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Abstract

This paper presents TorchANI, a PyTorch based software for training/inference

of ANI (ANAKIN-ME) deep learning models to obtain potential energy surfaces and

other physical properties of molecular systems. ANI is an accurate neural network

potential originally implemented using C++/CUDA in a program called NeuroChem.

Compared with NeuroChem, TorchANI has a design emphasis on being light weight,

user friendly, cross platform, and easy to read and modify for fast prototyping, while

allowing acceptable sacrifice on running performance. Because the computation of

atomic environmental vectors (AEVs) and atomic neural networks are all implemented
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using PyTorch operators, TorchANI is able to use PyTorch’s autograd engine to auto-

matically compute analytical forces and Hessian matrices, as well as do force training

without additional codes required. TorchANI is open-source and freely available on

GitHub: https://github.com/aiqm/torchani

Introduction

The potential energy surface (PES) of atomistic systems plays a major role in physical chem-

istry: it is a core concept in molecular geometries, transition states, vibrational frequencies,

and much more. Existing approaches for obtaining a molecular PES can be categorized into

two general classes: quantum mechanics (QM) and molecular mechanics1 (MM). The correct

physics for obtaining the PES of molecules is given by QM, or more specifically by solving

the many-body Schrödinger equation (MBSE), which takes the interaction of electrons and

nuclei into account. However, solving the MBSE is QMA-Hard2. That is to say, on any

computer that humans have theorized, including quantum computers, obtaining an exact

solution of the MBSE is intractable3. In practice, numerous approximations have been de-

veloped to obtain solutions to the MBSE. Depending on the accuracy of the approximation,

the computational cost varies drastically across methods. Kohn-Sham density functional

theory (DFT)4 and coupled cluster theory5 are two popular approximations. These meth-

ods tend to be accurate compared to MM methods but computationally very expensive; for

example, DFT scales as Θ (N3) and CCSD(T) scales as Θ (N7), where N is the number

of electrons in the molecule. A general trend is, the better the accuracy, the worse the

computational scaling with system size.

The molecular mechanics (MM) approach does not directly account for electrons. It

obtains an approximate PES by defining bonds, angles, dihedrals, non-bonded interactions,

etc. and then parameterizing specific functions for describing these interations. The ob-

tained potential are called force fields. Due to a restrictive functional form and limited

parameterization, force fields often yield non-physical results when molecules are far from
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equilibrium geometry, or when applied to molecules outside their fitting set. For example,

in most force fields, bonds cannot break due to the use of a harmonic functional form for

bonding. Despite these problems, force fields have the advantage of scaling as O (N2) with

respect to the number of atoms in the system N , which leads to their wide use in the study

of large systems like proteins and DNA.

Recent deep learning developments in many fields6 have shown that an artificial neural

network is generally a good approximator of functions7. Being aware of this fact, researchers

in the field of computational chemistry have been deploying neural networks and other

machine learning-based models for the prediction of QM computed properties.8–31 These

models aim to bypass solving the many-body Schrödinger equation by directly predicting

QM properties. In recent years, a few of these models have been released as open source

codes, many in machine learning frameworks such as TensorFlow or PyTorch.

In this article, we introduce an open source implementation of the ANI32 style neural

network potential in PyTorch. ANI is a general-purpose neural network-based atomistic

potential for organic molecules. To date, three ANI models have been published, the ANI-

1,32 ANI-1x,33 and ANI-1ccx34 potentials. The ANI-1 model was developed by random

sampling conformational space of 57k organic molecules with up to 8 heavy atoms, C, N,

and O, plus H atoms to have proper chemistry, then running DFT calculations to obtain

potential energies for training. ANI-1x was trained to a data set of molecular conformations

sampled through an active learning scheme. Active learning is where the model itself is

iteratively used to decide what new data should be included in the next iteration. Finally,

ANI-1ccx was trained to the ANI-1x data set, then retrained to a 10% smaller data set of

accurate coupled cluster calculations, resulting in a potential that outperformed DFT in test

cases. We include the ANI-1x and ANI-1ccx potentials with our framework. The general

philosophy of our software is to provide the public with an easily accessible and modifiable

version of the ANI model for deploying our existing ANI-1x, ANI-1ccx, and future models,

for training new models to new data sets, or for fast prototyping of new ideas and concepts.
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Similar to traditional force fields, ANI does not explicitly treat electrons and defines the

potential energy directly as an explicit function of coordinates of atoms. But, unlike force

fields, ANI does not predefine concepts like bonds, and the functional form of potential energy

in ANI is an artificial neural network. Since ANI does not solve the Schrödinger equation,

the computational cost of ANI comparable to force fields, which makes ANI able to scale

to large molecules like proteins. Being trained on synthesized data computed by quantum

chemical methods, such as DFT32,33,35 and CCSD(T)/CBS34, ANI can predict most parts of

the potential energy surface at a quantum level. Since the level of accuracy is at quantum

chemical level, it should be able to capture important properties such as bond breaking that

traditional force fields cannot model.

As discussed by Behler,36 there are symmetries that the predicted potential energy has

to obey: it has to be invariant under the transformations of translation, rotation, and per-

mutation of the same type of atoms. Behler et al presented an architecture that satisfies this

type of symmetry.10 In that work, for each atom, a fixed-size representation of its chemical

environment called an atomic environmental vector (AEV) is computed. AEVs are invariant

under translation and rotation. The AEV of each atom is further passed through a neural

network to get a scalar, the atomic contribution of this total energy. The total molecular

energy is obtained by adding up these atomic energies. If the neural networks applied to the

AEVs of the same type of atoms are the same as each other, the permutation symmetry is

also satisfied.

The AEVs in ANI are modified from those in Behler and Parrinello 10 . The structure

of AEV in ANI which is composed of radial and angular parts is shown in Figure 1. The

radial AEV is further divided into subAEVs according to atom species. Similarly, angular

AEV is further divided into subAEVs according to pairs of atom species. Each subAEV only

cares about neighbor atoms of its corresponding species/pair of species. Loosely speaking,

we can think of AEV as counting the number of atoms for different species/pair of species,

at different distances and angles. Interested readers are referred to32 for more detail.
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Figure 1: The Structure of the ANI AEVs.
The sum of j and k is on all neighbor atoms of selected species/pair of species. Rs and θs
are hyper-parameters called radial/angular shifts. The fC is called cutoff cosine function,

defined as fC(R) = 1
2

[

cos
(

πR
RC

)

+ 1
]

for R ≤ RC and 0 otherwise, where RC is called cutoff

radius, a hyperparameter that defines how far we should reach when investigating chemical
environments.
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As shown in Figure 2, after computing the AEV for each atom, these AEVs are further

passed forward through the neural network to obtain atomic energies, which will be further

summed together for each molecule to obtain the total energy. The AEVs of the atoms with

the same atomic numbers are passed through the same neural network.

Figure 2: From AEV to Molecule Energy
Figure reproduced from Ref.32 with permission from the Royal Society of Chemistry.

In the first version of ANI, aka ANI-1, the training data is a set of synthesized data,

called the ANI-1 dataset35, coming from DFT ωB97X/6 − 31G(d) computations of energies

of near equilibrium structures of small organic molecules using normal mode sampling. Only

elements H, C, N, and O are supported.

ANI was originally implemented in C++/CUDA in a program called NeuroChem, which

allows us to do lighting fast training and inference on modern NVIDIA GPGPUs. High

performance of the NeuroChem code is obtained as a trade-off with fast prototyping, lossy

maintenance, simple installation and cross platform. This motivate us to implement a light

weight and easy to use version, i.e. TorchANI. TorchANI is not designed to replace Neu-

roChem. But instead, it is a complement to NeuroChem with different design emphasis and

expected use case.
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Methods

PyTorch based implementation

In terms of software for neural network potential researches, both performance and flexibility

are important. But unfortunately, performance and flexibility usually can not be achieved

together. Trade-offs has to be made when designing a software.

On the one hand, there are researchers seeking for using neural network potentials to

study large bio-molecules like proteins at a highly accurate level, which has a high demand

on inference performance of the software. Besides, the quality of a neural network potential

highly depend on the quality of the dataset on which the potentional is trained. Researches

on improving dataset quality is to use accurate synthesized data to cover the chemical space

more complete and balanced. To achieve this goal, we have proposed to use active learning33

to incrementally expand the dataset, from HCNO only to HCNOSFCl,37 and from near

equilibrium structures only to reaction pathways, and from DFT to coupled-cluster.34 The

fact that active learning requires a large number of training makes the training performance

also critical in such kind of researches.

On the other hand, for researches prototyping neural networks of different architectures,

loss functions, optimizers, the software should be highly flexible. It should also be cross-

platform so that researchers could try their idea both on a GPU server and on a laptop.

The best technology selection for this purpose is to use a popular deep learning framework,

which allows employing the implementations of the most modern methods in the rapidly

growing field of machine learning. Since its release, PyTorch38 has gained a great reputation

on its flexibility and ease to use, and has become the most popular deep learning framework

among researchers. TorchANI is an implementation of ANI on PyTorch, aimed to be light

weight, user-friendly, cross-platform, and easy to read and modify.

Major deep learning frameworks could be categorized as layer-based frameworks like

Caffe39 and compute graph-based frameworks like PyTorch,38 TensorFlow,40 and MXNet.41

7



Layer-based frameworks consider a neural network as several layers of neurons stacked to-

gether. The software usually allocates memory buffers to store inputs and outputs, as well

as the gradients obtained during back-propagation, for each layer. The core of the software

is a CPU code and CUDA kernels that fill in these buffers. Frameworks of this type are

simple in design and fast in performance. However, considering deep learning models as a

stack of layers is a very restrictive assumption. As a result, not all deep learning models

fit into the framework of layers. Also, the lack of data structure to store the computation

history makes it very hard to implement higher order derivatives.

Compute graph-based deep learning frameworks, such as PyTorch, usually contain au-

tomatic differentiation engine.42,43 The engine stores the data dependency as a graph and

contains API that allows users to invoke algorithms to investigate the mathematical opera-

tions of the history and compute the derivatives in one line of code. NeuroChem is coded as

a layer-based program.

Unlike most deep learning researches in the field of computer vision and natural language

processing, etc., in which the automatic differentiation engine is only used in computing the

derivatives of the loss function with respect to model parameters, the automatic differen-

tiation engine could be more useful in chemistry: many physical properties are defined as

derivative of two other properties, say C = ∂A
∂B

. Due to this nature of science, higher order

derivatives are also more important than in the general artificial intelligence community. By

using the automatic differentiation engine of PyTorch, people can write down the code that

computes A from B, and the framework provides tools to automatically compute C. Higher

order derivatives could also be computed within a few lines of code. We will show some

example on how the automatic differentiation engine could be used with TorchANI:

Example 1: For a periodic system, the stress tensor is defined as the per area force

pulling the system on surfaces of different directions. It can be computed as σij = 1
V
·
∂E(λij)

∂λij
,

where E(λij) is the energy as a function of the factor λij of shearing the system and cell

simultaneously in a direction defined by i while keeping the direction of the surfaces defined
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by j unchanged. On PyTorch, the pseudo-code of implementing stress can be as simple as

shown in Listing 1.

Listing 1: Compute Stress

See the source code of the stress implementation in the Atomic Simulation Environment
(ASE)44 interface of TorchANI for more detail.

d i sp lacement = torch . z e r o s ( . . . )
s c a l i n g f a c t o r = 1 + disp lacement
new ce l l , new coord inates = s c a l e s y s t e m a n d u n i t c e l l (

c e l l , coo rd inate s , s c a l i n g f a c t o r )
# Numerica l ly n ew c e l l and new coord inates has the same va l u e s as
# o ld va lues , i . e . c e l l , c oord ina t e s because the are j u s t d i s t o r t i n g
# the system by zero . But the new va l u e s conta in compute graph on
# how they are r e l a t e d to disp lacement , so t ha t the autograd engine
# can compute the g rad i en t from the graph .
energy = compute energy ( new ce l l , new coord inates )
s t r e s s = torch . autograd . grad ( energy , d i sp lacement ) [ 0 ] / volume

Example 2: An important task in computational chemistry is the analysis of molecular

vibrations. To compute the normal modes and frequencies of vibrations, we need to compute

the Hessian matrix first and then compute the eigenvalues and eigenvectors of the mass scaled

Hessian matrix. In TorchANI, thanks to the autograd engine of PyTorch, achieving such a

task is as simple as shown in Listing 2.
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Listing 2: Vibrational Analysis

See also https://aiqm.github.io/torchani/examples/vibration_analysis.html

, e n e r g i e s = model ( ( s p e c i e s , c oo r d i na t e s ) )
he s s i an = torchan i . u t i l s . h e s s i an ( coord inate s , e n e r g i e s=e n e r g i e s )
e lement masses = torch . t en so r ( [

1 . 008 , # H
12 .011 , # C
14 .007 , # N
15 .999 , # O

] , dtype=torch . double )
masses = element masses [ s p e c i e s ]
f r eq , modes = to rchan i . u t i l s . v i b r a t i o n a l a n a l y s i s ( masses , h e s s i an )

In the above code, the torchani.utils.hessian is a short function that first computes forces
using torch.autograd, and then loop on every element of the forces to compute the Jacobian
matrix of forces with respect to coordinates. The torchani.utils.vibrational analysis scales

the hessian with mass, and diagonalize to obtain the frequencies and normal modes.

Example 3: Compared with energy, force is more critical in molecular dynamics because

energy is just an observer (print its value at each step), but the force is a player of the game

(velocities are updated according to force). Training to energy solely does not necessarily

lead to good forces (see the experiment in Section Benchmark). A straightforward solution to

make the model predicting good forces is training to force, which requires taking the second

derivative of the predicted energies. Implementing force training is trivial in PyTorch: we

just need to add a few lines of code to our energy trainer, as shown in Listing 3.

Listing 3: Train to Force

See also: https://aiqm.github.io/torchani/examples/nnp_training_force.html

f o r c e s = −torch . autograd . grad ( e n e r g i e s .sum( ) , coord inate s ,
c r ea t e g raph=True , r e t a i n g r ap h=True ) [ 0 ]

f o r c e l o s s = mse ( t r u e f o r c e s , f o r c e s ) .sum( dim=(1 , 2 ) ) / num atoms
l o s s = e n e r g y l o s s + alpha ∗ f o r c e l o s s

Example 4: The infrared (IR) intensity is computed as

A =
1

4πǫ0
·
NAπ

3c
·

(

∂µ̄

∂ ~R
(q)
k

)2
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Where µ̄ is the dipole moment, and ~R
(q)
k is the vibrational coordinates. As long as we could

train a neural network predicting dipoles, the computation of IR intensity using PyTorch

would also be straightforward. Starting from the normal modes, which could be computed

as shown in Listing 2, the pseudo-code to obtain its IR intensity is shown in Listing 4.

Listing 4: Compute IR Intensity

c a r t e s i a n c o o r d i n a t e s = t o c a r t e s i a n ( norma l coord inate s )
dipole moment = dipo l e mode l ( c a r t e s i a n c o o r d i n a t e s )
g r a d d i p o l e = torch . autograd . grad ( dipole moment , norma l coord inate s ) [ 0 ]
i r i n t e n s i t y = c o e f f i c i e n t ∗ g r a d d i p o l e ∗∗ 2

Design

TorchANI is composed of the following major parts:

• The core library, including AEV computer, species-differentiated atomic neural net-

work, and some other utilities.

• The dataset utilities to prepare datasets and add necessary padding to be used in the

training and evaluation of ANI models.

• The NeuroChem compatibility module that can: 1) read networks trained on Neu-

roChem, and 2) read NeuroChem’s training configuration files and train on PyTorch

with precisely the same procedure.

• The Atomic Simulation Environment (ASE)44 interface with full periodic boundary

condition and analytical stress support that allows users to run structure optimization,

molecular dynamics, and etc., with ANI using ASE.

• The ANI model zoo that stores public ANI models

The major part of the core library consists of three classes, AEVComputer, ANIModel, and
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EnergyShifter, which are used to build the coordinate-AEV-energy pipeline:

Coordinates
AEVComputer
−−−−−−−→ AEVs

ANIModel
−−−−−→ Raw energies

EnergyShifter
−−−−−−−−−→ Molecular energies

All three of these classes are subclasses of torch.nn.Module. The inputs of all these

classes are tuples of size 2, where the first elements of the tuple are always species, a

LongTensor storing the species of each atom in each molecule. The species are passed

through to the output unchanged, which allows us to pipeline objects of these classes using

torch.nn.Sequential. The energies computed by ANIModel (called raw energies) are dif-

ferent from the real molecular energy by a number that scales linearly with the number of

atoms of each species. EnergyShifter is the class responsible for shifting the raw energies

to real molecular energies.

The dataset utilities provide tools to read the published dataset of the same format as in35

and prepare it for training in TorchANI. The trick here is padding. Training of ANI models

uses stochastic gradient descent, which requires creating mini-batches containing different

molecules. A natural way to design this is to make the model have an input that is a tensor

of shape (molecules, atoms, 3) as coordinates and (molecules, atoms) to store the type of

elements of atoms. However, each minibatch contains molecules with a different number of

atoms. The nature of a tensor being an n-dimensional array makes it impossible to make

the whole batch a single tensor. Our solution was to “invent” a new ghost element type -1,

which does not exist on the periodic table. When batching, we pad all molecules by adding

atoms of the ghost element to make all molecules in the batch have the same number of total

atoms.

The code in Listing 5 shows how to use TorchANI to compute the energy and force of a

methane molecule, using an ensemble of 8 different ANI-1ccx34 models. From the example,

we can see that the whole coordinate→energy pipeline is part of the computational graph

so the gradients and higher-order derivatives can be computed using PyTorch’s automatic
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differentiation engine.

Listing 5: Compute Energy and Force Using ANI-1ccx Model

See also: https://aiqm.github.io/torchani/examples/energy_force.html

import torch
import to r chan i

model = to rchan i . models . ANI1ccx ( p e r i o d i c t a b l e i n d e x=True )
# To use a s i n g l e model i n s t ead o f an ensemble ,
# rep l a c e the above l i n e wi th :
# model = torchan i . models . ANI1ccx (
# p e r i o d i c t a b l e i n d e x=True ) [ 0 ]

coo r d i na t e s = torch . t en so r ( [ [ [ 0 . 0 3 , 0 . 006 , 0 . 0 1 ] ,
[ −0.8 , 0 . 4 , −0.3] ,
[ −0.7 , −0.8 , 0 . 2 ] ,
[ 0 . 5 , 0 . 5 , 0 . 8 ] ,
[ 0 . 7 , −0.2 , −0 . 9 ] ] ] ,

r e q u i r e s g r a d=True )
# In pe r i o d i c t a b l e , C = 6 and H = 1
s p e c i e s = torch . t en so r ( [ [ 6 , 1 , 1 , 1 , 1 ] ] )

, energy = model ( ( sp e c i e s , c o o rd in a t e s ) )
f o r c e = −torch . autograd . grad ( energy .sum( ) , c oo r d i n a t e s ) [ 0 ]

print ( ’ Energy : ’ , energy . item ( ) )
print ( ’ Force : ’ , f o r c e . squeeze ( ) )

Taking advantage of the power of PyTorch’s autograd engine, training to force becomes

trivial. Listing 3 shows the additional code added to the energy training script to train an

ANI model to force. We can see training a network to forces requires only a few additional

lines of code, as demonstrated in Listing 3.

TorchANI provides tools to compute the analytical Hessian using autograd engine and

to perform vibrational analysis, as shown in Listing 2. TorchANI also provides analytical

stress support, and it will be automatically used when the user is using the ASE interface

to do a NPT simulation with periodic boundary conditions. A set of detailed example

files and documentations for training and inference using TorchANI is available at https:
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//aiqm.github.io/torchani/.

Results and discussion

Benchmark

All benchmarks are done on a workstation with NVIDIA GeForce RTX 2080 GPU and Intel

i9-9900K CPU. Training on the whole ANI-1x dataset33 with network architecture identical

to the one used by NeuroChem takes 54 seconds per epoch. Within the 54 seconds, 16

seconds are spent on computing AEV, 28 seconds are spent on neural networks, and the rest

are on backpropagation. In comparison, NeuroChem takes 18 seconds for each epoch using

the same GPU/CPU architecture.

We also measured the number of seconds it takes to do 1000 steps of molecular dynamics.

All models are run in double data type on GPU. We tested both periodic and non-periodic

systems. We use water boxes with densities between 0.94g/mL and 1.17g/mL (except for

the very small system with only eight waters, which has density 0.72g/mL) of different size

for all periodic tests. The time vs. size of the system for both the periodic system and the

non-periodic system, as well as for both single ANI model and ANI model ensembles, are

shown in Table 1.

We also report the training behavior on the ANI-1x33 dataset. The whole ANI-1x dataset

is split into 80% + 10% + 10% where 80% of the data are used as the training set, 10% are

used as validation, and the other 10% are used as testing. We compare the results of training

only to energy and to both energy and force. When training with force, the loss function is

defined as loss = (energy loss) + α × (force loss), with different α values. For the training

to energy experiment, the MSE loss is scaled by the square root of the number of atoms

per each molecule, as described in.32 The performance on the COMP6 benchmark33 for the

resulting models of these training are shown at table 2. Energies are in kcal/mol, forces are

in kcal/
(

mol · Å
)

. Error keys are MAE/RMSE. From the table, we can see that although
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Table 1: Seconds for 1000 molecular dynamics steps

System PBC Total Atoms Single Network Ensemble of 8 Networks
benzene No 12 5.80 14.80

PHE-GLU-ILE tripeptide No 58 7.14 22.69
ALA14 No 143 7.00 23.83
ALA28 No 283 7.24 24.52
ALA42 No 423 7.32 24.32
ALA56 No 563 7.98 27.00
ALA84 No 843 8.58 27.12
ALA126 No 1263 9.36 27.45
ALA252 No 2523 14.87 35.14
ALA504 No 5043 30.87 53.37

water box Yes 24 13.27 21.30
water box Yes 51 12.53 22.02
water box Yes 150 13.54 22.38
water box Yes 300 16.10 24.39
water box Yes 501 19.65 28.28
water box Yes 801 32.19 41.47
water box Yes 1200 56.10 65.58

enabling force training night hurt the RMSE of absolute energies, the prediction of the

relative energies always improve. The relative energy is a more important quantity than the

absolute energy because it is related to reaction barriers and conformational changes.

Table 2: COMP6 benchmark result for different models. MAE/RMSE (kcal/mol)

Model Energy (α = 0) α = 0.5 α = 0.25 α = 0.1
Energy 2.27/3.62 3.10/33.93 2.73/4.50 2.43/3.93

Relative Energy 2.29/3.51 1.95/3.09 1.93/3.07 1.90/3.00
Forces 4.41/6.96 2.33/3.75 2.30/3.75 2.35/3.88

Application

In addition to its mentioned training/inference capabilities, we use TorchANI to train a fully

connected neural network to predict the NMR chemical shift of α and β carbons of proteins on

the the dataset used by SHIFTX2.45 NMR chemical shifts in proteins are used to determine

the protein structure. It is an atomic property that depends on many factors, including

the local protein structure as well as environmental factors such as hydrogen bonding and
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pH.45 SHIFTX2 is a program that predicts chemical shifts by combining different methods,

including machine learning. The dataset used to train SHIFTX2 is publicly available and

can be downloaded at http://www.shiftx2.ca.

Protein chemical shift databases usually contain chemical shift data of different types of

hydrogens, carbons, and nitrogens. Among these atoms, α and β carbons are mostly related

to structural information of the protein itself, rather than environments like hydrogen bond-

ing of nearby water molecules,45 making them an excellent choice for a simple application of

predicting a property solely based on local structure.

Since NMR chemical shifts are atomic properties, they are well suited to the ANI ar-

chitecture. We build a fully connected neural network with only one hidden layer, which

contains 256 neurons. We use Exponential Linear Unit (ELU)46 activation function to add

non-linearity to this network. The input of the network is solely the AEV for the atom to be

predicted, and the output is the chemical shift we are predicting. The AEV computer only

supports five elements: HCNOS. The length of each AEV is 560. Ligands and ions in the

protein structures are deleted so that each atom of interest only contains these five elements

in its neighborhood.

SHIFTX2 dataset contains a training set, which we use to train our models, and a testing

set which we use to evaluate our trained models. We train two different neural networks, one

for α carbons and the other for β carbons. After training, the resulting models can predict

the chemical shift of αC with a coefficient of determination R2 = 0.96 on the testing set,

which for βC this number is R2 = 0.99. The 2D histogram in logarithm scale for the true

values vs. predicted values is shown in Figure 3.
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Figure 3: The 2D Histogram for the Prediction of Chemical Shift
Note that the color scale is logarithmic, the yellow means 100x more populated than the
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