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We study Hamiltonian actions on b-symplectic manifolds with a focus on the effec-

tive case of half the dimension of the manifold. In particular, we prove a Delzant-type

theorem that classifies these manifolds using polytopes that reside in a certain enlarged

and decorated version of the dual of the Lie algebra of the torus.

1 Introduction

It is a well-known fact that the image of the moment map of a compact symplectic toric

manifold is a Delzant polytope and that the symplectic manifold can be reconstructed

from this polytope [4, 9, 10].

In this paper, we prove a similar theorem for a class of Poisson manifolds which

is close to the symplectic class called b-symplectic manifolds. These objects were first

studied as manifolds with boundary in the works of Melrose [15] and Nest and Tsy-

gan [16]; recent treatments of the subject in [7, 8] study the objects as manifolds with dis-

tinguished hypersurfaces. The symplectic groupoids integrating b-manifolds have been
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Toric Actions on b-Symplectic Manifolds 5819

lately considered in [6] and the topology of these manifolds has been studied further

in [3, 5, 13, 14]. The b-symplectic manifolds that we consider are compact and have

the property that the induced symplectic foliation on the exceptional hypersurface has

compact leaves, the exceptional hypersurface in this case is a symplectic mapping torus

(see [7]).

To define the moment map of a torus action on a b-manifold, we first enlarge

the codomain t∗ to include points “at infinity.” The preimage of these points will be the

exceptional hypersurface of the b-symplectic manifold. We will also assign t∗-valued

weights to these points to encode certain geometric data, called the modular periods

of the components of the exceptional hypersurface. The definition of a Delzant polytope

generalizes in a natural way to this enlarged codomain, giving the definition of a Delzant

b-polytope. The main theorem of this paper states that there is a bijection between

b-symplectic toric manifolds and Delzant b-polytopes.

In contrast with classic symplectic geometry, the topology of the codomain of

the moment map will depend on the b-manifold itself in two ways. First, the smooth

structure on the codomain will depend on the modular periods of the exceptional hyper-

surfaces of the b-manifold. Second, in some cases the codomain will be contractible, and

in other cases it will be topologically a circle.

This Delzant theorem allows us to classify all 2n-dimensional b-symplectic toric

manifolds into two categories. The first kind of b-symplectic toric manifold has as its

underlying manifold XΔ × T
2, where XΔ is any classic (2n− 2)-dimensional symplectic

toric manifold. The second kind of b-symplectic toric manifold is constructed from the

manifold XΔ × S
2 by a sequence of symplectic cuts performed away from the exceptional

hypersurface.

2 Preliminary Definitions and Examples

2.1 b-Objects, including b-functions

We begin by recalling some of the notions introduced in detail in [8]. A b-manifold is a

pair (M, Z) consisting of an oriented smooth manifold M and a closed embedded hyper-

surface Z . A b-map (M, Z)→ (M′, Z ′) is an orientation-preserving map f : M → M′ such

that f−1(Z ′)= Z and f is transverse to Z ′. The sections of the b-tangent bundle, bT M,

are the vector fields on M which at points of Z are tangent to Z . The dual to this bundle

is bT∗M, the b-cotangent bundle. The sections of Λk(bT∗M) are called b-de Rham k-

forms or simply b-forms. The space of all such forms is written bΩk(M). The restriction

of any b-form to M\Z is a classic differential form on M\Z , and there is a differential

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article-abstract/2015/14/5818/783369 by The U
niversity of Edinburgh user on 15 April 2019



5820 V. Guillemin et al.

d : bΩk(M)→ bΩk+1(M) that extends the classic differential on M\Z . With respect to this

differential, we extend the standard definitions of closed and exact differential forms

to closed b-forms and exact b-forms. A b-symplectic form is a closed b-form of degree

2 that has maximal rank (as a section of Λ2(bT∗M)) at every point of M. A b-symplectic

manifold consists of the data of a b-manifold (M, Z) and a b-symplectic form ω. A b-

symplectomorphism between two b-symplectic manifolds (M, ω) and (M′, ω′) is a b-map

ϕ : M → M′ such that ϕ∗ω′ =ω.

Although a b-form can be thought of as a differential form with a singularity

along Z , the singularity is so tame that it is possible to define the integral of a form of

top degree by taking its principal value near Z .

Definition 1. For any b-form η ∈ bΩn(M) on a n-dimensional b-manifold and any local

defining function y of Z , the Liouville Volume of η is

b
∫

M
η := lim

ε→0

∫
M\{−ε≤y≤ε}

η �

The fact that the limit in Definition 1 exists and is independent of y is explained

in [17] (for surfaces) and [18] (in the general case).

In [8], the authors prove that every b-form η ∈ bΩ p(M) can be written in a neigh-

borhood of Z = {y= 0} as

η= dy

y
∧ α + β

for smooth forms α ∈Ω p−1(M) and β ∈Ω p(M). Although the forms α and β in this expres-

sion are not unique, the pullback i∗
Z (α) is unique, where iZ is the inclusion Z ⊆ M. The

resulting differential form on Z admits an alternative description: if v is a vector field

on M such that dy(v)|Z = 1, then the vector field L := yv is a b-vector field, L|Z does not

depend on v or y, the b-form ιLη is a smooth form, and i∗
Z (α)= i∗

Z ιLη. For this reason, we

adopt the notation ιLη for this (p− 1)-form on Z .

One can also study b-symplectic manifolds from the perspective of Poisson

geometry: the dual of a b-symplectic form is a Poisson bivector whose top exterior prod-

uct vanishes transversely (as a section of Λ2n(T M)) at Z . Using these tools, we learn

that Z has a codimension-1 symplectic foliation. To study this foliated hypersurface, we

review the definition of the modular vector field on M.

Definition 2. Fix a volume formΩ on a b-symplectic manifold. The modular vector field

vΩmod on M (or simply vmod if Ω is clear from the context) is the vector field defined by the
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Toric Actions on b-Symplectic Manifolds 5821

derivation

f 
→ LufΩ

Ω
,

where uf is the Hamiltonian vector field of f , defined by df = ιufω. �

Although the modular vector field depends on Ω, different choices of Ω yield

modular vector fields that differ by Hamiltonian vector fields. On a b-symplectic mani-

fold, the modular vector field is tangent to the exceptional hypersurface Z and its flow

preserves the symplectic foliation of Z , and Hamiltonian vector fields are tangent to

the symplectic foliation. In fact, in [8] it is shown that corresponding to each modular

vector field vmod and compact leaf L of a component Z ′ of Z , there is a k∈ R>0 and a

symplectomorphism f :L→L such that Z ′ is the mapping torus

L × [0,k]

(�,0)∼ ( f(�),k)

and the time t flow of vmod is translation by t in the second coordinate. The number k,

which depends only on the choice of component Z ′ ⊆ Z , is called the modular period of

Z ′. This definition generalizes the one given in [17] for b-symplectic surfaces.

Not all closed b-forms on a b-manifold are locally exact. For example, if y is a

local defining function for Z , then dy
y is closed, but it is not exact in any neighborhood

of any point of Z . Poincaré’s lemma is such a fundamental property of the (smooth) de

Rham complex that we are motivated to enlarge the sheaf C ∞ on a b-manifold to include

functions such as log |y| so that we have a Poincaré lemma in b-geometry.

Definition 3. Let (M, Z) be a b-manifold. The sheaf bC ∞ is defined by

bC ∞(U ) :=

⎧⎪⎪⎨
⎪⎪⎩c log |y| + f

∣∣∣∣∣∣∣∣
c ∈ R

y is any defining function for U ∩ Z ⊆ U

f ∈ C ∞(U )

⎫⎪⎪⎬
⎪⎪⎭.

If no global defining function for Z exists (for example, if Z is a meridian of T
2), then this

definition yields only a presheaf and bC ∞ is defined as its sheafification. Global sections

of bC ∞ are called b-functions. �

Replacing C ∞ with bC ∞ also enlarges the possible Hamiltonian torus actions

on b-manifolds. In fact, in Corollary 14 we show that unless Z = ∅ there are no exam-

ples of effective Hamiltonian T
n-actions on 2n-dimensional b-symplectic manifolds with
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5822 V. Guillemin et al.

all their Hamiltonians in C ∞(M). We prove a simple relationship between the modular

period and b-functions, which will be useful in later sections.

Proposition 4. Let (M, Z , ω) be a b-symplectic manifold such that Z is connected and

has modular period k. Let π : Z → S
1 ∼= R/k be the projection to the base of the corre-

sponding mapping torus. Let γ : S
1 = R/k→ Z be any loop with the property that π ◦ γ is

the positively oriented loop of constant velocity 1. The following numbers are equal:

(1) The modular period of Z .

(2)
∫
γ
ιLω.

(3) The value −c for any bC ∞ function H = c log |y| + f such that the Hamiltonian

XH has 1-periodic orbits homotopic in Z to some γ .

Proof. Recall from [8] that ιLω(vmod) is the constant function 1. Let s : [0,k] → Z be a

trajectory of the modular vector field. Because the modular period is k, s(0), and s(k) are

in the same leaf L of the foliation. Let ŝ : [0,k + 1] → Z be a smooth extension of s such

that s|[k,k+1] is a path in L joining ŝ(k)= s(k) to ŝ(k + 1)= s(0), making ŝ a loop. Then

k=
∫k

0
1 dt =

∫
s
ιLω=

∫
ŝ
ιLω=

∫
γ

ιLω.

Next, let r : [0,1] 
→ Z be a trajectory of XH , and notice that XH satisfies ιXHω=
cdy

y + d f . Let y ∂
∂y be a representative of L. Because XH is 1-periodic and homotopic to γ ,

k=
∫

r
ιLω=

∫1

0
ιy ∂

∂y
ω(XH |r(t))dt =

∫1

0
−

(
c

dy

y
+ d f

)(
y
∂

∂y

)∣∣∣∣
r(t)

dt = −c. ��

2.2 Hamiltonian actions on symplectic and b-symplectic manifolds.

Let T
n be a torus which acts on a symplectic manifold M by symplectomorphisms, and

denote by t and t∗ its Lie algebra and corresponding dual, respectively. We say that the

action is Hamiltonian if there exists an invariant map μ : M → t∗ such that for each

element X ∈ t,

dμX = ιX#ω, (1)

where μX = 〈μ, X〉 is the component of μ in the direction of X, and X# is the vector field

on M generated by X:

X#(p)= d

dt
[exp(tX) · p].

The map μ is called the moment map.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article-abstract/2015/14/5818/783369 by The U
niversity of Edinburgh user on 15 April 2019



Toric Actions on b-Symplectic Manifolds 5823

To study a torus acting on a b-manifold by b-symplectomorphisms, the definition

of a Hamiltonian action and of a moment map must be adapted. To motivate the appro-

priate definitions we study two examples.

Example 5. Consider the b-symplectic manifold (S2, Z = {h= 0}, ω= dh
h ∧ dθ), where the

coordinates on the sphere are h∈ [−1,1] and θ ∈ [0,2π ]. For the S
1-action given by the

flow of − ∂
∂θ

, a moment map on M\Z is μ(h, θ)= log |h|. The image of μ is drawn in the

left half of Figure 1 as two superimposed half-lines depicted slightly apart to emphasize

that each point in the image has two connected components in its preimage: one in the

northern hemisphere, and one in the southern hemisphere. By enlarging the codomain

of our moment map to include points “at infinity,” we can define moment maps for torus

actions on a b-manifold that enjoy many of the same properties as classic moment maps:

they will be everywhere defined and their image will be a parameter space for the orbits

of the action. �

Example 6. Consider the b-symplectic manifold

(
T

2, Z = {θ1 ∈ {0, π}}, ω= dθ1

sin θ1
∧ dθ2

)

where the coordinates on the torus are θ1, θ2 ∈ [0,2π ]. The circle action of rotation on the

θ2 coordinate is given by the bC ∞ Hamiltonian function log | 1+cos θ1
sin θ1

|, the image of which

is shown in the right half of Figure 1. �

Fig. 1. The moment maps of the S
1-actions on M\Z in Examples 5 and 6.
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Definition 7. An action of T
n on a b-symplectic manifold (M, ω) is Hamiltonian if for

any X,Y ∈ t:

(1) the one-form ιX#ω is exact, that is, it has a primitive HX ∈ bC ∞(M);

(2) ω(X#,Y#)= 0.

A Hamiltonian action is toric if it is effective and dim(Tn)= 1
2 dim(M). �

3 Classification of Toric b-Surfaces

In this section, we classify toric S
1-actions on b-symplectic surfaces, which

can be summarized as follows: all b-symplectic toric surfaces are equivariantly

b-symplectomorphic to either Examples 5 or 6 with possibly a different number of com-

ponents of the exceptional hypersurface. As noted in Remark 37, this result is a conse-

quence of the Delzant theorem for toric b-symplectic manifolds (Theorem 35). We prove

the two-dimensional case independently here because it can be considered as the toy

model that yields the general classification of b-symplectic toric manifolds, as explained

in Remark 39.

One necessary ingredient is the fact that the only orientable compact surfaces

admitting an effective S
1-action are S

2 and T
2, and the action is equivalent to the stan-

dard action by rotation (see [1, p. 22] for a proof). If the surface is symplectic and

the action is Hamiltonian, then the surface must be a sphere S
2. However, there are

b-symplectic structures on T
2 that admit a Hamiltonian circle action.

Another ingredient is Radko’s classification of b-symplectic structures on a com-

pact surface M, up to b-symplectomorphism, by the set of curves Z , their modular

periods and the regularized Liouville volume (see [17, Theorem 3] or [8, Theorem 17]).

To obtain an equivariant version of this result, we need an equivariant version of the

b-Moser theorem (the classic version is [8, Theorem 38]):

Theorem 8 (Equivariant b-Moser theorem). Suppose that M is compact and let ω0 and

ω1 be two b-symplectic forms on (M, Z). Suppose that ωt, for 0 ≤ t ≤ 1, is a smooth family

of b-symplectic forms on (M, Z) joining ω0 and ω1 such that the b-cohomology class [ωt]

does not depend on t. Then, there exists a family of diffeomorphisms γt : M → M, for

0 ≤ t ≤ 1 such that γt leaves Z invariant and γ ∗
t ωt =ω0.

Furthermore, if the b-symplectic forms are invariant by the action of a compact

Lie group, then γt can be made equivariant. �
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Proof. The proof is essentially the same as in [8], but using averaging techniques to

guarantee that γt is equivariant. The isotopy γt is obtained by integrating a smooth fam-

ily of invariant b-vector fields vt such that Lvtωt = dωt
dt . Because [ωt] is independent of t,

we may pick a family μt ∈ bΩ1(M) such that dωt
dt = dμt. By replacing μt with

∫
G(ρ

∗
g(μt)dg)

(where g is a Haar measure and ρ : G × (M, Z)−→ (M, Z) is the action), we may assume

that μt is invariant. Then the b-vector field defined by Moser’s equation ιvtωt = −μt is

invariant because μt and ωt are invariant. Its flow gives the desired equivariant diffeo-

morphism. �

Theorem 9. A b-symplectic surface with a toric S
1-action is equivariantly

b-symplectomorphic to either (S2, Z) or (T2, Z), where Z is a collection of latitude circles

(in the T
2 case, an even number of such circles), the action is the standard rotation, and

the b-symplectic form is determined by the modular periods of the exceptional curves

and the regularized Liouville volume. �

Proof. By the classic result about effective circle action on surfaces, we may assume

that the surface and group action is either S
2 or T

2 with the standard rotation. Since

the Hamiltonian circle action must preserve Z , the components of Z must be latitude

circles (in the standard coordinates on S
2 or T

2, respectively, level curves of h or θ1).

This forces the number of components of Z ⊆ T
2 to be even, since the orientation of a b-

symplectic form changes when you cross a component of Z . By applying an equivariant

diffeomorphism, we may also assume that Z is fixed. Finally we repeat the proof of [8,

Theorem 17], replacing the classic b-Moser theorem [8, Theorem 38] by its equivariant

version (Theorem 8). �

4 Toric Actions in Higher Dimensions

4.1 Local picture: in a neighborhood of Z

We begin by studying a toric actions near a connected component of Z . To simplify our

exposition, we assume throughout Section 4.1 that Z has one connected component.

In the general case, these results hold in a neighborhood of each connected component

of Z .

Proposition 18 is the main result of this section. It states that a toric action near

Z is locally a product of a codimension-1 torus action on a symplectic leaf of Z with an

circle action whose flow is transverse to the leaves. The codimension-1 subtorus T
n−1
Z

will consist of those elements of T
n that preserve the symplectic foliation of Z . Toward
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the goal of showing that this subtorus is well-defined, we recall the following standard

fact from Poisson geometry.

Remark 10. Let (M, Z , ω) be a b-symplectic manifold. Since Z is a Poisson submanifold

of M, a Hamiltonian vector field of a smooth function X f is tangent to the symplectic

leaves of Z and X f |L = X f◦iL where iL : (L, ωL)→ Z is the inclusion of a symplectic leaf

into Z . �

Given a Hamiltonian T
k-action on (M2n, Z , ω) and any X ∈ t, the b-form ιX#ω has

a bC ∞ primitive that can be written in a neighborhood of Z as c log |y| + g, where y is

a local defining function for Z , g is smooth, and c ∈ R depends on X. The map X 
→ c

is a well-defined homomorphism and therefore an element vZ of t∗ = Hom(t,R) called

the modular weight of Z . We will denote by tZ the kernel of vZ . By Proposition 4, the

values 〈vZ , X〉 are integer multiples of the modular period of Z when X is a lattice vector,

so the slope of vZ is rational. We will show in Claim 13 that vZ is nonzero. First, we

prove an equivariant Darboux theorem for compact group actions in a neighborhood of

a fixed point. Given a fixed point p of an action ρ : G × M −→ M, we denote by dρ the

linear action defined via the exponential map in a neighborhood of the origin in TpM:

dρ(g, v)= dp(ρ(g))(v).

Theorem 11. Let ρ be a b-symplectic action of a compact Lie group G on a b-symplectic

manifold (M, Z , ω), and let p∈ Z be a fixed point of the action. Then there exist local

coordinates (x1, y1, . . . , xn−1, yn−1, z, t) centered at p such that the action is linear in these

coordinates and

ω=
n−1∑
i=1

dxi ∧ dyi + 1

z
dz ∧ dt. �

Proof. By picking a Riemannian metric we may assume that ω and ρ live on the b-

manifold (TpM, TpZ).

By Bochner’s theorem [2], the action of ρ is locally equivalent to the action of

dρ. That is, there are coordinates (x1, y1, . . . , xn−1, yn−1, z, t) centered at 0 = (0,0, . . . ,0) on

which the action is linear. By studying the construction of ϕ in [2], we can choose the

coordinates so that TpZ is the coordinate hyperplane {z= 0}. Also, after a linear change

of these coordinates, we may assume that

ω|0 =
n−1∑
i=1

dxi ∧ dyi + 1

z
dz ∧ dt.
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Toric Actions on b-Symplectic Manifolds 5827

Next, we will perform an equivariant Moser’s trick. Let ω0 =ω,

ω1 =
n−1∑
i=1

dxi ∧ dyi + 1

z
dz ∧ dt, and ωs = sω1 + (1 − s)ω0, for s ∈ [0,1].

Because ωs has full rank at 0, we may assume (after shrinking the neighborhood) that

ωs has full rank for all s. Let α be a primitive for ω1 − ω0 that vanishes at 0 (α is a

b-form). Then, we apply the argument of Theorem 8 to obtain the desired equivariant

b-symplectomorphism. �

In the particular case where the group is a torus we obtain the following

corollary.

Corollary 12. Consider a fixed point z∈ Z of a symplectic T
k-action on (M, Z , ω). If the

isotropy representation on TzM is trivial, then the action is trivial in a neighborhood

of z. �

Claim 13. Let (M2n, Z , ω) be a b-symplectic manifold with a toric action. Then vZ is

nonzero and therefore tZ is a hyperplane in t. �

Proof. Consider a toric action on (M2n, Z , ω) such that ιX#ω ∈Ω1(M) for every X ∈ t. We

prove that this action is not effective.

Let (L, ωL) be a leaf of the symplectic foliation of Z . By Remark 10 the action

on M induces a Hamiltonian torus action on the symplectic manifold (L, ωL). Because

dim(L)= 2n− 2, there must be a subgroup S
1 ⊆ T

n that acts trivially on L. For any z∈L,

the isotropy representation of this S
1-action on TzM restricts to the identity on TzL⊆ TzM

and preserves the subspace TzZ . It therefore induces a linear S
1-action on the one-

dimensional vector space TzZ/TzL. Any such action is trivial, so the isotropy representa-

tion restricts to the identity on TzZ . By the same argument, the isotropy representation

on all of TzM is trivial. By Corollary 12, the S
1-action is the identity on a neighborhood

of z and therefore the action is not effective. �

Corollary 14. If the b-symplectic manifold (M, Z , ω) admits a toric action such that

ιX#ω ∈Ω1(M) for every X ∈ t, then Z = ∅. �

When Z is not connected, there is a modular weight vZ for each connected com-

ponent of Z , but we will see in Claim 20 that they are nonzero scalar multiples of one

another.
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Proposition 15. Let (M2n, Z , ω) be a b-symplectic manifold with a toric action. Let X be

a representative of a primitive lattice vector of t/tZ that pairs positively with vZ . Then

〈X, vZ 〉 equals the modular period of Z . �

Proof. By Proposition 4, it suffices to prove that a time-1 trajectory of X# that starts on

Z , when projected to the S
1 base of the mapping torus Z , travels around the loop once.

Let p∈ R
+ be the smallest number such that ΦX

p (L)=L, where ΦX#

p is the time-p flow of

X#. The condition that ω(X#,Y#)= 0 for all Y ∈ tZ implies that the symplectomorphism

ΦX#

p |L preserves the TZ -orbits of L. We can realize any such symplectomorphism as the

time-1 flow of a Hamiltonian vector field v on the symplectic leaf (L, ωL) (see, for exam-

ple, the [12, proof of Proposition 6.4]). The product of the TZ action with the flow of

p−1v defines a Hamiltonian TZ × S
1 ∼= T

n action on (L, ωL), so there exists S
1 ⊆ TZ × S

1

that acts trivially on L. Since the TZ action is effective, this S
1 is not a subset of TZ .

Therefore we may assume, after replacing X with X + Y for some Y ∈ tZ , that the time-p

flow of X# is the identity on L. Then, for any z∈L, the isotropy representation of the

time-p flow of X# would be the identity on TzM, proving (by Corollary 12) that the time-p

flow of X# is the identity in a neighborhood of z. By effectiveness, p= 1. �

Proposition 15 implies that the trajectories of X# on Z travel around the S
1 base

of the mapping torus Z exactly once. Because X# is periodic and a Poisson vector field,

its flow defines a product structure on Z .

Corollary 16. Let (M2n, Z , ω) be a b-symplectic manifold with a toric action and L a

symplectic leaf of Z . Then Z ∼=L × S
1. �

When Z is not connected, this implies that each component Z ′ ⊆ Z is of the form

L′ × S
1, for possibly distinct L′. We will see that the existence of a global toric action

forces all L′ to be identical.

We are nearly ready to prove that in a neighborhood of Z the toric action splits

as the product of a T
n−1
Z -action and an S

1-action. We preface this by studying a related

example in classic symplectic geometry that will give us intuition for the proofs of

Lemma 17 and Proposition 18.

Consider the symplectic manifold M = S
2 × S

2, ω= dh1 ∧ dθ1 + dh2 ∧ dθ2 with a

Hamiltonian T
2-action defined by

(t1, t2) · (h1, θ1,h2, θ2)= (h1, θ1 + t1,h2, θ2 + t2).
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L1 L2

Fig. 2. Hypersurfaces in S
2 × S

2: Z1 =μ−1(L1) and Z2 =μ−1(L2).

Let X1, X2 ∈ t be such that X#
1 = ∂

∂θ1
and X#

2 = ∂
∂θ2

. The moment map of this action is given

by (h1,h2), its image is the square Δ= [−1,1]2.

Consider the hypersurfaces Z1 = {h2 = 0} and Z2 = {h1 + h2 = −1} in M, see

Figure 2. Near L1, the polytope Δ is locally the product L1 × (−ε, ε); near L2, it is not

locally a product. The vector field u= ∂
∂h2

in a neighborhood of Z1 has the property that

dh2(u)= 1, and ω(Y#,u)= 0 for all Y in the hyperplane of t spanned by X1. If we flow Z1

along the vector field u, the image under μ would consist of the line segment L1 moving

with constant velocity in the direction perpendicular to 〈X1〉, showing once again that

Δ is locally the product L1 × (−ε, ε) near L1. In contrast, there is no vector field u′ in a

neighborhood of Z2 such that d(h1 + h2)(u′)= 1 and ω(Y#,u′)= 0 for all Y in a hyperplane

of t, reflecting the fact that Δ is not locally a product near L2. The reason that no such

u′ exists is because every hyperplane of t contains some Y such that ιY#ω is a multiple of

d(h1 + h2) somewhere along Z2 (making the condition that d(h1 + h2)(u′)= 1 incompatible

with ω(Y#,u′)= 0). In other words, the fact that Δ is locally a product near L1 is reflected

in the fact that there is a hyperplane in t such that ker(ιY#ωz) �= TzZ for all z∈ Z and all Y

in this hyperplane.

In a neighborhood of the exceptional hypersurface Z of a b-manifold, a toric

action will always behave similarly to the Z1 example: the hyperplane tZ ⊆ t satisfies the

property ker(ιY#ωz) �= TzZ for all z∈ Z and Y ∈ tZ . This fact is the content of Lemma 17

and will play an important role in the proof of Proposition 18.

Lemma 17. Let k<n and consider a Hamiltonian T
k-action on (M2n, Z , ω) for which

ιX#ω ∈Ω1(M) for each X ∈ t. Then for any z∈ Z and X ∈ t, ker(ιX#ωz) �= TzZ . �

Proof. Pick coordinates (t, θ, x1, . . . , x2n−2) centered around a point z∈ Z such that t is

a defining function for Z , ∂
∂t is a T

k-invariant vector field, and i∗
Z (dθ)= ιL(ω). Because ∂

∂t

is invariant, for any X ∈ t we have 0 = [ ∂
∂t , X#](θ)= ∂

∂t(dθ(X
#)). If ker(ιX#ωz) contains TzZ ,

then a calculation in local coordinates shows that ιX#ω must in fact vanish completely

at z. That is, if ker(ιX#ωz)⊇ TzZ , then ker(ιX#ωz)= TzM. �
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Proposition 18. Let (M2n, Z , ω) be a b-symplectic manifold with a toric action and L a

leaf of its symplectic foliation, and vZ the modular weight of Z . Pick a lattice element

X ∈ t that represents a generator of t/tZ and pairs positively with vZ .

Then there is a neighborhood L × S
1 × (−ε, ε)∼= U ⊆ M of Z such that the T

n-

action on U \ Z has moment map

μU\Z :L × S
1 × ((−ε, ε) \ {0})→ t∗ ∼= t∗Z × R, (�, ρ, t) 
→ (μL(�), c log |t|) (2)

where c is the modular period of Z , the map μL : L→ t∗Z is a moment map for

the T
n−1
Z -action on L, and the isomorphism t∗ ∼= t∗Z × R is induced by the splitting

t ∼= tZ ⊕ 〈X〉. �

Proof. Observe that the splitting t ∼= tZ ⊕ 〈X〉 induces a splitting T
n ∼= T

n−1 × S
1. Pick

a primitive f of ιX#ω. For a suitable neighborhood U of Z , let y : U → R be a defining

function for Z with the property that f = c log|y| on U \ Z . Because f is T
n-invariant, so

too is y. Our first goal is to pick a vector field u in a neighborhood of Z with the following

three properties:

(1) dy(u)= 1

(2) ιY#ω(u)= 0 for all Y ∈ tZ

(3) u is T
n-invariant

To show that a vector field exists that satisfies conditions (1) and (2) simul-

taneously, it suffices to observe that for each z∈ Z and Y ∈ tZ , ker(ιY#ωz) �= TzZ by

Lemma 17. Let u be a vector field satisfying (1) and (2). Because dy and each ιY#ω

are T
n-invariant, we can average u by the T

n-action without disturbing properties (1)

and (2). By replacing u with its T
n-average, we assume that u is T

n-invariant. Let

Φu
t and ΦX#

t be the time t flows of u and X#, respectively. Then, using Corollary 16,

the map

φ :L × S
1 × (−ε, ε)→ U , (�, ρ, t) 
→Φu

t ◦ΦX#

ρ (�)

is a diffeomorphism for sufficiently small ε. Let p and t be the projections of L × S
1 ×

(−ε, ε) on to Z ∼=L × S
1 and (−ε, ε), respectively. To study the induced T

n-action on the

domain of φ, fix some (s, g)= (exp(kX), exp(Y)) ∈ S
1 × T

n−1
Z and recall that since u is T

n-

invariant, its flows commute with the flows of all {X# | X ∈ t}. We can check that in these
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coordinates the action is given by

φ(g ·L �, ρ + s, t)=Φu
t ◦ΦX#

ρ+s(g ·L �)= (s, g) · φ(�, ρ, t),

where ·L denotes the T
n−1
Z -action on L.

We will show that the moment map for this action is given by (2). By con-

struction, μX
U\Z ∈ bC ∞(L × S

1 × ((−ε, ε) \ {0})) is given by c log |t| as desired. To prove that

ιY#(φ∗ω)= dμY
U\Z for Y ∈ tZ , we define the map

pL : U →L, φ(�, ρ, t) 
→ �.

Since the map pL can be realized at φ(�, ρ, t) as the time-(−t) flow of u followed by the

time-(−ρ) flow of X#, both of which preserve ιY#ω, it follows that p∗
L(ιY#ω)= ιY#ω. Then

ιY#(φ∗ω)= φ∗ p∗
L(ιY#ω)= dμY

U\Z . �

As a result, for such a neighborhood U of Z , each half (each connected compo-

nent) of the open set U \ Z is taken under the moment map to the product of a Delzant

polytope Δ with an interval of the form (−∞,k). The image of Z under the moment map,

were it to be defined, would be Δ× {−∞}. In Sections 5 and 6, we will make this precise.

4.2 Global picture

Let (M2n, Z , ω) be a b-symplectic manifold with a toric action. We now consider the gen-

eral case, when Z is not necessarily connected. For a connected component W of M \ Z ,

we write μW : W → t∗.

Claim 19. The image μW(W) is convex. �

Proof. Let Z1, . . . , Zr be the connected components of Z which are in the closure of W.

By Proposition 18, we can find a function ti in a neighborhood of Zi for which an S
1 factor

of the T
n-action is generated by the Hamiltonian ci log |ti| for ci > 0. Define W≥ε ⊆ W to be

W\{|ti|< ε}, let W=ε be its boundary, and let W>ε = W≥ε\W=ε.

Performing a symplectic cut at W=ε gives a compact symplectic toric manifold

W≥ε, which has an open subset canonically identified with W>ε. Let μW,ε : W≥ε → t∗ be

the moment map for the toric action on W≥ε that agrees with μW on W>ε. To show that

μW(W) is convex, pick points μW(p), μW(q) in μW(W) and fix some ε > 0 small enough that

p,q ∈ W>ε. Because W≥ε is compact, μW,ε(W≥ε) contains the straight line joining μW(p)=
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μW,ε(p) and μW(q)=μW,ε(q). Since μW,ε(W≥ε)⊆μW(W), the image μW(W) also contains

the straight line joining μW(p) and μW(q). �

As a result of Proposition 18, for each connected component Z ′ of Z adjacent to W

there is a neighborhood U of Z ′ such that μW(U ∩ W) is the product of a Delzant polytope

with the ray generated by −vZ ′ . By performing symplectic cuts near the hypersurfaces

adjacent to W (as in the proof of Claim 19) to partition the image of μW into a convex

set and these infinite prisms, we see that the convex set μW(W) extends indefinitely in

precisely the directions −vZ ′ for all components Z ′ adjacent to W.

By convexity, if μW(W) extends infinitely far in directions v1 and v2, then it also

extends infinitely far in every direction of the cone spanned by v1 and v2. Since the num-

ber of these directions is bounded by the (finite) number of components of Z adjacent

to W, v1, and v2 must be multiples of one another. This proves that all vZ occupy the

same one-dimensional subspace of t∗, so that tZ ′ := v⊥
Z ′ is independent of the choice of

component Z ′ ⊆ Z .

Claim 20. Suppose that Z1 and Z2 are two different connected components of Z both

adjacent to the same connected component W of M\Z . Then vZ1 = kvZ2 for some k< 0. �

Proof. By the discussion above, vZ1 = kvZ2 for some k∈ R, and by Claim 13, k �= 0. It

suffices, therefore, to prove that k cannot be positive. Assume toward a contradiction

that k is positive, and pick X ∈ t such that 〈X, vZ1〉> 0, and let H : W → R be a Hamiltonian

for the flow of X#. By performing symplectic cuts sufficiently close to the components

of Z adjacent to W (as in the proof of Claim 19) and using the fact that the level sets

of moment maps on compact connected symplectic manifolds are connected, it follows

that H−1(λ) is connected for any λ ∈ R. In a neighborhood of Z1 and of Z2, the function

H approaches negative infinity. Therefore, for sufficiently large values of N, the level set

H−1(−N) has a connected component inside a neighborhood of Z1 and another inside a

neighborhood of Z2. Because H−1(−N) has just one connected component, Z1 = Z2. �

In particular, each component of M\Z is adjacent to at most two connected com-

ponents of Z .

Definition 21. The weighted adjacency graph G = (G, w) of a symplectic b-manifold

(M, Z , ω) consists of a graph G = (V, E) and a weight function on the set of edges, w : E →
t∗. The graph G has a vertex for each component of M \ Z and an edge for each connected
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Fig. 3. The adjacency graph is either a cycle of even length or a line.

component of Z that connects the vertices corresponding to the components of M \ Z

that it separates. The weight w(e) is the modular weight of the connected component of

Z corresponding to e. �

When (M2n, Z , ω) has an effective toric action, this graph must either a loop or a

line, as illustrated in Figure 3. If it is a loop, Claim 20 implies that it must have an even

number of vertices.

5 The b Moment Codomain

When b-functions are the Hamiltonians of a torus action, we cannot expect to be able

to gather them into a moment map μ : M → t∗ the same way we do in classic symplectic

geometry: it is impossible to define μ along Z . In this section, we define a moment map

for a toric action on a b-manifold. We start with a copy of t∗ for each component of M\Z ,

add points “at infinity,” then glue these copies of t∗ together in a zig–zag pattern and use

labels on the points at infinity to put a smooth structure on the result. Figure 4 shows

an example of the t∗ ∼= R case.

Fig. 4. A b moment codomain when G is a line with six edges.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article-abstract/2015/14/5818/783369 by The U
niversity of Edinburgh user on 15 April 2019



5834 V. Guillemin et al.

The technical details are as follows: let T
n be a torus and consider the pair G =

(G, w), of G a finite graph that is either a cycle of even length or a line and a nonvanishing

function w : E → t∗ such that whenever the edges e and e′ meet at a vertex, w(e)= kw(e′)

for some k< 0. Note that these are exactly the properties that weighted adjacency graphs

of toric b-symplectic manifolds satisfy.

From this data, we construct the b moment codomain (RG,ZG, x̂), where

(RG,ZG) will be a b-manifold and x̂ :RG\ZG → t∗ a smooth map. If G is a single ver-

tex, define (RG,ZG, x̂)= (t∗,∅, id). If G has more than one vertex, let tw = (w(e))⊥ ⊆ t for

any choice of e ∈ E . As a set, define

RG = t∗ × V � t∗w × E

ZG = t∗w × E

and let x̂((x, v))= x.

We define a smooth structure on RG by declaring the maps x̂ and the following

maps {yA,e}e∈E to be smooth: pick an A∈ t\tw (the smooth structure on RG can be proven

to be independent of this choice); for each edge e = (v, v′) we define the map yA,e from a

subset of RG to t∗w × R by

where [x] is the image of x in t∗w ∼= t∗/t⊥w. This completes the construction of the b moment

codomain.

Given a smooth b-map μ from a b-manifold (M, Z) to a b moment codomain, and a

choice of X ∈ t, the map 〈x̂ ◦ μ, X〉 defines a b-function on M. In this way, we can represent

many b-functions as maps to b moment codomains.

Definition 22. Consider a Hamiltonian T
n-action on a b-symplectic manifold (M, Z , ω),

and let μ : M →RG be a smooth T
n-invariant b-map. We say that μ is a moment map for

the action if the map t � X 
→μX ∈ C ∞(M), with μX(p)= 〈x̂ ◦ μ(p), X〉, is linear and

ιX#ω= dμX. �
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Example 23. Let (h, θ) be the standard coordinates on S
2. Pick a generator X of t =

Lie(S1) and consider the S
1 action described by X# = − ∂

∂θ
. For any c ∈ R>0, the form ωc =

cdh
h ∧ dθ is b-symplectic, and for any k∈ R the b-function c log |h| + k generates the S

1-

action given by the flow of − ∂
∂θ

. Let G consist of a single edge connecting two vertices,

and w(e)= cX∗. Figure 5 shows the map μ : S
2 →RG corresponding to the Hamiltonian

c log |h|, and another μ′ corresponding to c log |h| − 2. In both cases, we have drawn RG
twice – the first is vertically so that μ can be visualized as a projection, the second is

bent to look visually similar to Figure 4.

Observe that the moment maps μ= c log |h| for different values of c have visu-

ally similar images – the weight data on the graph and therefore the smooth structure

of RG distinguishes them. For different values of c, the b-manifolds (M, Z , ωc) are not

symplectomorphic. Also observe that the moment maps in Figure 5 differ by changing

the corresponding bC ∞ function by a constant; the image of the two moment maps are

translates of one another. �

Example 24. Consider the b-symplectic manifold

(
M = S

2 × S
2, Z = {h1 = 0}, ω= 3

dh1

h1
∧ dθ1 + dh2 ∧ dθ2

)

where (h1, θ1,h2, θ2) are the standard coordinates on S
2 × S

2. The T
2-action

(t1, t2) · (h1, θ1,h2, θ2)= (h1, θ1 − t1,h2, θ2 − t2)

is Hamiltonian. Let X1 and X2 be the elements of t satisfying X#
1 = − ∂

∂θ1
and X#

2 = − ∂
∂θ2

,

respectively. Let G be the connected graph with one edge e, and let w(e)= 3X∗
1. Then the

Fig. 5. Two Hamiltonians generating the same S
1-action.
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Fig. 6. The moment map image μ(S2 × S
2), drawn twice. The figure on the left shows the similar-

ity with that of the standard action of T
2 on S

2 × S
2 from classic symplectic geometry and the one

on the right is bent to be visually similar to Figure 4.

map (described here using the basis {X1, X2})

M\Z → t∗, (h1, θ1,h2, θ2) 
→ (log |h1|,h2),

extends to a moment map μ : M →RG , the image of which is illustrated in Figure 6. �

Example 25. Consider the b-symplectic manifold

(
T

2 = {(θ1, θ2) ∈ (R/2π)2}, Z = {θ1 ∈ {0, π}}, ω= dθ1

sin θ1
∧ dθ2

)

with S
1-action given by the flow of ∂

∂θ2
. Let X ∈ t be the element satisfying X# = ∂

∂θ2
. Let

G be the cycle with two edges, and let w map one edge to X∗ and the other to −X∗. A

(smooth) moment map for the S
1-action is given by extending

T
2\Z → t∗, (θ1, θ2) 
→

⎧⎪⎪⎨
⎪⎪⎩

(
1, log

∣∣∣∣1 + cos θ1

sin θ1

∣∣∣∣
)

if 0< θ1 <π(
0, log

∣∣∣∣1 + cos θ1

sin θ1

∣∣∣∣
)

if π < θ1 < 2π

to μ : T
2 →RG , as shown in Figure 7. �
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Fig. 7. The moment map μ : T →RG .

6 The Moment Map of a Toric Action on a b-Symplectic Manifold

The main result of this section is Theorem 27, which states that every b-symplectic

manifold with a toric action has a globally defined moment map. We begin by studying

a toric action in a neighborhood of Z .

First, we note that Proposition 18 can now be rewritten in terms of the new

notion of moment map. The weighted adjacency graph of the neighborhood U of Z is

(G, w), where G consists of one edge e connecting two vertices, and w(e) is equal to the

modular weight vZ of Z . The classical moment map in equation (2) can be rewritten as a

b moment map, now defined in the whole open set U :

μ :L × S
1 × (−ε, ε)→RG ∼= t∗Z × R, (�, ρ, t) 
→ (μL(�), t), (3)

where the isomorphism RG ∼= t∗Z × R is the map yX,e described in the definition of the

b moment codomain, for a choice of X ∈ t that represents a generator of t/tZ and pairs

positively with vZ .

Secondly, we need a proposition that describes a local model for the b-symplectic

manifold in a neighborhood of Z .

Proposition 26 (Local model). Let G be a graph with two vertices and a single edge

e, let w be any weight function, and let X be any lattice generator of t/tw that pairs

positively with w(e). Recall that the function yX,e gives an isomorphism between RG
and t∗w × R. Then for any Delzant polytope Δ⊆ t∗w with corresponding symplectic toric

manifold (XΔ, ωΔ,μΔ), define the local model b-symplectic manifold as

Mloc = XΔ × S
1 × R ωloc =ωΔ + c

dt

t
∧ dθ
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where θ and t are the coordinates on S
1 and R, respectively. The S

1 × TZ action on

Mloc given by (ρ, g) · (x, θ, t)= (g · x, θ + ρ, t) has moment map μloc(x, θ, t)= (μΔ(x), t) ∈
t∗w × R ∼=RG .

For any toric action on a b-manifold (M, Z , ω) with moment map μ : M →RG
such that μ(U )=Δ× (−ε ≤ y0 ≤ ε) in a neighborhood U of Z , there is an equivari-

ant b-symplectomorphism ϕ : Mloc → M in a neighborhood of XΔ × S
1 × {0} satisfying

μ ◦ ϕ =μloc. �

Proof. Fix a symplectic leaf L⊆ Z . Observe that im(μ|L)= {0} ×Δ, and define μL : L→
t∗Z to be the projection of μ|L to its second coordinate. By the classic Delzant theorem

there is an equivariant symplectomorphism ϕΔ : (XΔ, ωΔ)→ (L, ωL) such that μΔ =μL ◦
ϕΔ. As in the proof of Proposition 18, let f be a primitive of ιX#ω and y a defining function

for Z with the property that f = c log |y| near Z . Let u be a T
n-equivariant vector field in

a neighborhood of Z , such that dy(u)= 1 and ιY#ω(u)= 0 for all Y ∈ tZ . Then the map

ϕ : Mloc = XΔ × S
1 × R → M, (x, θ, t) 
→Φu

t ◦ΦX#

θ ◦ ϕΔ(x)

is defined in a neighborhood of XΔ × S
1 × {0}.

It follows by the equivariance of u, X#, and ϕΔ that ϕ itself is equivariant. Next,

observe that

μ ◦ ϕ(x, θ, t)=μ ◦ΦX#

θ ◦Φu
t ◦ ϕΔ(x)=μ ◦Φu

t ◦ ϕΔ(x)

since μ is T
n-invariant, and that the t∗Z -component of μ ◦Φu

t ◦ ϕΔ(x) will be ϕΔ(x), since

ιY#ω(u)= 0 for all Y ∈ tZ . The R-component of μ ◦Φu
t ◦ ϕΔ(x) will be t, since the vector

field u satisfies dy(u)= 1. Therefore, μ ◦ ϕ =μloc.

This shows that on (Mloc, ωloc) and (Mloc, ϕ
∗(ω)), the same moment map μloc cor-

responds to the same action. Our next goal is to show that ϕ∗ω|Z =ωloc|Z . For z∈ Z ,

let A⊆ bTzM be the symplectic orthogonal to (X#)z. Restriction of the canonical map
bTzM → TzM to A leaves its image unchanged (since the kernel of the canonical map, L,

is not in A). By picking a basis for TzL ⊆ TzZ and pulling it back to A, and then adding

(X#)z and (t ∂
∂t)z, we obtain a basis of bTzZ . By calculating the value of ωz with respect to

this basis, and using the facts that ϕΔ is a symplectomorphism and that

ϕ∗ω
(

t
∂

∂t
,
∂

∂θ

)
=ω(yu, X#)= d(c log |y|)(yu)= c,
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we conclude that ϕ∗ω|Z =ωloc|Z . Finally, we apply Moser’s path method to construct a

symplectomorphism between ϕ∗ω and ωloc.

Note that ϕ∗ω − ωloc is T
n-invariant and has the property that the tangent space

to each orbit is in the kernel of ϕ∗ω − ωloc. Therefore, we can write ϕ∗ω − ωloc as the pull-

back under μloc of a smooth form ν on RG . Let α be the pullback (under μloc) of a primitive

of ν. Then α is a primitive of ϕ∗ω − ωloc with the property that the vector fields defined

using Moser’s path method will be tangent to the orbits of the torus action, and also with

the property that α is torus invariant. Therefore, the equivariant symplectomorphism it

defines leaves the moment map unchanged, completing the proof. �

Theorem 27. Let (M, Z , ω,Tn) be a b-symplectic manifold with an effective Hamiltonian

toric action, and let G = (G, w) be its weighted adjacency graph. Then there is a moment

map μ : M →RG . �

Proof. We first consider the case when the graph is a line: for 1 ≤ i ≤ N, the edge ei

connects vertex vi−1 to vertex vi. Let Wi be the component of M\Z corresponding to vi,

and let Zi be the component of Z corresponding to ei. Fix any moment map μW0 : W0 → t∗

for the action on W0. Identifying the codomain t∗ with {v0} × t∗ ⊆RG gives a moment

map μW0 : W0 →RG . By Proposition 18, there is a moment map μU1 for the T
n-action in a

neighborhood U1 of Z1. The two moment maps

μW0 |W0∩U1 and μU1 |W0∩U1

correspond to the same T
n-action on W0 ∩ U1, so after a translation we may glue μW0 and

μU1 into a moment map defined on all of W0 ∪ U1. We continue extending the moment

map in this manner until it is defined on all of M.

When the adjacency graph is a cycle, the above construction breaks down in

the final stage; after choosing the correct translation of the moment map μUN so that it

agrees with μWN−1 on the overlap of their domains, it may not be the case that μUN agrees

with μW0 on the overlap of their domains. Pick some p∈ UN ∩ W0, and define

xstart =μW0(p) and xend =μUN (p)

and assume without loss of generality that xstart = (v0,0) ∈RG . Let γ : S
1 = R/Z → M be

a loop with γ (0)= γ (1)= p that visits the sets W0,U1,W1, . . . ,WN−1,UN,WN = W0 in that

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article-abstract/2015/14/5818/783369 by The U
niversity of Edinburgh user on 15 April 2019



5840 V. Guillemin et al.

order. Then, for any X ∈ t, we have

xend = (v0, x) where μX(x)=

⎧⎪⎪⎨
⎪⎪⎩

∫
γ

ιX#ω X ∈ tZ

b∫
γ

ιX#ω X /∈ tZ

When X ∈ tZ , the 1-form ιX#ω has a smooth primitive, so the above integral equals zero.

When X /∈ tZ , the 1-form ιX#ω has a bC ∞ primitive, and since the Liouville volume of

the pullback is still zero the above integral equals zero. Therefore, xend = (v0,0) and the

moment maps for the sets Wi and Ui glue into a moment map μ : M →RG . �

Theorem 27 proves that every Hamiltonian toric action has a moment map. How-

ever, note that as in the classic case different translations of the moment map corre-

spond to the same action.

7 Delzant Theorem

In this section, we prove a Delzant theorem in b-geometry. We begin by defining the

notion of a b-symplectic toric manifold and of a Delzant b-polytope.

Definition 28. A b-symplectic toric manifold is

(M2n, Z , ω, μ : M →RG)

where (M, Z , ω) is a b-symplectic manifold and μ is a moment map for a toric action on

(M, Z , ω). �

Notice that the definition of a b-symplectic toric manifold also implicitly

includes the information of G. The definition of a polytope in RG will use the definition of

a half-space; it might be helpful to look at the examples of half-spaces in RG in Figure 8

before reading the formal definition. Although the boundaries of a half-spaces in RG
are straight lines when restricted to each {k} × t∗ ⊆RG , they appear curved in Figure 8

because of the way RG is drawn. Notice that the boundary of a half-space will not inter-

sect ZG unless it is perpendicular to it.

Definition 29. Consider the two following kinds of hypersurfaces in RG , where X ∈ t,

Y ∈ tw, k∈ R and v is a vertex of G:

AX,k,v = {(v, ξ) | 〈ξ, X〉 = k} ⊆ {v} × t∗ ⊆RG,
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Fig. 8. Examples of half-spaces in RG .

BY,k = {(v, ξ) | 〈ξ,Y〉 = k, v a vertex of G} ⊆RG\ZG =RG .

When G is a line, the complement of any hypersurface in RG is two connected

components. The closure of any such component is a half-space in RG . When G is a

cycle, the hypersurfaces of type AX,k,c do not separate the space, so only the closure of a

connected component of the complement of some BX,k ⊆RG is called a half-space. �

In Figure 8, the first two images are half-spaces of type AX,k,c, while the right-

most image is a half-space of type BX,k.

Definition 30. A b-polytope in RG is a bounded subset P that intersects each component

of ZG and can be expressed as a finite intersection of half-spaces. �

If the condition that P must intersect each component of ZG were removed from

the definition of a polytope, then for any G = (G, w) and G ′ = (G ′, w′) such that G is a

subgraph of G ′ and w′ is an extension of w, any polytope in RG would also be a polytope

in RG′ . The upcoming statement of Theorem 35, which generalizes the Delzant theorem,

is easier to state when we disallow the possibility of having such extraneous parts of

the b moment codomain.

Example 31. Figure 9 shows two examples of b-polytopes. In both cases, the torus has

dimension two. The b moment codomain on the left corresponds to a graph with an edge
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Fig. 9. Examples of b-polytopes.

and two vertices, while the b moment codomain on the right corresponds to the cycle

on two vertices (the top of the picture on the right is identified with the bottom of the

picture). �

The definitions of many features of classic polytopes, such as facets, edges, and

vertices, generalize in a natural way to b-polytopes, as does the notion of a rational poly-

tope (one in which the X’s and k’s in Definition 29 are rational). We state some properties

of b-polytopes, all of which are straightforward consequences of the definition.

(1) Because P must intersect each component of ZG , the only hypersurfaces of

type AX,k,v that will appear as boundaries of half-spaces constituting P will

be have c = a − 1 or c = N.

(2) No vertex of P lies on ZG .

(3) Given a polytope P ⊆RG , there is a (classic) polytopeΔZ ⊆ZG having the prop-

erty that the intersection of P with each component of ZG is ΔZ .

(4) P is locally isomorphic to {−ε≤ yi ≤ ε} ×ΔZ near each component of ZG , and

is isomorphic to ΔZ × R in any component {v} × t∗ ⊆RG except those vertices

v which are leaves of G.

(5) When v is a leaf of G, the restriction of P to {v} × t∗ is a polyhedron with

recession cone (We recall the the recession cone of a convex set A⊆ V is

recc(A)= {v ∈ V | ∀a∈A a + v ∈ A}) equal to R
−
0w(e), where e = (v, v′) is an edge.

Because no vertex of P lies on ZG , the definition of a Delzant polytope generalizes easily

to the context of b-polytopes.

Definition 32. When G is a line, a b-polytope P ⊆RG is Delzant if for every vertex v

of P , there is a lattice basis {ui} of t∗ such that the edges incident to v can be written
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near v in the form v + tui for t ≥ 0. When G is a cycle, a b-polytope P ⊆RG (which has no

vertices) is Delzant if the polytope ΔZ ⊆ t∗w is Delzant. �

The left polytope in Figure 9 is not Delzant—the Delzant condition is not satisfied

at the vertex at the top of the picture in the center column of lattice points. The right

polytope in Figure 9 is Delzant. Given a Delzant b-polytope P , the intersection of P with

a component of ZG is a Delzant polytope in t∗w. By the properties of b-polytopes, this

Delzant polytope does not depend on which component of ZG is chosen.

Definition 33. Given a b-polytope P , the extremal polytope ΔP is the Delzant polytope

in t∗w given by the intersection of P with any connected component of ZG . �

Before proving the Delzant theorem in our context, we require the following

proposition.

Proposition 34. Let (XΔ, ωΔ,Tn−1, μΔ : XΔ →Δ) be a (classic) compact connected sym-

plectic toric manifold, and a< b ∈ R. Consider the non-compact symplectic toric mani-

fold

(M = (a,b)× S
1 × XΔ, ωM = dy ∧ dθ + ωΔ,S

1 × T
n−1, (y, μΔ) : (a,b)×Δ)

where y and θ are the standard coordinates on (a,b) and S
1, respectively. This symplectic

toric manifold has the property that any symplectic vector field which is tangent to the

fibers of the moment map is Hamiltonian. �

Proof. Choose any y0 ∈ (a,b), x0 ∈ XΔ, and consider the loop

γ : S
1 → (a,b)× S

1 × XΔ, t 
→ (y0, t, x0).

Integration of a one-form on γ represents an element of H1(M)∗ which pairs nontrivially

with [dθ ] and hence is itself nontrivial. By the Künneth formula,

H1(M)∼= (H0((a,b)× S
1)⊗ H1(XΔ))⊕ (H1((a,b)× S

1)⊗ H0(XΔ))

which is one-dimensional due to the fact that the cohomology of a compact symplectic

toric manifold is supported in even degrees. Therefore, a closed one-form on M is exact

precisely if its integral along γ is zero.

Let v be a symplectic vector field on M tangent to the fibers of the moment map.

Because the fibers of the moment map are isotropic and because the image of γ is con-

tained in a single such fiber, it follows that ωM(v, γ∗(∂/∂t))= 0 at all points in the image
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of γ . Therefore, the integral of ιvω along γ vanishes, so ιvω is exact and therefore v is

Hamiltonian. �

Theorem 35. The map

{
b-symplectic toric manifolds

(M, Z , ω, μ : M →RG)

}
→

{
Delzant b-polytopes

in RG

}
(4)

that sends a b-symplectic toric manifold to the image of its moment map is a

bijection, where b-symplectic toric manifolds are considered up to equivariant b-

symplectomorphisms that preserve the moment map. �

Proof. To prove surjectivity let P be a Delzant b-polytope, and construct the (clas-

sic) symplectic toric manifold (XZ , ωZ , μZ : XZ → t∗Z ) associated with the extremal poly-

tope ΔP . Pick some X ∈ t that pairs nontrivially with the distinguished vector in the

definition of bt∗, which induces an identification RG ∼=R′
G × t∗Z , where R′

G is a one-

dimensional b moment codomain. If G is a cycle, P is the product of all of R′
G with

ΔP ; let (T2, ZT , ωT , μT : T2 →R′
G) be a b-symplectic toric manifold having all of R′

G as its

moment map image. Then

(T2 × XZ , ωT × ωZ , (μT , μZ ))

is a b-symplectic toric manifold having P as the image of its moment map. If G is a line,

let I be a closed interval in R′
G large enough that I ×ΔP ⊇ P . Let (S2, ZS, ωS, μS : S

2 →R′
G)

be a b-symplectic toric manifold having I ⊆R′
G as its moment map image. Then

(S2 × XZ , ωS × ωZ , (μS, μZ ))

is a b-symplectic toric manifold having I ×ΔP as the image of its moment map. By

performing a sequence of symplectic cuts, we arrive at a b-symplectic toric manifold

having P as its moment map image.

The proof of injectivity is inspired by [12, proof of Proposition 6.4]. Let

(M, Z , ω, μ) and (M′, Z ′, ω′, μ′) be two b-symplectic toric manifolds having the same

moment map image. Pick a lattice element X ∈ t representing a generator of t∗/t∗w. For

each component {e} × t∗Z of ZG , by Proposition 26 there is an ε > 0 such that there is an

equivariant isomorphism ϕZe :μ−1(PZe)→μ′−1(PZe), where

PZe = {−ε≤ yX,e ≤ ε} ×ΔZ ⊆ P
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Fig. 10. The subsets PZei
and PWvi

of a Delzant b-polytope.

Similarly, for sufficiently large N, there exists an equivariant isomorphism ϕWv
:

μ−1(PWv
)→μ′−1(PWv

), where

PWv
= ((−N, N)× t∗Z ) ∩ P ⊆ {v} × t∗ ⊆RG,

we pick N such that the open sets {PWv
} ∪ {PZe} cover P as in Figure 10.

If the equivariant isomorphisms ϕZei
and ϕWv j

agreed on Uij :=μ−1(PWvi
∩ PZej

) for

all i, j, we could glue these isomorphisms together and the proof of injectivity would

be complete. Therefore, it suffices to show for every Uij that there is an equivariant

automorphism ψWvi
of μ−1(PWvi

) such that

ϕWvi
◦ ψWvi

|Uij = ϕZej
|Uij and ϕWvi

◦ ψWvi
|Uik = ϕWv j

|Uik

for k �= j. Then by replacing ϕWvi
with ϕWvi

◦ ψWvi
, the isomorphisms ϕZei

and ϕWv j
can be

glued. Repeating this process for each Uij gives the desired global equivariant isomor-

phism.

Let φ be the automorphism of Uij given by ϕ−1
Wvi

◦ ϕZej
. We must extend this

automorphism to an automorphism of μ−1(PWvi
) which is the identity outside an arbi-

trarily small neighborhood of Uij. Notice that φ is a T-equivariant symplectic diffeo-

morphism that preserves orbits. Therefore, by [11, Theorem 3.1], there exists a smooth

T-invariant map h : Uij → T
n such that φ(x)= h(x) · x. By the T-invariance of h and the
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contractibility of μ(Uij)= PWvi
∩ PZej

, there is a map θ : Uij → t such that exp ◦θ = h. Define

the vector field Xθ to be Xθ (x)= d
ds |s=0 exp(sθ(x)) · x. Observe that Xθ is a symplectic vec-

tor field whose time one flow is the symplectomorphism φ. By Proposition 34, the vector

field is Hamiltonian. Pick an f̂ such that d f̂ = ιXθ ω. Extend f̂ to be a function f on all of

μ−1(PWvi
) that is locally constant outside a small neighborhood of Uij. Then the time-1

flow of the Hamiltonian vector field corresponding to f will be the desired symplectic

automorphism of μ−1(PWvi
). �

Remark 36. The proof of surjectivity in Theorem 35 is unlike the proof of surjectivity

in the classic Delzant theorem, since we do not construct the b-symplectic manifold

globally through a symplectic cut in some large C
d. However, we suspect that such a

construction is possible by considering an appropriate extension of C
d similar to the

extension of t∗ to RG . �

Remark 37. The moment image of a 2n-dimensional b-symplectic toric manifold is rep-

resented by an n-dimensional polytope P , and the corresponding extremal polytope ΔP

is an (n− 1)-dimensional Delzant polytope.

For n= 1, the extremal polytope is a point, and therefore a b-symplectic toric

surface is equivariantly b-symplectomorphic to either a b-symplectic torus T
2 or a b-

symplectic sphere, as stated earlier in Theorem 9.

For n= 2, the extremal polytope is a line segment, corresponding to a symplec-

tic toric sphere. As a consequence, a b-symplectic toric four-manifold is equivariantly

b-symplectomorphic to either a product T
2 × S

2 of a b-symplectic torus with a sym-

plectic sphere, or to a manifold obtained from the product S
2 × S

2 of two spheres, one

b-symplectic and the other symplectic, by a series of symplectic cuts which avoid Z .

In particular, CP 2#CP 2 can be obtained from a b-symplectic S
2 × S

2 with connected Z

via symplectic cutting and therefore can be endowed with a b-symplectic toric struc-

ture. Because Z was connected (in fact, it would suffice for Z to have an odd number

of connected components), there will be fixed points in both the portion of the man-

ifold with positive orientation and in the one with negative orientation. Blowing up

these fixed points (each such blow up destroys one fixed point and creates two new

ones with the same orientation) corresponds to performing connect sum with either

CP 2 or CP 2, according to the orientation. Therefore, any mCP 2#nCP 2, with m,n≥ 1 can

be endowed with b-symplectic toric structures (compare with [3, Figure 1, Corollary

5.2]). Observe that CP 2#nCP 2, with n≥ 1 admits both symplectic and b-symplectic toric

structures. �
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Remark 38. The surprising consequence of the Delzant classification theorem for

b-symplectic toric manifolds is that the existence of a b-symplectic toric structure is

highly restrictive. Indeed, every b-symplectic toric manifold is either the product of a

b-symplectic T
2 with a classic symplectic toric manifold, or it can be obtained from the

product of a b-symplectic S
2 with a classic symplectic toric manifold by a sequence of

symplectic cuts performed at the north and south “polar caps”, away from the excep-

tional hypersurface Z . �

Remark 39. The procedure of reduction by stages provides a different perspective on

Delzant b-polytopes and on how to reconstruct toric b-symplectic manifolds from them.

It can be shown that the reduction of M by the action of the subtorus T
n−1
Z at a reg-

ular point is a two-dimensional b-symplectic manifold with a natural Hamiltonian S
1-

action. Theorem 9 exactly classifies toric b-surfaces by data that can be encoded in their

one-dimensional moment b-polytope. Therefore, a Delzant b-polytope can be viewed as

a fibration over a classic Delzant polytope ΔZ ⊆ t∗Z whose fibers are one-dimensional

b-polytopes, and the corresponding b-symplectic toric manifold can be reconstructed as

a fibration over the classic symplectic toric manifold corresponding to ΔZ , with fibers

the b-symplectic toric surfaces determined by the one-dimensional b-polytopes. �
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