 Random Access Scheduling

The query processing algorithm presented in the previous
section is driven by sequential scans on the tag-term index
lists, and its incremental path evaluation aims to piggyback

17

the testing of structural conditions on these scans or post-
pone them altogether. However, there are various situations
in which extra tests with higher costs are unavoidable. We
refer to such tests as expensive predicates. Probing candi-
dates as to whether they satisfy such a predicate will involve
random accesses (RA’s) to structure indexes and possibly
other disk-resident data structures. In this section, we will
first characterize expensive predicates in Subsection 6.1, and
then we will discuss heuristics for scheduling the necessary
probing steps in Subsection 6.2. In addition, it turns out that
we can turn the impediment of having to perform some ran-
dom accesses into an opportunity: sometimes it can be ben-
eficial from an overall efficiency viewpoint to deviate from
the sequential scan strategy and schedule judiciously chosen
random-access steps at appropriate points even for tag-term
conditions. In certain situations, such a mixed strategy of in-
terleaving sequential accesses with random accesses allows
pruning of result candidates and may terminate the threshold
algorithm much earlier. Therefore, we have developed also
a cost-based scheduling method for deciding when to issue
random accesses; this will be presented in Subsection 6.3.

6.1 Expensive Predicates

Certain structural conditions in queries cannot be tested by
sorted access to the tag-term index alone, and TopX then re-
sorts to random accesses on the structure index. Also, auxil-
iary query hints in the form of expensive text predicates like
phrases (“. . . ”), mandatory terms (+), and negations (−) are
often used to improve the retrieval effectiveness and may re-
quire random accesses to disk-resident data structures. The
challenge for a top-k query processor lies in the efficient im-
plementation of these additional query constraints and their
integration into the sorted vs. random access scheduling
paradigm. Thus, generalizing the notion of expensive pred-
icates defined in [26], a query predicate is considered ex-
pensive if it cannot be resolved at all through sorted access
alone or relying on sorted access alone would entail very
high costs (e.g., because it would need scan an index list
(almost) to its very end).

It follows that tag-only structural conditions (i.e., with-
out an associated content term) are expensive, because they
cannot be tested with inverted indexes on tag-term pairs at
all but require random accesses to the structure index. The
author//affiliation condition in the query
//book[about(., Information Retrieval XML)]//
author//affiliationwould be an example. Phrase tests
are expensive because they require additional accesses to po-
sitional information that is not included in the inverted lists,
and negations are expensive because, unless we performed
a random access to test the absence of an element in an in-
verted list, we would have to scan entire lists regardless of
the document’s score in a negated condition.

6.2 Min-Probe Heuristics

The key idea of our probing heuristics is to postpone the
testing of expensive predicates by RA’s as much as possible,
and perform these tests only when their evaluation would
push a candidate into the current top-k results. To this end we
maintain a score gap value for each candidate, which is the
additional score mass that the candidate would immediately
earn if we now learned that all expensive predicates were
true. To this end we extend our run-time data structures by
two additional bit vectors for each candidate in the pool:

– P(d): a set of unevaluated expensive predicates in con-
tent conditions, e.g., phrase conditions, that d still has to
match, and

– O(d): a set of unevaluated structural conditions that d
still has to match.

P(d) and O(d) are dependent on the structure of the query
at hand. Suppose the query has m content conditions and n
structural conditions. Then initially P(d) ⊆ {1, . . . ,m} con-
tains those content conditions that refer to expensive pred-
icates such as phrase conditions, and O(d) is initialized by
{1, . . . ,n}, i.e., contains all structural conditions in the query.
For example, in the query

//article//sec[about(.,undersea “fiber optics cable” -satellite)

the initial P(d) for each candidate contains the conditions
“sec=fiber” (2), “sec=optics” (3), “sec=cable” (4) because
of the phrase condition, and “sec=satellite” (5) for the nega-
tion, but not “sec=undersea” (1) as this is not involved in any
expensive predicate; thus we set P(d) = {2,3,4,5}.

We define the score gap gapP(d) that a candidate d can
earn for the conditions in P(d) as the accumulated score
from content conditions that have already been evaluated on
the tag-term index with scores si(e) for elements in d:

gapP(d) =
m

∑
i=1

si(e) f or i ∈ E(d)∩P(d) (9)

Without knowing that the conditions in P(d) are actually sat-
isfied, the worstscore bookkeeping for the candidate d could
not consider this score mass. Only when we know that the
expensive predicates in P(d) do indeed hold, we can safely
increase the worstscore of d by gapP(d).

Analogously, we define the score gap gapO(d) as the
score mass that a candidate would accumulate if all struc-
tural conditions in O(d) were now known to be true for the
candidate:

gapO(d) =
n

∑
i=1

c (10)

where c is the constant defined in Section 4.2. The overall
gap gap(d) of a document d is then defined as the sum of
gapP(d) and gapO(d). The gap of a document represents the

18

maximal additional score the document would achieve if all
expensive predicates were evaluated to true.

In order to keep the updates for a candidate’s score
bounds monotonic, the lower worstscore(d) bound of a can-
didate must not include any evaluated conditions that belong
to an expensive predicate, i.e., it can only consider condi-
tions in E(d) \P(d). So we are conservative on the worst-
score bound. The bestscore bound, on the other hand, re-
mains unaffected, because, even when we have not yet tested
a predicate, we can be sure that d will not accumulate more
score mass than we already assumed for the best possible
case.

Now we are in a position to define our Min-Probe sche-
duling heuristics: we schedule the RA’s for all i ∈ P(d) only
if

worstscore(d)+ gap(d) > min-k (11)

which is the natural adaptation of the necessary-predicate-
probe strategy of [26] to our setting where SA’s are consid-
ered inexpensive and RA’s expensive.

The value of gap(d) increases whenever we see a can-
didate in list i ∈ E(d) during the index scans; so our heuris-
tic scheduling criterion tends to be fulfilled only at a late
stage of the query processing for most candidates. In fact,
we schedule RAs for the unresolved predicates on d only
if we know that this will promote the candidate to the (cur-
rent) top-k results and will then lead to an increase of the
min-k threshold (which in turn would typically lead to an
increased pruning of remaining candidates). This way, only
the most promising candidates are tested; for the great ma-
jority of candidates, worstscore(d)+ gap(d) will never ex-
ceed min-k.

Note that a sequence of RA’s to test multiple expensive
predicates for the same candidate can be terminated as soon
as bestscore(d) ≤ min-k, i.e., the candidate fails on suffi-
ciently many conditions and is then dropped from the queue.
This additional optimization is easily implemented using our
run-time data structures for bookkeeping.

6.3 Cost-Based Random Access Scheduling

While the Min-Probe scheduling heuristics presented in the
previous subsection is light-weight in terms of overhead, it
does not take into account the actual benefit/cost ratio of ran-
dom vs. sorted accesses and would never consider RA’s for
tag-term conditions. This subsection presents the Ben-Probe
scheduler that applies a cost model to choose the next oper-
ation among sorted accesses, random accesses for content
conditions, and random accesses for expensive predicates
(limited to structural conditions here for clarity of presen-
tation).

Ben-Probe estimates the probability p(d) that document
d, which has been seen in the tag-term index lists E(d) and

has not yet been encountered in lists Ē(d) = [1..m]−E(d),
qualifies for the final top-k result by a combined score pre-
dictor and selectivity estimator. These predictors are explained
below.

We break down the query structure into the following
basic subquery patterns:

– tag-term pairs: for content conditions
– descendants: tag pairs for transitively expanded descen-

dant conditions
– twigs: tag triples of branching path elements for transi-

tively expanded descendant conditions

We estimate, whenever we consider scheduling RA’s for a
candidate d, the selectivity of the o(d) not yet evaluated nav-
igational conditions using these patterns.Here the selectivity
σi of a navigational condition oi is the estimated probability
that a randomly drawn candidate satisfies the navigational
condition oi. We estimate these selectivities by precomputed
corpus frequencies of ancestor-descendant and branching
path elements, i.e., pairs and triples of tags. Note that this
is a simple form of an XML synopsis for this kind of statis-
tics management. It could be replaced by more advanced
approaches such as those in [1,65,76,101], but our exper-
iments indicate that our simple approach already yields a
very effective method for pruning and identifying which can-
didate should be tested when by explicitly scheduled RA’s.

The Ben-Probe scheduler compares the cost of making
random accesses 1) to inverted tag-term index lists or 2)
to indexes for navigational conditions versus 3) the cost of
proceeding with the sorted-access index scans. For all three
cost categories, we consider the expected wasted cost (EWC)
which is the expected number of random or sorted accesses
that our decision would incur but would not be made by an
(hypothesized) optimal schedule that could make random
lookups only for the final top-k and would traverse index
lists with different and minimal depths.

For looking up unknown scores of a candidate d in the
index lists Ē(d), we would incur |Ē(d)| random accesses
which are wasted if d does not qualify for the final top-k
result (even after considering the additional score mass from
E(d)). We can estimate this probability as

P[d /∈ top-k] = 1− p(d)

= 1− pS(d) ·q(d) , (12)

where q(d) is our selectivity estimator (see below) and pS(d)
is the score predictor

pS(d) = P

[
∑

i∈Ē(d)

Si > δ (d) | Si ≤ highi

]
(13)

where δ (d) = min-k−worstscore(d)− o(d) · c, Si denotes
the random variable which captures the probabilistic event
that document d has a score of si(d) for content condition i,
and o(d) is the number of currently unevaluated navigational

19

conditions for d. Since this may involve the sum of two or
more random variables, this entails computing the convolu-
tion of the corresponding index lists’ score distributions to
compute this probability, using either a parameterized score
estimator or compact and flexible histograms (see [93] for
details). q(d) is a correlation-aware selectivity estimator

q(d) =

(
1 − ∏

i∈Ē(d)

(
1− max

j∈E(d)

li j

l j

))
(14)

where l j denotes the length of list L j, and li j denotes the
(estimated) number of documents that occur in both L i and
Lj (see [18] for a more detailed derivation). Note that this
way, we are able to incorporate any available information
about score convolutions, index list selectivities, and corre-
lations between tag-term pairs into the final estimation of
p(d).Then the random accesses to resolve the missing tag-
term scores have expected wasted cost:

EWCRA-C(d) := |E(d)| · (1− pS(d) ·q(d)) · cR

cS
(15)

where cR
cS

is the cost ratio of RA’s and SA’s.
As for path conditions, the random accesses to resolve

all o(d) navigational conditions are “wasted cost” if the can-
didate does not make it into the final top-k, which happens if
the number of satisfied conditions is not large enough to ac-
cumulate enough score mass. Recall from our scoring model
that each satisfied navigational condition earns a static score
mass c. Denoting the set of unevaluated navigational con-
ditions as Y , we can compute the probability q ′(d) that a
candidate d accumulates enough score mass for navigational
constraints to achieve, together with additional scores from
content conditions, a score above min-k:

q′(d) = ∑
Y ′⊆Y

P[Y ′ is satis f ied]

·P
⎡
⎣ ∑

i∈E(d)

Si > min-k−worstscore(d)−|Y ′| · c
⎤
⎦

where the sum ranges over all subsets Y ′ of the remaining
navigational conditions Y . P[Y ′ is satis f ied] is estimated as

P[Y ′ is satis f ied] = ∏
ν∈Y ′

σν · ∏
ν /∈Y ′

(1−σν) , (16)

assuming independence for tractability; here, the σ ν are the
selectivities of the unevaluated navigational conditions. For
efficiency, rather than summing up over the full amount of
subsets Y ′ ⊆ Y , a lower-bound approximation can be used.
That is, we do not consider all subsets Y ′ but only those that
correspond to a greedy order of evaluating the navigational
conditions in ascending order of selectivity, thus yielding a
lower bound for the true cost. Then the random accesses for
path and twig conditions have expected wasted cost:

EWCRA-S(d) := o(d) ·q′(d) · cR

cS
(17)

The next batch of b sorted accesses to each content-
related index list incurs a fractional cost for each candidate
in the priority queue, and the total cost is shared by all can-
didates in the candidate priority queue Q. For a candidate
d, the sorted accesses are wasted if either we do not learn
any new information about the total score of d, that is, when
we do not encounter d in any of the lists in Ē(d), or if we
encounter d, but it does not make it to the top-k. The proba-
bility qb

i (d) of not seeing d in the ith list in the next b steps
is defined as

qb
i (d) = 1−P[d in next b elements of Li | i ∈ E(d)]

= 1− li − posi

n
· b

li − posi

= 1− b
n

(18)

where li is the length of the ith list, posi is the current scan
position in that list, and n is the number of documents.
We can compute the probability qb(d) of seeing d in at least
one list in the batch of size b as:

qb(d) = 1−P[d not seen in any list]

= 1− ∏
i∈Ē(d)

qb
i (d) (19)

So the probability of not seeing d in any list is 1− qb(d).
The probability that d is seen in at least one list, but does not
make it into the top-k, can be computed as

qb
S(d) := (1− pS(d)) ·qb(d) (20)

The total costs for the next batch of b sorted accesses in each
of the m tag-term index lists is shared by all candidates in Q,
and this finally incurs expected wasted cost:

EWCSA :=
b ·m
|Q| · ∑

d∈Q

qb
S(d)

=
b ·m
|Q| · ∑

d∈Q

(
(1−qb(d))+ (1− pS(d)) ·qb(d)

)

=
b ·m
|Q| · ∑

d∈Q

(
1− pS(d) ·qb(d)

)
(21)

We initiate the random accesses for tag-term score lookups
and for navigational conditions for a candidate d if and only
if

EWCRA-C(d) < EWCSA ∧ EWCRA-S(d) < EWCSA

with RA’s weighted to SA’s according to the cost ratio cR/cS.
We actually perform the random accesses one at a time in
ascending order of content-related (for tag-term pairs) and
structural selectivities (for navigational conditions). Candi-
dates that can no longer qualify for the top-k are eliminated
as early as possible and further random accesses for them
are canceled.

20

7 Probabilistic Candidate Pruning

The TA-style min-k threshold test is often unnecessarily con-
servative, because the expected remainder score of a docu-
ment is typically much lower than the actual sum of the high i

bounds for i /∈ E(d) at the current scan positions, which
could make more candidates eligible for pruning at an early
stage of the query processing. Of course, using plain ex-
pectations for pruning would not give us guarantees for not
missing any of the true top-k results. But we would expect
that the final sum of the si(d) scores in the remainder set
Ē(d) is lower than the sum of the highi bounds with very
high probability. Thus, we refer to Equation 22 as the prob-
abilistic threshold test:

p(d) ≤ ε (22)

That is, if the probability p(d) (the probability that the
document qualifies for the final top-k introduced in the pre-
vious section) was below some threshold ε , e.g., between
1 and 10 percent, then we might decide to disregard d and
drop the candidate from the queue without computing its full
score, thus introducing a notion of approximate top-k query
processing but with a controlled pruning aggressiveness for
which we can derive probabilistic guarantees for the result
precision.

The previous considerations provide us with score pre-
dictions for individual candidate items at arbitrary steps dur-
ing the sequential index accesses. These probabilistic pre-
dictions in our query processing strategies lead to proba-
bilistic guarantees from a user viewpoint, if we restrict the
action upon a failed threshold test to dropping candidates,
but we still stop the entire algorithm only if the entire queue
runs out of candidates. In this case the probability of missing
an object that should be in the true top-k result is the same
as erroneously dropping a candidate, i.e., pruning errors are
assumed to be uniformly distributed among all items discov-
ered during index processing; and this error, call it p miss, is
bounded by the probability ε that we use in the probabilistic
predictor when assessing a candidate. For the relative recall
of the top-k result, i.e., the fraction of true top-k objects that
the approximate method returns, this means that

P[recall = r/k] =

P[precision = r/k] =

=
(

k
r

)
(1− pmiss)r pmiss

(k−r)

≤
(

k
r

)
(1− ε)rε(k−r) (23)

where r denotes the number of correct results in the ap-
proximate top-k. We can then efficiently compute Chernoff-
Hoeffding bounds for this binomial distribution.

Note that the very same probabilistic guarantee holds for
the precision of the returned top-k result, simply because

recall and precision use the same denominator k in this case.
The predicted expected precision then is

E [precision] =
k

∑
r=0

P [precision = r/k] · r
k

= 1− ε (24)

This result yields a compact and intuitive assumption on
the result quality that the approximate top-k algorithms pro-
vides compared to the exact top-k algorithm without proba-
bilistic pruning in terms of relative precision or recall, i.e.,
the overlap of two result sets.

In practice, the score differences between the top-ranked
items are often very marginal for many real-world, large
corpora and scoring models such as TF·IDF or BM25. Our
experiments on various data collections using human rele-
vance judgments for query results indicate that with increas-
ing pruning aggressiveness, the user-perceived result quality
decreases at a much lower rate than the relative overlap mea-
sures.

8 Dynamic & Incremental Query Expansion

Query expansion is a successful method to improve recall
for difficult queries. Traditional query expansion methods
select expansion terms whose thematic similarity to the orig-
inal query terms are above some specified threshold, e.g.,
using the Rocchio [80] method or Robertson and Spärck-
Jones [78] weights, thus generating a non-conjunctive (or
“andish”) query of much higher dimensionality. However,
these methods typically incur three disadvantages: (1) the
threshold for selecting expansion terms needs to be care-
fully handtuned for each query, (2) an inappropriate choice
of the threshold may result in either not improving recall (if
the threshold is set too conservatively) or in topic dilution
(if the query is expanded too aggressively), and (3) the ex-
pansion may often result in queries with a large number of
terms, which in turn leads to poor efficiency when evaluat-
ing such expanded queries. For XML, these problems are
even worse, as not only terms can be expanded, but also
tags; while we focus on term expansions in this paper, the
proposed techniques can be applied for expanding tags as
well.

The query expansion approach used in TopX addresses
all three problems by dynamically and incrementally merg-
ing the inverted lists for the potential expansion terms with
the lists for the original query terms. We introduce a novel
notion of best match score aggregation that only allows for
the best match per expansion group to contribute to the fi-
nal score, thus reflecting the semantic structure of the query
directly in the query processing and score aggregation. The
algorithm is implemented as an Incremental Merge operator
that can be smoothly integrated with the query processing

21

framework presented before. In the following, we first in-
troduce thesaurus-based query expansion in Subsection 8.1.
Subsection 8.2 then shows how incremental expansion of
single query terms is integrated in the query processing, and
Subsection 8.3 explains how expansions of phrases are pro-
cessed.

8.1 Thesaurus-based Query Expansion

We generate potential expansion terms for queries using a
thesaurus database based on WordNet [42]. WordNet is the
largest electronically available, common-sense thesaurus with
more than 120,000 semantic concepts, consisting of single
terms and as well as explicitly identified phrases, and more
than 300,000 handcrafted links that define the way how the
concepts or synsets (i.e., sets of synonyms that refer to the
same meaning) in the WordNet graph are related. The ba-
sic structure of WordNet with regard to the hypernym re-
lationship is essentially that of a tree which is the reason
why WordNet is often referred to as a hierarchical thesaurus
(HT).

8.1.1 Word Sense Disambiguation

Query expansion techniques used in IR typically suffer from
the following two common phenomena of word usage in nat-
ural language:

1) Polysemy: A term can have different meanings depend-
ing on the context that it is used in.

2) Synonymy: Multiple terms have the same meaning; to-
gether with 1) the situation may become mutually con-
text sensitive.

In order to address these problems, a query term t is mapped
onto a WordNet concept c by comparing some form of tex-
tual context of the query term (i.e., the description of the
query topic or the summaries of the top-10 results of the
original query when relevance feedback is available) against
the context of synsets and glosses (i.e., short descriptions)
of possible matches for c and its neighbors in the ontology
graph. The mapping uses a simple form of Word Sense Dis-
ambiguation (WSD) by choosing the concept with the high-
est similarity of each two context pairs.

As an example for our efforts, consider the term “goal”
which yields the following different word senses when
queried in WordNet:

1) {goal, end,...} – the state of affairs that a plan is intended
to achieve and that (when achieved) terminates behavior
to achieve it; “the ends justify the means”

2) {goal} – a successful attempt at scoring; “the winning
goal came with less than a minute left to play”

and two further senses. By looking up the synonyms of these
word senses, we can construct the synsets {goal, end, con-
tent, cognitive content, mental object} and {goal, score} for
the first and second meaning, respectively. As each of the
meanings is connected to different concepts in the ontology
graph, a reliable disambiguation and choice of the seed con-
cepts is a crucial precondition for any subsequent expansion
or classification technique.

Fig. 13 Visualization of the concept neighborhood graph for one pos-
sible meaning of the word ’goal’.

Now the key question is of course: which of the possible
senses of a word is the right one? Our approach to answer
this question is based on word statistics for some local con-
text of both the term that appears in a part of a document or
a keyword query and the candidate senses that are extracted
from the concept graph.

8.1.2 Independent Mapping

In [89], we coined the first approach the Independent Map-
ping or Independent Disambiguation, because each term or
n-gram (i.e., a set of n adjacent terms) out of a given word
sequence (which is a keyword query in our application) is
mapped individually onto its most likely meaning in the con-
cept graph without taking the mapping of the sequence “as a
whole” into account (considering also the relationships be-
tween the mappings of these terms or n-grams).

In order to identify the largest possible subsequences
of n-grams out of a given sequence, let us first consider a
word sequence w1, ...,wm. Starting with the first word w1

at position i = 1 in the sequence and a small lookahead
distance m′ of at most 5 words, we use a simple window
parsing technique to determine the largest subsequence of
words that can be matched with a phrase contained in Word-
Net’s synsets to identify an initial set of possible word senses
si1 , . . . ,sip . If we have successfully matched the current se-
quence

22

wi, . . . ,wi+m′ , we increment i by m′ and continue the map-
ping procedure on the suffix of the sequence; if we could
not match the current sequence onto any phrase denoted
by a WordNet concept, we decrement m ′ by 1 and try the
lookup again until m′ = 1. After performing that subroutine,
i is again incremented by 1 until i = m. Fortunately, phrases
of length 2 or 3 hardly ever exhibit more than one distinct
meaning in WordNet, whereas in fact most single keywords
match more than one semantic concept and, thus, are highly
ambiguous.

For a given term or n-gram t, we consider the query
that it occurred in as the local context con(t) of t. For a
candidate word sense s, we extract synonyms, all immedi-
ate hyponyms and hypernyms, and also the hyponyms of
the hypernyms (i.e., the siblings of s in the HT). Each of
these has a synset and also a short explanatory text, coined
“gloss” in the WordNet terminology. We form the union of
the synsets and corresponding glosses, thus constructing a
local context con(s) of sense s extracting also n-grams from
synsets and glosses. As an example, the context of sense 1
of the word “goal” (see Figure 13) corresponds to the bag
of words {goal, end, state, affairs, plan, intend, achieve, . . .,
content, cognitive content, mental object, perceived, discov-
ered, learned, . . ., aim, object, objective, target, goal, in-
tended, attained, . . . }, whereas sense 2 would be expanded
into {goal, successful, attempt, scoring, winning, goal, mi-
nute, play, . . ., score, act, game, sport, . . . }.

The final step toward disambiguating the mapping of a
term onto a word sense is to compare the term context con(t)
with the context of candidate concepts con(s1) through
con(sp) in terms of a similarity measure between two bags
of words. The standard IR measure for this purpose would
be the cosine similarity between con(t) and con(s j), or alter-
natively the Kullback-Leibler divergence [17] between the
two word frequency distributions (note that the context con-
struction may add the same word multiple times, and this
information is kept in the word bag). Our implementation
uses the Cosine [17] similarity between the TF·IDF vectors
of con(t) and con(s j) for its simpler computation.

Finally, we map term t onto that sense s j whose context
has the highest similarity, i.e., the lowest cosine distance, to
con(t). We denote this word sense as sense(t). If there is no
overlap at all, e.g., if the context denoted by a keyword query
consists only of a single term, namely the one that is about
to be expanded, we choose the sense that has the highest
a-priory probability, i.e., the one with the lowest IDF-value.

8.1.3 Edge Similarities

There have been various efforts proposed in the literature
aiming to quantify semantic similarities of concepts in Word-
Net [42]. We believe that among the most promising ones
are those that aim to model concept similarities on the basis

of term and phrase correlations over large, real-world data
collections. These measures exploit co-occurrence statistics
for terms (or n-gram phrases) to estimate the semantic re-
latedness of terms and, hence, concepts in a given corpus.
Ideally, this is the same corpus that is also used for query-
ing. A measure often referred to for this purpose is the Dice
coefficient.

As for Dice coefficients, the similarity between to senses
S1 and S2 is defined as:

dice(S1,S2) := maxS1×S2

{
2 · d f (t1,i ∧ t2, j)

d f (t1,i)+ d f (t2, j)

}
(25)

where t1,i ∈ S1 and t2, j ∈ S2, respectively, and d f (t1,i ∧ t2, j)
is the cardinality of documents that contain both t1,i and t2, j.

8.1.4 Path Similarities

To implement the similarity search for two arbitrary, not di-
rectly connected concepts S1 and S2, we employ Dijkstra’s
shortest path algorithm [33] to find the shortest connection
between S1 and S2. Then, interpreting the edge similarities
as transition probabilities, the senses’ final path similarity
sim(S1,S2) for a path 〈v1, . . . ,vk〉 of length k with v0 = S1

and vk = S2 and 〈vi,vi+1〉 ∈ V for i = i, . . . ,k− 1 is defined
as

sim(S1,S2) :=
k−1

∏
i=1

dice(vi,vi+1) (26)

If there is more than one path that minimizes the length,
we choose the one with highest path similarity sim to yield
the final concept similarity.

8.2 Incremental Merge Operator

TopX can either automatically expand all terms and/or tags
in a query or only those where the user requested expansion;
this is done using the ∼ operator as in the query
//article[about(∼title,∼xml)]. For simplicity, we
discuss only expansion of terms; the expansion of tags can
be implemented analogously.

For an elementary content condition of the form A =∼ t i

and an expansion set exp(ti) = {ti1, . . . ,tip} with correspond-
ing similarities sim(ti, ti j), we merge the corresponding p in-
verted index lists Li1 . . .Lip in descending order of the com-
bined maxscore that results from the maximum local score
si j(d) of an expansion term ti j in any element of a docu-
ment d and the thesaurus-based similarity sim(t i, ti j), keep-
ing the block structure intact. Moreover, to reduce the dan-
ger of topic drift, we consider for any element e only its
maximum combined score from any of these lists, i.e.,

score(e,A =∼ ti) := max
ti j∈exp(ti)

sim(ti, ti j) · score(e,A = ti j)(27)

23

with analogous formulations for the worstscore(d) and
bestscore(d) bounds as used in the baseline top-k algorithm.

The actual set of expansions is typically chosen such that
for a content condition A=∼ ti, we first look up the potential
expansion terms ti j ∈ exp(ti) with sim(ti,ti j) > θ , where θ is
a fine-tuning threshold for limiting exp(t i). It is important to
note that this is not the usual kind of threshold used in query
expansion; it is merely needed to upper-bound the potential
expansion sets and to yield a baseline for comparisons to a
static expansion technique. Then the index lists for the ex-
panded content conditions A=ti1, A=ti2, . . . are merged on de-
mand (and, hence, incrementally) until the min-kthreshold
termination at the enclosing top-k operator is reached, by
using the following scheduling procedure for the index scan
steps: the next scan step is always performed on the list Li j

with the currently highest value of sim(ti,ti j) ·highi j, where
highi j is the last score seen in the index scan (i.e., the upper
bound for the unvisited part of the list). This procedure guar-
antees that index entries are consumed in exactly the right
order of descending sim(ti,ti j) ·si j(d) products. Figure 14 il-
lustrates this process. Here, the scan starts with the list for
A=t1 with a combined upper bound of 1.0 · 0.9 = 0.9 and
continues until the block for document d1 is encountered.
As the maxscore of this block (1.0 · 0.4 = 0.4) is below the
upper bound of the list for A=t2 (0.9 · 0.8 = 0.82), the scan
continues in that list.

~A=t

Large corpus
statistics

Large corpus
statistics

sim(t, t1) = 1.0sim(t, t1) = 1.0

exp(t) = { t1, t2, t3 }

sim(t, t2) = 0.9sim(t, t2) = 0.9

sim(t, t3) = 0.5 sim(t, t3) = 0.5

A=t1 ...
d78
0.9

d1
0.4

d88
0.3

d23
0.8

d10
0.8

0.4

A=t3 ...
d99
0.7

d34
0.6

d11
0.9

d78
0.9

d64
0.7

d78
0.9

d23
0.8

d10
0.8

d64
0.72

d23
0.72

d10
0.63

d11
0.45

d78
0.45

d1
0.4 ...

...d12
0.2

d78
0.1

d64
0.8

d23
0.8

d10
0.7A=t2

0.9

0.72

0.350.45

Thesaurus/ontology
lookups

Thesaurus/ontology
lookups

Index list meta data
(e.g., histograms)

Index list meta data
(e.g., histograms)

Expansion terms

Expansion similarities

Initial high-scores

0.18

Fig. 14 Example schedule for Incremental Merge.

The scans on the expansionindex lists are opened as late
as possible, namely, when we actually want to fetch the first
index entry from such a list. Thus, resources associated with
index-scan cursors are also allocated on demand.

As a side effect of combining multiple lists, documents
and elements may occur multiple times in the merged out-
put. We cannot easily drop all but the first occurrence of
a document as different elements from following blocks in
other lists could satisfy the structural constraints and lead
to subtrees with higher total scores. Hence, dropping them
would make us run into the danger of reporting false neg-

atives and potentially prune candidates from the top-level
queue too early. However, these potential matches can eas-
ily be detected through further merging the expanded lists
and iteratively polling the Incremental Merge operator for
the next element block in descending order of the combined
similarity and block scores. This yields a new, more con-
servative bestscore bound that considers for already evalu-
ated incremental merge dimensions, instead of the already
known score, the maximum of this score and the current
highi bound for this dimension.

8.3 Evaluating Expanded Phrases

If a term is expanded into at least one phrase, local scores
for this expansion cannot be fetched from materialized index
lists but need themselves to be computed dynamically. This
poses a major problem to any top-k algorithm that wants to
primarily use sorted accesses. A possible remedy would be
that the global top-k operator “guesses” a value k ′ and asks
the dynamic source to compute its top-k ′ results upfront,
with k′ being sufficiently large so that the global operator
never needs any scores of items that are not in the local top-
k′. We believe that this is unsatisfactory, since it inherently
is very difficult to choose an appropriate (i.e., safe and tight)
value for k′, and this approach would destroy the incremen-
tal and pipelined nature of our desired operator architecture.

TopX treats such situations by running a nested top-k
operator on the dynamic data source(s), which iteratively
reports candidates to the caller (i.e., the global top-k op-
erator), and efficiently synchronizes the candidate priority
queues of caller and callee. The callee starts computing a
top-∞ result in an incremental manner, by whatever means it
has; in particular, it may use a TA-style method itself with-
out a specified target k, hence top-∞. It gradually builds a
candidate queue with [worstscore′(d),bestscore′(d)] inter-
vals for each candidate d. The caller periodically polls the
nested top-k operator for its currently best intermediate re-
sults with their score intervals. Now the caller integrates this
information into its own bookkeeping by adding bestscores
to the bestscores of its global candidates and worstscores
to the worstscores of its global candidates. From this point,
the caller’s processing simply follows the standard top-k al-
gorithm (but with score intervals). This method nicely pro-
vides a non-blocking pipelining between caller and callees,
and gives the callees leeway as to how exactly they proceed
for computing their top results. Note that the caller may ter-
minate (and terminate all callees) long before a callee has
really computed its final top results.

Within the TopX engine, nested top-k operators are pri-
marily useful for handling phrase matching in combination
with query expansion. In general, it will be too expensive to
precompute and materialize an inverted list for all possible
phrases. But if we merely index the individual words, we

24

cannot simply look up the combined scores in local index
lists as we would need for an Incremental Merge. Our so-
lution is to encapsulate phrase conditions in separate top-k
operators and invoke these from the global top-k operator in
the pipelined manner described above.

For an Incremental Merge expansion that includes at least
one phrase, we incrementally merge lists of partially eval-
uated candidates obtained from a nested top-k operator for
each phrase in descending order of candidate bestscores. For
single-keyword expansions, the score obtained from a single
inverted list will already be the final score for that candidate
and expansion; for phrase expansions, the score will be a
partial score obtained from one or more local keyword con-
ditions of the phrase.

0.215 [354, 353]
0.097 [357, 359]

0.020 [65, 64]

par=
native

par=
xml

par=
~database

0.173 [71, 69]

0.171 [68, 66]

0.159 [163, 161]

0.149 [347, 343]

0.136 [166, 164]

0.125 [354, 353]
0.112 [313, 311]

0.101 [55, 53]

0.099 [329, 326]

0.087 [357, 359]

0.085 [324, 321]

0.234 [389, 388]

0.128 [354, 353]
0.105 [375, 378]

0.092 [372, 371]

0.043 [357, 359]

0.242 [354, 353]
0.185 [357, 359]

0.160 [65, 64]

……

par=
database

par=
“data base”

par=
storedge

Incr.MergeIncr.Merge

Nested
Top-k

0.071 [389, 388]

0.068 [354, 353]
0.041 [375, 378]

0.022 [372, 371]

0.686 [389, 388]

0.568 [354, 353]

par=
data

par=
base

1.0 1.0 0.8

0.8 0.8

Fig. 15 Dynamic expansion of a content condition with a phrase.

Figure 15 depicts the situation for an example expansion
of the tag-term pair par=database into par=database,
par=‘‘data base’’, and par=storedge having similar-
ities 1.0, 1.0, and 0.8, respectively. A nested top-k operator
is utilized to generate a dynamic index list for the phrase
expansion par= ‘‘data base’’ which aggregates phrase
scores with respect to individual element scores. Phrase tests
are now used to prune individual elements and do not nec-
essarily render the whole candidate document invalid, when
the test failed only for some of the elements.

9 Hybrid Index Structures

As shown in Section 5.1, the pre/postorder labeling sche-
me can efficiently evaluate the descendant axis in location
paths. However, it might degenerate for deeply nested path
expressions with low selectivity (i.e., few matches), because

they require many joins to evaluate. Data-guides [44], on the
other hand, with their ability to encode entire location paths
into a single label or bucket id, are a perfect method to ad-
dress this issue, but they do not support the descendant axis
in location paths well. Although we might try to precompute
all descendant path relaxations and materialize them in our
inverted index for all bucketid-term pairs, this would hardly
be feasible for an XML collection with a complex schema
or diverse structure such as the INEX IEEE collection.

As an example, consider the seemingly inconspicuous
path expression

//article//sec//p

which contains three descendant-axis steps and yields ex-
actly 520 distinct bucket ids (i.e., distinct root-to-leaf paths)
in the data-guide structure for the INEX IEEE collection.
Thus, an intriguing idea would be to perform the relaxation
(for a reasonable amount of choices in the expansion pos-
sibilities) again directly in the query processor, now using
the Incremental Merge approach to dynamically expand a
location path with descendant steps into a number of similar
paths using the child axis only.

Incorporating data-guides in our structure-aware query
processing requires significant extensions of our data struc-
tures. Analogously to the tag-term index that includes the
pre/postorder labeling scheme, we now index and query for
bucketid-term pairs as the main building blocks for our query
processing strategies. This bucketid-term index contains, for
each bucketid-term pair, entries of the form
(bucketid, term, docid, pre, post, level, score, maxscore)
that are sorted in the same block structure as the tag-term
index. We also maintain a bucket index that corresponds to
the structure index and contains, for each bucket id, entries
of the form
(bucketid, docid, pre, post, level).
The data-guide and all its distinct path-to-bucketid mappings
can typically be kept in-memory for the type of document
collections we investigate; into main memory when the en-
gine starts. The memory consumption of the data-guide is
typically negligible; for the INEX IEEE collection the data-
guide has about 10,000 distinct path entries.

Each content condition in the query now opens a sequen-
tial scan on this index. All assumptions on random accesses
for content and navigational conditions follow analogously
to the pre/postorder labeling scheme. Using bucketid-term
pairs for querying only provides a structural filter for ele-
ment contents, since the paths do not provide unique iden-
tifiers for the elements as required for joining their scores.
In particular, evaluating branching path queries only on the
basis of data-guides would make us run into the danger of
returning false positives. Therefore, structural joins are fur-
thermore performed on the pre-/postorder labels in the form
of a hybrid index which serves two purposes:

25

1) We use data-guides for query rewriting only, and encode
whole paths into a compact bucket id with lower selec-
tivity than simple tags.

2) We perform structural joins on pre-/postorder labels, and
thus are able to reuse our efficient join algorithm and
implementation.

The latter point enables the query rewriter to dynamically
select the most appropriate index structure for individual
query nodes and to efficiently process mixed query condi-
tions, with some navigational conditions referring to data-
guide locators and some using individual tag conditions.

Figure 16 depicts the approach for the example location
path //article//sec//par that is merged into a content
condition with the term “database”. Let us assume that the
data-guide lookup yields only three different matching paths
with respect to the child axis, namely for /article/sec/par,
/article/sec/ss1/par, and /article/sec/ss2/par.
Note that it is also possible to incorporate path similarities
at this point, e.g., along the lines of [81,82], as indicated by
the figure. An Incremental Merge operator is used to deter-
mine the order in which inverted index lists for the respec-
tive bucket-id-term pairs are merged, again merging whole
element blocks and propagating them for the structural joins
with other element blocks at different query dimensions for
each candidate.

//article//sec////article//sec//

/article/sec/p=
database

0.071 [389, 388]

0.068 [354, 353]
0.041 [375, 378]

0.022 [372, 371]

0.8
/article/sec/ss1/p=

database
/article/sec/ss2/p=

database

Incr.MergeIncr.Merge

0.91.0

//article//sec//p=
database

0.373 [71, 69]

0.274 [68, 66]

0.259 [163, 161]

0.249 [347, 343]

0.237 [166, 164]

0.173 [354, 353]

0.432 [354, 353]
0.342 [313, 311]

0.301 [55, 53]

0.299 [329, 326]

0.187 [357, 359]

0.035 [324, 321]

Fig. 16 Dynamic expansion of the descendant axis for a data-guide-
like location path.

The query rewriter can incrementally query the data-
guide for all path prefixes and break up the location path
into a tag sequence (thus switching from data-guides to the
pre/postorder scheme) as soon as the amount of distinct bucket
ids for the path prefix exceeds a certain threshold value. The
exact
choice on when to keep a location path with descendant
steps for being processed with a data-guide, and when to
split the path into a sequence of single navigational tags is

collection-dependent. Initializing a huge amount of database
cursors for the Incremental Merge algorithm may become
more expensive than the actual query execution; we found a
threshold of 12–24 a good choice for the INEX IEEE col-
lection. Although we do not consider data-guides to be a
panacea for addressing lowly selective structure (with few
matches), dynamically switching between data-guides and
tag-term pairs in fact allows us to efficiently cover a broad
range of XML data collections with different structural char-
acteristics.

Note that supporting data-guides and tag-term pairs si-
multaneously in our inverted block-index organization is
space-consuming, since it roughly doubles the index size.
The decision on whether to index a collection using only
data-guides or only tag-term pairs depends on the amount
of variations of paths in the collection, thus considering the
different salient properties of each index structure. Note that
the compact in-memory data-guide may be further kept for
filtering invalid edges in the pre/postorder mode, too, pre-
venting the algorithm from performing unnecessary random
lookups for generally unsatisfiable structural constraints.

10 Implementation

10.1 Database-Backed Index Implementation

TopX uses a relational DBMS as a storage backend. In the
following, we discuss the schema setup using Oracle 10g
with the option of leveraging space-efficient Index Only Ta-
bles (IOTs) [57] and the index key compression feature for
our primary storage structures; all schema definitions can be
transfered analogously to other DBMS’s or file managers.

The tag-term index is implemented by an IOT with at-
tributes concatenated in the order (tag, term, maxscore, do-
cid, score, pre, post, level). This is directly used for effi-
cient sequential scanning of index lists for tag-term pairs.
To also enable efficient random access to the tag-term index,
we have created a B+-tree index over the complete range of
attributes in this table in the order (docid, tag, term, score,
maxscore, pre, post, level). By keeping all query-relevant
attributes redundantly in the index (and thus forcing a full
replication of the data), we prevent the DBMS from per-
forming more expensive index-access-per-rowid plans (i.e.,
hidden random accesses between the index and the base ta-
ble).

The structure index is implemented as another IOT with
attributes concatenated in the order (docid, tag, pre, post,
level). There are similar database tables for the hybrid in-
dexes discussed in Section 9.

26

10.2 Multi-threaded Query Processing

The general TopX architecture comprises a three-tier, multi-
threaded hierarchy consisting of

1) the main thread that periodically maintains the data struc-
ture for the candidate bookkeeping and optionally up-
dates the probabilistic predictors for candidate pruning
and the adaptive scheduling decisions after each batch
of b sorted index accesses,

2) the scan threads that iteratively read and join input tu-
ples on top of the list buffers for a batch of b sorted ac-
cesses, and

3) the buffer threads that continuously refill a small buffer
cache and control the actual disk I/O for each index list.

This three-level architecture builds on the observation that
candidate pruning and scheduling decisions incur overhead
and should be done only periodically, and joining and eval-
uating score bounds for candidate may incur high CPU load
(in particular for path query evaluations), whereas the actual
sequential index accesses are not critical in terms of CPU
load.

To optimize query execution time, we need to ensure
continuous and asynchronous disk operations throughout the
whole query processing. With the above strategy of divid-
ing index scans and candidate pruning into different threads,
disk operations might get temporarily interrupted at the syn-
chronization points, namely when all scan threads are sus-
pended and the main thread is active with pruning. There-
fore, apart from the result set prefetching at the database
connector (e.g., ODBC or JDBC) or disk caching effects
(which we cannot easily control), we add an additional small
buffer for each physically stored index list that does not
exceed the default batch size that is initially scheduled for
the first round of round-robin-like index list accesses (e.g.,
a maximum of 1,000 tuples). We add an additional tier of
buffer threads responsible for the actual disk reads and buffered
index lists lookups to completely decouple the physical I/O
performance from the query processing.

Then all scan threads solely work on top of these buffers
which are constantly refilled by the tier of decoupled buffer
threads with asynchronous disk I/O until the query process-
ing terminates. This way, we experience no startup delays
after notifying the scan thread which makes multi-threaded
scheduling with different batch sizes per thread feasible, be-
cause the disk operations are not interrupted. The actual buf-
fer threads are suspended, too, when the intermediate read
buffer is filled to the maximum value, and they are notified
when the buffer falls below some minimum fill threshold
(e.g., a minimum of 100 tuples). The maximum buffer sizes
may be chosen proportionally to the size b of the sched-
uled batches. Note that random accesses are triggered by
the main thread that directly accesses the inverted lists. This

type of access greatly benefits from the internal page-caching
strategy of the underlying DBMS.

Figures 17 and 18 demonstrate the advantages of the
multi-threading architecture in two small experiments, both
conducting a batch of 50 TREC 2003 Web track queries for
the topic distillation task on the GOV collection [34], but
on two different hardware configurations. Figure 17 shows
a wallclock run-time of 35.2 seconds for both the multi-
and single threaded configuration (the latter scheduling SA
batches in a simple round-robin style) using a single-CPU
notebook (with a 1.6 GHz Centrino CPU) connected to an
Oracle server via a 1 Gigabit LAN. This demonstrates the
I/O boundedness of the algorithm for this particular config-
uration which is exactly what we would expect. The situa-
tion changes, however, when queries are executed directly
on the server machine that also hosts the Oracle database
(with a 3 GHz dual Xeon CPU) and tuples are read directly
from the RAID disks. Figure 18 shows that the wallclock
run-time significantly drops from 20.9 seconds in single-
threaded mode to 8.3 seconds in multi-threaded mode which
demonstrates that a single thread cannot exhaust the full I/O
bandwidth on the server and the algorithm becomes CPU
bounded. So multi-threading is a crucial performance issue,
in particular on multi-CPU machines.

Single
CPU,

Single-
Threaded,

LAN,
35.19

Single
CPU,
Multi-

Threaded,
LAN,
35.23

0

10

20

30

40se
c

Fig. 17 Multi-threading vs.
single-threading on a single CPU
system.

Dual
CPU,

Single-
Threaded,

RAID,
20.9

Dual CPU,
Multi-

Threaded,
RAID, 8.3

0

5

10

15

20

25se
c

Fig. 18 Multi-threading vs.
single-threading on a dual CPU
system.

This way, the scan threads are totally decoupled from
each other. Synchronization (object locking) for shared data
structures only takes place when a candidate is pulled from
the cache and the queue is updated, or when (occasionally)
a candidate is found to be promoted into the top-k queue
which happens much less frequently than updates on the
candidate queue. A particularly nice feature of this architec-
ture is that the more CPU-intensive XPath evaluations (see
Section 5.3) can easily be made truly parallel at the level
of the scan threads, because they just work concurrently on
different documents.

27

11 Experiments

11.1 Setup & Data Collections

We focus our experiments with textual data on the TREC
Terabyte collection which is the largest currently available
text corpus with relevance assessments, consisting of about
25 million documents with a size of roughly 425 GB and 50
queries from the 2005 Terabyte Ad-Hoc task [94].

For XML on the other hand, we chose the INEX IEEE
collection consisting of roughly 17,000 XML-ified CS jour-
nal articles and the 6 GB INEX Wikipedia [35] collection
with about 660,000 XML-ified Wikipedia articles, yielding
more than 130M elements and the respective batch of the
125 INEX 2006 Ad-Hoc queries. We also provide compar-
ative studies from the official results of the INEX 2005 and
2006 benchmarks. Table 1 summarizes these collection stat-
istics. In terms of bytes sizes and number of tuples contained
in the inverted index (denoted by #Features in Table 1), the
new INEX Wikipedia corpus is an order of magnitude larger
than the previous INEX IEEE collection.

#Docs #Elmts. #Featrs. Size

TREC-TB 25,150,527 n/a 2,938 M 426 GB

INEX-IEEE 16,819 18 M 142 M 743 MB

INEX-Wiki 659,204 131 M 632 M 6.5 GB

Table 1 Source data sizes of the test collection used.

On a mainstream server machine with a dual XEON-
3000 CPU, 4GB of RAM, and a large SCSI RAID-5, index-
ing these collections took between 280 minutes for INEX-
Wiki and 14 hours for Terabyte, including stemming, stop-
word removal and computing the BM25-based scores. The
materialization of the B+-indexes required roughly the same
amount of time as it included sorting a large intermediate ta-
ble.

11.2 Evaluation Metrics

As for efficiency, we consider abstract query execution costs

cost := #SA+ cR/cS #RA

i.e., a weighted sum of the number of tuples read through
sorted and random accesses from our disk-resident index
structures, as our primary metric analogously to [39]. The
cost ratio cR/cS of a single sorted over a single random ac-
cess has been determined to optimize our run-time figures

at a value of 150 which nicely reflects our setup using Ora-
cle as backend and JDBC as connector, with a relatively low
sequential throughput but good random access performance
because of the caching capabilities of the DBMS.

As for effectiveness, we refer to the relative and abso-
lute precision values, as well as the non-interpolated mean
average precision (MAP) [24,97] which displays the abso-
lute (i.e., user-perceived) precision as a function of the abso-
lute recall, using official relevance assessments provided by
TREC or INEX. Furthermore, the following, more sophisti-
cated and XML-specific metrics were newly introduced for
the INEX benchmark 2005 [62]:

– nxCG – The normalized extended Cumulated Gain met-
rics is an extension of the cumulated gain (CG) metrics
which aims to consider the dependency of XML ele-
ments (e.g., overlap and near-misses) within the evalu-
ation.

– ep/gr – The expected-precision/gain-recallmetric finally
aims to display the amount of relative effort (where ef-
fort is measured in terms of the number of visited ranks)
that the user is required to spend when scanning a sys-
tem’s result ranking. This effort is compared to the effort
an ideal ranking would take in order to reach a given
level of gain relative to the total gain that can be ob-
tained.

Wallclock run-times were generally good but much more
sustainable to these very caching effects, with average CPU
run-times per query being in the order of 0.3 seconds for
Wikipedia and 1.2 for Terabyte, and wallclock run-times be-
ing 3.4 and 6.2 seconds, respectively. All the reported cost
figures are sums for the whole batch of benchmark queries,
whereas the precision figures are macro-averaged.
Altogether, the various algorithmic variants and pruning stra-
tegies described before open a huge variety of possible ex-
periments and setups; and the following runs can merely try
to provide a comprehensive overview over our most mean-
ingful results.

11.3 Terabyte Runs

11.3.1 Baseline Top-k Competitors & Scheduling Options

We start with an overview on text data comparing the TopX
with the most prominent variants of the TA-family of algo-
rithms [39] such as TA, NRA, and CA, and a DBMS-style
full-merge algorithm. Figure 19 presents the average cost
savings of our extended scheduling strategy (Ben-Probing)
which outperforms all our three top-k baseline algorithms
by factors of in between 25 and 350 percent.

The DBMS-style merge join first joins all documents in
the query-relevant index lists by their id and then sorts the
joined tuples for reporting the final top-k results (eventually

28

using a partial sort). For k = 10, the non-approximate TopX
run with the conservative pruning already outperforms this
full-merge by a factor of 550 percent, while incurring query
costs of about 9,323,012 compared to 54,698,963 for the
full-merge. Furthermore, we are able to maintain this good
performance over for a very broad range of k; only queries of
considerably more than 1,000 requested results would make
our algorithm degenerate over the full merge approach. The
approximate TopX with a relatively low probabilistic prun-
ing threshold of ε = 0.1 generally performs about 10–20
percent lower execution costs than the exact TopX setup
which conforms exactly to the pruning behavior we would
expect and the probabilistic guarantees for the result quality
we provide in Section 7.

Even for k = 1,000, there is a 30 percent improvement
over the best remaining baselines for these large values of
k, namely full-merge and NRA which itself has almost con-
verged to full-merge. Note that the end user of top-k results
(as in Web search) would typically set k to 10–100, whereas
application classes with automated result post-processing
(such as multimedia retrieval) may choose k values between
100 and 1,000. Especially remarkable is the fact that we con-
sistently approach the absolute lower bound for this family
of algorithms (see also [18]) by about 20 percent even for
large k, whereas both the CA and NRA baselines increas-
ingly degenerate; CA even exceeds the full-merge baseline
in terms of access cost for k > 500 (as it needs to scan most
of the lists, just like the full-merge baseline, to their end,
but additionally performs expensive random accesses). For
ε = 0.1, we already touch the lower bound with hardly any
loss in result precision (see also Figure 20).

0

10

20

30

40

50

60

70

80

10 20 50 100 200 500 1,000

(M
ill
io
ns
)

k

C
os
t

Full-Merge TopX - Ben-Probe, =0.0

NRA TopX - Ben-Probe, =0.1

CA Lower Bound

Fig. 19 Execution costs for TopX compared to various top-k baselines
and a computed lower bound on Terabyte, for varying k.

Note that we measured the average query cost for the
original TA algorithm with full random lookups for each
candidate with a value of 154,188,975 already for k = 10,
which could not even be plotted on the same scale as the

other variants for the default cost ratio cR/cS = 150 (but also
for lower ratios).

11.3.2 Pruning Effectiveness on Text

TopX yields a comparably good effectiveness on the Ter-
abyte topics, with a peak mean average precision (MAP)
of 0.19 and a peak precision@10 of 0.5, given that we use
a standard BM25-based scoring function for text data. Fig-
ure 20 investigates the detailed probabilistic pruning behav-
ior of TopX for the full range of 0 ≤ ε ≤ 1 for a fixed value
of k = 10, with ε = 1.0 (i.e., the extreme case) meaning that
we immediately stop query processing after the first batch
of b sorted accesses. Since Terabyte is shipped with official
relevance judgments, we are able to study the result quality
for both the relative precision (i.e., the overlap between the
approximate and the exact top-k) and the absolute precision
(i.e., the fraction of results officially marked as relevant by
a human user for a particular topic), as well as MAP. Note
that the recall-dependent MAP values are inherently low for
k = 10.

We also see that the relative precision drops much faster
than the absolute precision which means that, although dif-
ferent documents are returned at the top-k ranks, they are
mostly equally relevant from a user’s perspective. Particu-

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Rel. precision
Abs. precision
MAP
Cost-Ratio

Fig. 20 Relative vs. absolute (i.e., user-perceived) retrieval precision
and the cost-ratio as functions of ε on Terabyte, for k = 10.

larly remarkable is the fact that the

cost-ratio(ε) := costapprox(ε)/costexact

of the approximate TopX runs with probabilistic pruning
over the cost of the exact TopX runs generally drops at a
much faster rate than both the absolute and relative precision
values. That is for ε = 0.4, we have less than 20 percent of
the execution cost of the exact top-10, but we still achieve
more than 65 percent relative precision (which confirms our
probabilistic guarantees, see Section 7); and we even have

29

less than 10 percent loss in absolute precision according to
the official relevance assessments on Terabyte. We observed
this trend for all collections and query setups we considered
so far.

11.4 INEX-IEEE Runs

11.4.1 XML-Top-k Competitors

In addition to the full-merge baseline, which is inspired by
the Holistic Twig Join of [22,59,29] in the XML case, two
state-of-the-art XML-Top-k competitors were evaluated:

– StructIndex, the algorithm developed in [61] which
uses a structure index to preselect candidates that satisfy
the path conditions and then uses a TA-style evaluation
strategy with eager random access to compute the top-k
result.

– StructIndex+, an optimized version of the Struct-
Index top-k algorithm, using also the extent chaining
technique of [61].

Figure 21 shows that already the conservative TopX
method without probabilistic pruning (ε = 0) reduces exe-
cution costs by 300–500 percent. A detailed analysis shows
that TopX reduces the number of expensive RA’s even by
an absolute factor of 50 to 80 (!) compared to the TA-based
StructIndex competitors on INEX in both the Min-Probe
and Ben-Probe configurations, with very good rates of in-
expensive SA’s. StructIndex+ even exceeds StructIndex
in terms of RA’s and thus incurs fewer SA’s than Struct-
Index or TopX but much higher overall execution costs.
Both StructIndex and StructIndex+ have higher cost
than the full-merge baseline for large k, as they need to read
large fractions of the lists and perform many RA’s.

0

2

4

6

8

10

12

1 5 10 50 100 500 1,000

(M
ill
io
ns
)

k

C
os
t

Full-Merge

StructIndex+

StructIndex

TopX - Ben-Probe, =0.0

TopX - Min-Probe, =0.0

Fig. 21 Execution costs for TopX compared to the StructIndex and
full-merge competitors on INEX-IEEE, for varying k.

Here, the simple Min-Probe scheduling even slightly out-
performs Ben-Probe on INEX, in terms of saving random

accesses to the navigational tags. For the XML case, the
Ben-Probing was limited to scheduling RA’s to the navi-
gational tag conditions in the auxiliary table TagsRA only.
A fully enabled Ben-Probe scheduling to content conditions
could have further decreased the execution cost but was omit-
ted here, because the Min-Probe competitor inherently can-
not determine RA’s to content conditions (see also [26,18]).
Recall that random accesses strongly affect running times,
because they incur in a (empirically measured) run-time fac-
tor of about 150 in our specific hardware and database setup.

11.4.2 Pruning Effectiveness on XML

Figure 22 shows that again the relative precision value de-
grades at a much higher rate than the absolute result preci-
sion in terms of relevant elements found. This means that
different results are returned at the top ranks, but they are
equally good from a user perspective according to the of-
ficial relevance assessments of INEX. Again, the recall-de-
pendent MAP values are inherently low for k = 10; for k =
1,000 we achieved a remarkably good MAP value of 0.17.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Rel. Precision

Abs. Precsion

MAP

Cost-Ratio

Fig. 22 Precision and Mean-Average-Precision (MAP) as functions of
ε on INEX-IEEE, for k = 10.

11.4.3 Comparative Studies

For the INEX 2005 setting, the benchmark included a set
of 40 keyword-only (CO) and a distinct set of 47 structural
queries (CAS) with relevance assessments that were eval-
uated on the INEX-IEEE corpus. While the results for CO
queries were reasonable with a peak position 19 out of 55
submitted runs for the generalized nxCG@10 metric (which
is not surprising as we use a rather standard content scoring
model), TopX performed very well for CAS queries, rank-
ing among the top-5 of 25, with a peak position 1 for two of
the five official evaluation methods. The two officially sub-
mitted TopX CAS runs finally ranked at position 1 and 2 out
of 25 submitted runs for the strict nxCG@10 metric with a

30

very good value of 0.45 for both runs, and they still rank at
position 1 and 6 for MAP with values of 0.0322 and 0.0272,
respectively.

 0

 0.2

 0.4

 0.6

 0 0.5 1

nX
C

G

rank%

INEX 2005: Results’ Summary
metric: nxCG,quantization: strict

task: SSCAS

 0

 0.07

 0.14

 0.21

 0.28

 0.35

 0 0.5 1

ef
fo

rt
-p

re
ci

si
on

gain-recall

INEX 2005: Results’ Summary
metric: ep-gr,quantization: strict

task: SSCAS

Fig. 23 Official INEX-IEEE ’05 benchmark results of TopX compared
to all participants (using the ep-gr and nxCG metrics).

Figure 23 shows the nxCG and ep/gr plots for the two
CAS runs, one with and one without considering expensive
text predicates which performed almost equally well in this
case. We see that TopX quickly reaches a maximum in the
cumulated gain measure at about 50 percent of the returned
ranks and then saturates, which is an excellent property for a
top-k engine, because the best results are typically detected
and returned at the first ranks already. Particularly nice is
also the high peak of the second TopX run in the ep/gr met-
ric which makes this run stand out in comparison to its com-
petitors.

11.5 INEX-Wikipedia Runs

As for Wikipedia, we provide a detailed comparison of the
CO and CAS interpretations of the INEX queries. As op-
posed to the INEX-IEEE ’05 setting, each of the 125 new
INEX-Wikipedia ’06 queries comes shipped in the CO and
CAS flavors. The following runs aim to compare the differ-
ent performance issues between CO and CAS for our sys-
tem.

11.5.1 CO vs. CAS

Figure 24 shows that we generally observe similarly good
performance trends as for Terabyte or IEEE, with cost-sav-
ings of a factor of up to 700 percent for CAS and 250 percent
for CO when compared to full-merge, and the performance
advantage remains very good even for large values of k, be-
cause we never need to scan the long (i.e., highly selective)
element lists for the navigational query tags which has to
be performed by any non-top-k-style algorithm, e.g., when
using Holistic Twig joins.

Figure 26 depicts a detailed comparison of the query
costs being split into individual sorted (#SA) and random

0

5

10

15

20

25

30

35

40

10 20 50 100 500 1,000

(M
ill
io
ns
)

k

C
os
t

CAS - Full-Merge

CO - Full-Merge

CAS - TopX - Ben-P, =0.0

CO - TopX - Ben-P, =0.0

CAS - TopX - Ben-P, =0.1

CO - TopX - Ben-P, =0.1

Fig. 24 Execution costs reported for the CAS and CO queries as func-
tions of k on Wikipedia, for ε = 0.0 and ε = 0.1.

(#RA) index accesses for the CO and CAS flavors of the
Wikipedia queries. It shows that we successfully limit the
amount of RA to less than about 2 percent of the #SA ac-
cording to our cost model. This ratio is maintained also in
the case of structured data and queries which is a unique
property among current XML-top-k engines.

11.5.2 Pruning Effectiveness for CO vs. CAS

Figure 25 demonstrates a similarly good pruning behavior of
TopX for both the CO and CAS queries on Wikipedia, again
showing a very good quality over run-time ratio for the prob-
abilistic candidate pruning component. As expected, these
runs confirm the fact that CAS queries are significantly less
expensive than CO queries for TopX, because for the structure-
constrained queries we largely benefit from the
lowly selective, precomputed inverted lists over combined
tag-term pairs. Note that official relevance judgments for
the 2006 Wikipedia benchmark as required for computing
the absolute precision figures are not yet available, such that
absolute precision values are omitted here.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CAS - Rel. Precision
CO - Rel. Precision
CAS - Cost-Ratio
CO - Cost-Ratio

Fig. 25 Relative retrieval precision and cost-ratios for the CAS and
CO queries as functions of ε on Wikipedia, for k = 10.

31

11.5.3 Expansion Efficiency for CO vs. CAS

Figure 27 finally shows an impressive run-time advantage
for the dynamic query expansion approach compared to both
full-merge and TopX when performing static expansions
(measured for the CAS case). The reported numbers reflect
large, automatic thesaurus expansions of the original Wiki-
pedia queries based on WordNet, with up to m = 292 dis-
tinct query dimensions (i.e., keywords and phrases embed-
ded into the structure of the CAS query).

0

5

10

15

20

25

30

35

40

CAS -
Full

Merge

CAS -
TopX

CO -
Full

Merge

CO -
TopX

(M
ill
io
ns
)

RA

SA

Fig. 26 #SA and #RA for full-
merge vs. TopX, for k = 10 and
ε = 0.

0

20

40

60

80

100

120

CAS -
Full

Merge

CAS -
TopX -
Static

CAS -
TopX -

Dynamic

(M
ill
io
ns
)

RA

SA

Fig. 27 #SA and #RA for full-
merge vs. TopX with static and
dynamic expansion, for k = 10
and ε = 0.

11.5.4 Comparative Studies

For the INEX 2006 setting, 114 out of the 125 initial queries
come with human relevance assessments and were therefore
used to compare different engines. There was no separate
evaluation of the CAS queries and the strict evaluation mode
was dropped, and hence the relative performance of TopX
was comparable to 2005 with a rank of 24 out of 106 sub-
mitted runs for the generalized ep/gr metric. However, INEX

 0

 0.2

 0.4

 0.6

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pr
ec

is
io

n

recall

INEX 2006: Results’ Summary
metric: generalized Precision/Recall

task: AllInContext

Fig. 28 Official INEX-Wikipedia ’06 benchmark results of TopX com-
pared to all participants for the AllInContext task (using the gP metric).

2006 introduced a new retrieval task, AllInContext, where a
search engine first had to identify relevant articles (the fetch-
ing phase), and then identify the relevant elements within the
fetched articles (the browsing phase). This task can be eas-
ily mapped to the TopX document evaluation mode, and in
fact TopX performed extremely well with ranks of 1 and 2
(two TopX runs with different parameters) for the general-
ized precision/recall metric (gP) [63] at 50 results. Figure 28
shows the gP plots for the two runs (the two bold red lines at
the top of the chart), one with and one without considering
expensive text predicates which performed almost equally
well in this case.

12 Conclusions and Future Work

TopX is an efficient and effective search engine for non-
schematic XML documents, with the full functionality of
XPath Full-Text and supporting also the entire range of text,
semistructured, and structured data. It achieves effective
ranked retrieval by means of an XML-specific extension of
the probabilistic-IR BM25 relevance scoring model, and also
leverages thesauri and ontologies for word-sense disambigua-
tion and robust query expansion. It achieves scalability and
efficient top-k query processing by means of extended thresh-
old algorithms with specific priority-queue management, ju-
dicious scheduling of random accesses to index entries, and
probabilistic score predictions for early pruning of top-k can-
didates.

TopX has been the official host used for the INEX 2006
topic development phase, and its Web Service interface has
been used by the INEX 2006 Interactive Track. During the
topic development phase, more than 10,000 CO and CAS
queries from roughly 70 different participants were conduc-
ted partly in parallel sessions over the new Wikipedia XML
index. The complete TopX indexing and query processing
framework is available as open source code at the URL
http://topx.sourceforge.net .

12.1 Lessons Learned

TopX uses a relational database system to manage its in-
dexes, relying on 30 years of database research for efficient
index structures, updates, and transaction management. In
fact, this solution has turned out to be flexible and easy to
use, especially for complex precomputations of scores and
corpus statistics that require joins and aggregations, How-
ever, the price we had to pay for this convenience was high
overhead compared to dedicated index data structures like
inverted files, both in run-time and in storage space. Run-
time suffered from the expensive interface crossing incurred
by JDBC and access layers inside the database server. Cus-
tomized inverted files, on the other hand, would provide more

32

light-weight storage management. Preliminary experiments
with file-based storage have shown a speedup for sorted and
random accesses of up to a factor of 20, while requiring an
order of magnitude less storage space.

The self-throttling query expansion mechanism
introduced in TopX is a major advantage over existing solu-
tions, with respect to both effectiveness and efficiency. How-
ever, for robust query expansion, the quality of the underly-
ing ontologies and thesauri is critical. So far, we have been
mostly relying on WordNet, but we plan to use richer, high-
quality ontologies [85] and we would also like to explore
domain-specific ontologies.

12.2 Future Work

Our future work on this subject will focus on four major
issues:

– We plan to extend the tree-oriented view of XML data
into a graph-based data model that includes both intra-
document references among elements and inter-docum-
ent links given by XLink pointers or href-based hyper-
links. In terms of functionality, we can build on the ini-
tial work by [46] along these lines, but one of the ma-
jor challenges is to ensure efficiency given the additional
complexity of moving from trees to graphs.

– We want to address extended forms of scoring and score
aggregation, most notably, proximity predicates. This
may involve handling non-monotonous aggregation func-
tions and will mandate significant extensions to our top-
k search algorithms.

– We plan to reconsider our indexing methods and inves-
tigate specialized data structures for inverted lists, most
notably, to exploit various forms of compression [104],
efficient support for prefix matching [19], and special
structures for speeding up phrase matching [99].

– We consider re-implementing core parts of the TopX en-
gine in C++, replacing the relational database backend
with our own storage system including a customized im-
plementation of inverted block indexes. Notwithstanding
the good performance of our current system, we would
expect to gain another order of magnitude in run-time
efficiency by this kind of specific and more mature engi-
neering.

We believe that the integration of DB and IR functional-
ities and system architectures will remain a strategically im-
portant and rewarding research field, and we hope to make
further contributions to this area.

References

1. Aboulnaga, A., Alameldeen, A.R., Naughton, J.F.: Estimating the
selectivity of XML path expressions for internet scale applica-
tions. In: VLDB, pp. 591–600. Morgan Kaufmann (2001)

2. Agrawal, S., Chaudhuri, S., Das, G., Gionis, A.: Automated rank-
ing of database query results. In: CIDR (2003)

3. Al-Khalifa, S., Jagadish, H.V., Patel, J.M., Wu, Y., Koudas, N., Sri-
vastava, D.: Structural joins: A primitive for efficient XML query
pattern matching. In: ICDE, pp. 141–152. IEEE Computer Society
(2002)

4. Al-Khalifa, S., Yu, C., Jagadish, H.V.: Querying structured text in
an XML database. In: SIGMOD, pp. 4–15. ACM (2003)

5. Amato, G., Rabitti, F., Savino, P., Zezula, P.: Region proximity in
metric spaces and its use for approximate similarity search. ACM
Trans. Inf. Syst. 21(2), 192–227 (2003)

6. Amer-Yahia, S., Botev, C., Dörre, J., Shanmugasundaram, J.:
XQuery Full-Text extensions explained. IBM Systems Journal
45:2, 335–352 (2006)

7. Amer-Yahia, S., Botev, C., Shanmugasundaram, J.: TeXQuery: a
full-text search extension to XQuery. In: WWW, pp. 583–594.
ACM (2004)

8. Amer-Yahia, S., Case, P., Rölleke, T., Shanmugasundaram, J.,
Weikum, G.: Report on the DB/IR panel at SIGMOD 2005. SIG-
MOD Record 34(4), 71–74 (2005)

9. Amer-Yahia, S., Curtmola, E., Deutsch, A.: Flexible and efficient
XML search with complex full-text predicates. In: SIGMOD, pp.
575–586. ACM (2006)

10. Amer-Yahia, S., Koudas, N., Marian, A., Srivastava, D., Toman,
D.: Structure and Content Scoring for XML. In: VLDB, pp. 361–
372. ACM (2005).

11. Amer-Yahia, S., Lakshmanan, L.V.S., Pandit, S.: FleXPath: Flex-
ible structure and full-text querying for XML. In: SIGMOD, pp.
83–94. ACM (2004)

12. Amer-Yahia, S., Lalmas, M.: XML Search: Languages, INEX and
Scoring. SIGMOD Record 36:7, 16–23 (2006)

13. Anh, V.N., de Kretser, O., Moffat, A.: Vector-space ranking with
effective early termination. In: SIGIR, pp. 35–42. ACM (2001)

14. Anh, V.N., Moffat, A.: Impact transformation: effective and effi-
cient web retrieval. In: SIGIR, pp. 3-10. ACM (2002)

15. Anh, V.N., Moffat, A.: Pruned query evaluation using pre-
computed impacts. In: SIGIR, pp. 372–379. ACM (2006)

16. Avnur, R., Hellerstein, J.M.: Eddies: Continuously adaptive query
processing. In: SIGMOD, pp. 261–272. ACM (2000)

17. Baeza-Yates, R.A., Ribeiro-Neto, B.A.: Modern Information Re-
trieval. ACM Press / Addison-Wesley (1999)

18. Bast, H., Majumdar, D., Theobald, M., Schenkel, R., Weikum, G.:
IO-Top-k: Index-optimized top-k query processing. In: VLDB, pp.
475–486. ACM (2006)

19. Bast, H., Weber, I.: Type less, find more: fast autocompletion
search with a succinct index. In: SIGIR, pp. 364–371. ACM
(2006)

20. Böhm, C., Berchtold, S., Keim, D.A.: Searching in high-
dimensional spaces: Index structures for improving the perfor-
mance of multimedia databases. ACM Comput. Surv. 33(3), 322–
373 (2001)

21. Bruno, N., Chaudhuri, S., Gravano, L.: Top-k selection queries
over relational databases: Mapping strategies and performance
evaluation. ACM Trans. Database Syst. 27(2), 153–187 (2002)

22. Bruno, N., Koudas, N., Srivastava, D.: Holistic twig joins: optimal
XML pattern matching. In: SIGMOD, pp. 310–321. ACM (2002)

23. Buckley, C., Lewit, A.F.: Optimization of inverted vector searches.
In: SIGIR, pp. 97–110. ACM (1985)

24. Buckley, C., Voorhees, E.M.: Evaluating evaluation measure sta-
bility. In: SIGIR, pp. 33–40. ACM (2000)

25. Carmel, D., Maarek, Y.S., Mandelbrod, M., Mass, Y., Soffer, A.:
Searching XML documents via XML fragments. In: SIGIR, pp.
151–158. ACM (2003)

26. Chang, K.C.C., Hwang, S.: Minimal probing: supporting expen-
sive predicates for top-k queries. In: SIGMOD, pp. 346–357.
ACM (2002)

33

27. Chaudhuri, S., Gravano, L., Marian, A.: Optimizing top-k selec-
tion queries over multimedia repositories. IEEE Trans. Knowl.
Data Eng. 16(8), 992–1009 (2004)

28. Chinenyanga, T.T., Kushmerick, N.: Expressive retrieval from
XML documents. In: SIGIR, pp. 163–171. ACM (2001)

29. Choi, B., Mahoui, M., Wood, D.: On the optimality of holistic al-
gorithms for twig queries. In: DEXA, Lecture Notes in Computer
Science, vol. 2736, pp. 28–37. Springer (2003)

30. Ciaccia, P., Patella, M.: Pac nearest neighbor queries: Approxi-
mate and controlled search in high-dimensional and metric spaces.
In: ICDE, pp. 244–255. IEEE Computer Society (2000)

31. Cohen, S., Mamou, J., Kanza, Y., Sagiv, Y.: XSEarch: A semantic
search engine for XML. In: VLDB, pp. 45–56. Morgan Kaufmann
(2003)

32. Consens, M.P., Baeza-Yates, R.A.: Database and Information Re-
trieval Techniques for XML. In: ASIAN, pp. 22–27. Springer
(2005)

33. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Clifford, S.: Intro-
duction of Algorithms. The MIT Press (2001)

34. Craswell, N., Hawking, D., Wilkinson, R., Wu, M.: Overview of
the TREC 2003 Web track. In: TREC, pp. 78–92 (2003)

35. Denoyer, L., Gallinari, P.: The Wikipedia XML Corpus. SIGIR
Forum (2006)

36. Donjerkovic, D., Ramakrishnan, R.: Probabilistic optimization of
top n queries. In: VLDB, pp. 411–422. Morgan Kaufmann (1999)

37. Fagin, R.: Combining fuzzy information from multiple systems. J.
Comput. Syst. Sci. 58(1), 83–99 (1999)

38. Fagin, R.: Combining fuzzy information: an overview. SIGMOD
Record 31(2), 109–118 (2002)

39. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms
for middleware. In: PODS, pp. 102–113. ACM (2001)

40. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms
for middleware. J. Comput. Syst. Sci. 66(4), 614–656 (2003)

41. Fegaras, L.: XQuery processing with relevance ranking. In:
XSym, Lecture Notes in Computer Science, vol. 3186, pp. 51–65.
Springer (2004)

42. Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database.
MIT Press (1998)

43. Fuhr, N., Großjohann, K.: XIRQL: A query language for Informa-
tion Retrieval in XML documents. In: SIGIR, pp. 172–180. ACM
(2001)

44. Goldman, R., Widom, J.: Dataguides: Enabling query formulation
and optimization in semistructured databases. In: VLDB, pp. 436–
445. Morgan Kaufmann (1997)

45. Grabs, T., Schek, H.J.: PowerDB-XML: Scalable XML processing
with a database cluster. In: Intelligent Search on XML Data, pp.
193–206 (2003)

46. Graupmann, J., Schenkel, R., Weikum, G.: The spheresearch en-
gine for unified ranked retrieval of heterogeneous XML and web
documents. In: VLDB, pp. 529–540. ACM (2005)

47. Grust, T.: Accelerating XPath location steps. In: SIGMOD, pp.
109–120. ACM (2002)

48. Grust, T., van Keulen, M., Teubner, J.: Staircase join: Teach a re-
lational DBMS to watch its (axis) steps. In: VLDB, pp. 524–525.
Morgan Kaufmann (2003)

49. Güntzer, U., Balke, W.T., Kießling, W.: Optimizing multi-feature
queries for image databases. In: VLDB, pp. 419–428. Morgan
Kaufmann (2000)

50. Güntzer, U., Balke, W.T., Kießling, W.: Towards efficient multi-
feature queries in heterogeneous environments. In: ITCC, pp.
622–628. IEEE Computer Society (2001)

51. Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: XRank:
Ranked keyword search over XML documents. In: SIGMOD, pp.
16–27. ACM (2003)

52. Hjaltason, G.R., Samet, H.: Distance browsing in spatial
databases. ACM Trans. Database Syst. 24(2), 265–318 (1999)

53. Hjaltason, G.R., Samet, H.: Index-driven similarity search in met-
ric spaces. ACM Trans. Database Syst. 28(4), 517–580 (2003)

54. Hristidis, V., Papakonstantinou, Y., Balmin, A.: Keyword proxim-
ity search on XML graphs. In: ICDE, pp. 367–378. IEEE Com-
puter Society (2003)

55. Hung, E., Deng, Y., Subrahmanian, V.S.: TOSS: An extension of
TAX with ontologies and similarity queries. In: SIGMOD, pp.
719–730. ACM (2004)

56. INitiative for the Evaluation of XML Retrieval (INEX). http:

//inex.is.informatik.uni-duisburg.de

57. Index-Organized Tables – Oracle9i Data Sheet. http:

//www.oracle.com/technology/products/oracle9i/

datasheets/iots/iot_ds.html

58. Jagadish, H.V., Lakshmanan, L.V.S., Srivastava, D., Thompson,
K.: TAX: A tree algebra for XML. In: DBPL, Lecture Notes in
Computer Science, vol. 2397, pp. 149–164. Springer (2001)

59. Jiang, H., Wang, W., Lu, H., Yu, J.X.: Holistic twig joins on in-
dexed XML documents. In: VLDB, pp. 273–284. Morgan Kauf-
mann (2003)

60. Kaushik, R., Bohannon, P., Naughton, J.F., Korth, H.F.: Covering
indexes for branching path queries. In: SIGMOD, pp. 133–144.
ACM (2002)

61. Kaushik, R., Krishnamurthy, R., Naughton, J.F., Ramakrishnan,
R.: On the integration of structure indexes and inverted lists. In:
SIGMOD, pp. 779–790. ACM (2004)

62. Kazai, G., Lalmas, M.: INEX 2005 evaluation measures. In:
4th International Workshop of the Initiative for the Evaluation of
XML Retrieval, Lecture Notes in Computer Science, vol. 3977, pp.
16–29. Springer (2005)

63. Lalmas, M., Kazai, G., Kamps, J., Pehcevski, J., Piwowarski, B.,
Robertson, S.: INEX 2006 Evaluation Measures. In: 5th Interna-
tional Workshop of the Initiative for the Evaluation of XML Re-
trieval, Lecture Notes in Computer Science, vol. 4518. Springer
(2007)

64. Li, Y., Yu, C., Jagadish, H.V.: Schema-free XQuery. In: VLDB,
pp. 72–83. Morgan Kaufmann (2004)

65. Lim, L., Wang, M., Padmanabhan, S., Vitter, J.S., Parr, R.: XPath-
Learner: An on-line self-tuning Markov histogram for XML path
selectivity estimation. In: VLDB, pp. 442–453. Morgan Kauf-
mann (2002)

66. List, J.A., Mihajlovic, V., Ramı́rez, G., de Vries, A.P., Hiem-
stra, D., Blok, H.E.: TIJAH: Embracing IR Methods in XML
Databases. Inf. Retr. 8(4), 547–570 (2005)

67. Liu, S., Chu, W.W., Shahinian, R.: Vague Content and Structure
(VCAS) Retrieval for Document-centric XML Collections. In:
WebDB, pp. 79–84 (2005)

68. Marian, A., Amer-Yahia, S., Koudas, N., Srivastava, D.: Adaptive
processing of top-k queries in XML. In: ICDE, pp. 162–173. IEEE
Computer Society (2005)

69. Marian, A., Bruno, N., Gravano, L.: Evaluating top-k queries over
Web-accessible databases. ACM Trans. Database Syst. 29(2),
319–362 (2004)

70. Mass, Y., Mandelbrod, M.: Component Ranking and Automatic
Query Refinement for XML Retrieval. In: 3rd International Work-
shop of the INitiative for the Evaluation of XML Retrieval, Lecture
Notes in Computer Science, vol. 3493, pp. 73–84. Springer (2004)

71. Moffat, A., Zobel, J.: Self-Indexing Inverted Files for Fast Text
Retrieval. ACM Trans. Inf. Syst. 14(4), 349–379 (1996)

72. Natsev, A., Chang, Y.C., Smith, J.R., Li, C.S., Vitter, J.S.: Sup-
porting incremental join queries on ranked inputs. In: VLDB, pp.
281–290. Morgan Kaufmann (2001)

73. Nepal, S., Ramakrishna, M.V.: Query processing issues in image
(multimedia) databases. In: ICDE, pp. 22–29. IEEE Computer
Society (1999)

74. Persin, M., Zobel, J., Sacks-Davis, R.: Filtered document retrieval
with frequency-sorted indexes. JASIS 47(10), 749–764 (1996)

34

75. Polyzotis, N., Garofalakis, M.N., Ioannidis, Y.E.: Approximate
XML query answers. In: SIGMOD, pp. 263–274. ACM (2004)

76. Polyzotis, N., Garofalakis, M.N.: XSKETCH synopses for XML
data graphs. ACM Trans. Database Syst. 31:3, 1014–1063 (2006)

77. Reid, J., Lalmas, M., Finesilver, K., Hertzum, M.: Best entry
points for structured document retrieval (Part I and II). Inf. Pro-
cess. Manage. 42:1, 74–105 (2006)

78. Robertson, S.E., Spärck-Jones, K.: Relevance weighting of search
terms. Journal of the American Society for Information Science
27(1), 129–146 (1976)

79. Robertson, S.E., Walker, S.: Some simple effective approxima-
tions to the 2-poisson model for probabilistic weighted retrieval.
In: SIGIR, pp. 232–241. ACM/Springer (1994)

80. Rocchio Jr., J.: Relevance feedback in Information Retrieval. In:
G. Salton (ed.) The SMART Retrieval System: Experiments in
Automatic Document Processing, chap. 14, pp. 313–323. Prentice
Hall (1971)

81. Schenkel, R., Theobald, M.: Feedback-driven structural query ex-
pansion for ranked retrieval of XML data. In: EDBT, pp. 331–348.
Springer (2006)

82. Schenkel, R., Theobald, M.: Structural feedback for keyword-
based XML retrieval. In: ECIR, pp. 326–337. Springer (2006)

83. Schlieder, T., Meuss, H.: Querying and ranking XML documents.
JASIST 53(6), 489–503 (2002)

84. Soffer, A., Carmel, D., Cohen, D., Fagin, R., Farchi, E., Her-
scovici, M., Maarek, Y.S.: Static index pruning for information
retrieval systems. In SIGIR, pp. 43–50. ACM (2001).

85. Suchanek, F., Kasneci, G., Weikum, G.: YAGO: A core of se-
mantic knowledge unifying WordNet and Wikipedia. In: WWW
(2007).

86. Tao, Y., Faloutsos, C., Papadias, D.: The Power-method: a compre-
hensive estimation technique for multi-dimensional queries. In:
CIKM, pp. 83–90 (2003)

87. Theobald, A., Weikum, G.: Adding relevance to XML. In: WebDB
(Informal Proceedings), pp. 35–40 (2000)

88. Theobald, A., Weikum, G.: The index-based XXL Search Engine
for querying XML data with relevance ranking. In: EDBT, pp.
477–495. Springer (2002)

89. Theobald, M., Schenkel, R., Weikum, G.: Exploiting structure, an-
notation, and ontological knowledge for automatic classification
of XML data. In: WebDB, pp. 1–6 (2003)

90. Theobald, M., Schenkel, R., Weikum, G.: Efficient and self-tuning
incremental query expansion for top-k query processing. In: SI-
GIR, pp. 242–249. ACM (2005)

91. Theobald, M., Schenkel, R., Weikum, G.: An efficient and versa-
tile query engine for TopX search. In: VLDB, pp. 625–636. ACM
(2005)

92. Theobald, M., Schenkel, R., Weikum, G.: The TopX DB & IR
Engine. In: SIGMOD. ACM (2007)

93. Theobald, M., Weikum, G., Schenkel, R.: Top-k query evaluation
with probabilistic guarantees. In: VLDB, pp. 648–659. Morgan
Kaufmann (2004)

94. Text REtrieval Conference (TREC). http://trec.nist.gov/
95. Trotman, A., Sigurbjörnsson, B.: Narrowed Extended XPath I

(NEXI). In: 3rd International Workshop of the INitiative for the
Evaluation of XML Retrieval, Lecture Notes in Computer Science,
vol. 3493, pp. 16–40. Springer (2004)

96. Vagena, Z., Moro, M.M., Tsotras, V.J.: Twig query processing
over graph-structured XML data. In: WebDB, pp. 43–48 (2004)

97. Vorhees, E.: Overview of the TREC 2004 Robust retrieval track.
In: TREC, pp. 69–77 (2004)

98. de Vries, A.P., Mamoulis, N., Nes, N., Kersten, M.L.: Efficient k-
nn search on vertically decomposed data. In: SIGMOD, pp. 322–
333. ACM (2002)

99. Williams, H.E., Zobel, J., Bahle, D.: Fast phrase querying with
combined indexes. ACM Trans. Inf. Syst. 22:4, 573–594 (2004)

100. XQuery 1.0 and XPath 2.0 Full-Text. http://www.w3.org/TR/
xquery-full-text/

101. Wu, Y., Patel, J.M., Jagadish, H.V.: Structural join order selec-
tion for XML query optimization. In: ICDE, pp. 443–454. IEEE
Computer Society (2003)

102. Yu, C.T., Sharma, P., Meng, W., Qin, Y.: Database selection
for processing k nearest neighbors queries in distributed environ-
ments. In: JCDL, pp. 215–222. ACM (2001)

103. Zhang, C., Naughton, J.F., DeWitt, D.J., Luo, Q., Lohman, G.M.:
On supporting containment queries in relational database manage-
ment systems. In: SIGMOD, pp. 425–436. ACM (2001)

104. Zobel, J., Moffat, A.: Inverted files for text search engines. ACM
Comput. Surv. 38:2 (2006)

