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Abstract
We study mirror symmetry of supermanifolds constructed as fermionic
extensions of compact toric varieties. We mainly discuss the case where
the linear sigma A-model contains as many fermionic fields as there are U(1)

factors in the gauge group. In the mirror super-Landau–Ginzburg B-model,
focus is on the bosonic structure obtained after integrating out all the fermions.
Our key observation is that there is a relation between the super-Calabi–Yau
conditions of the A-model and quasi-homogeneity of the B-model, and that the
degree of the associated superpotential in the B-model is given in terms of the
determinant of the fermion charge matrix of the A-model.

PACS numbers: 11.25.−w, 02.40.Tt, 11.30.Pb

1. Introduction

Mirror symmetry underlies one of the most important and interesting examples of string
dualities and provides a symmetry between Calabi–Yau (CY) manifolds interpreted in terms
of closed topological string theories. More generally, the so-called A- and B-models are
related by mirror symmetry, as discussed below. It has been realized, though, that rigid CY
manifolds can have mirror manifolds which are not themselves CY geometries. An intriguing
remedy is the introduction of CY supermanifolds in these considerations [1, 2]. It has thus
been suggested that mirror symmetry is between supermanifolds and manifolds alike, and not
just between bosonic manifolds.

0305-4470/05/286405+14$30.00 © 2005 IOP Publishing Ltd Printed in the UK 6405

http://dx.doi.org/10.1088/0305-4470/38/28/013
mailto:abelh633@mathstat.uottawa.ca
mailto:rasmusse@crm.umontreal.ca
mailto:esaidi@ictp.trieste.it
mailto:sebbar@mathstat.uottawa.ca
http://stacks.iop.org/ja/38/6405


6406 A Belhaj et al

It has been found recently that there is a correspondence between the moduli space
of holomorphic Chern–Simons theory on the CY supermanifold CP3|4 and, self-dual, four-
dimensional N = 4 Yang–Mills theory [3, 4]. This may also be related to the B-model
of open topological string theory having CP3|4 as target space. Partly based on this work,
CY supermanifolds have subsequently attracted a great deal of attention [5–11]. It has been
found, for instance, that an A-model defined on the CY supermanifold CP3|4 is a mirror of a
B-model on a quadric hypersurface in CP3|3 × CP3|3, provided the Kähler parameter of
CP3|4 approaches infinity [5, 6]. Following this observation, a possible generalization of
the A-model has been considered in which fermionic coordinates with different weights are
introduced without changing the bosonic manifold CP3 [8, 9].

The aim of the present work is to study mirror symmetry based on a broad class
of supermanifolds whose bosonic parts correspond to compact toric varieties. Important
examples of such bosonic manifolds are (weighted) projective spaces and products thereof.

Our analysis is based on the following scenario. The bosonic part of the A-model is
constructed as a U(1)⊗n linear sigma model whose target space is a toric variety. Adding a set
of f fermionic fields with charges given by an n×f matrix to the sigma model, corresponds to
extending the toric variety to a supermanifold with f Grassmannian coordinates. By extending
the T-duality prescription in [6] on fermionic fields to cover the product gauge group U(1)⊗n,
we can obtain the path integral description of the mirror super-Landau–Ginzburg (super-
LG) B-model. It initially involves n delta functions which may be integrated out to extract
information on the associated (super-)geometry. We shall focus on the bosonic structure
obtained after integrating out all the fermionic fields in the B-model. Different patches may
result depending on which bosonic fields are integrated in the elimination of the delta functions.
We pay particular attention to the ‘quadratic’ case where f = n, and consider generic values
of the Kähler parameters, that is, we do not restrict ourselves to simplifying limits.

Our key observation in this set-up is that the super-CY conditions of the A-model geometry
are related to quasi-homogeneity of the bosonic toric data of the B-model. Furthermore,
the degree of the associated quasi-homogeneous superpotential in the B-model is given in
terms of the determinant of the matrix of fermion charges in the A-model. Details on this
correspondence and the dependence on the determinant will be provided in the main text.

It is emphasized that the explicit mirrors of supermanifolds discussed in [6, 7, 9], for
example, all have fewer gauge-group factors than fermionic fields in the A-model, i.e., n < f .
As already mentioned, the detailed part of our analysis pertains to the quadratic case where
n = f . We are thus not concerned here with reproducing the existing results, while we intend
to discuss elsewhere the cases where n �= f .

After a brief summary of T-duality for fermionic coordinates or fields in section 2, we
discuss mirror symmetry of supermanifolds in section 3. Our main result involving the super-
CY conditions and the determinant of fermion charges is derived for products of weighted
super-projective spaces. We emphasize the situation for complex three-dimensional projective
spaces due to their relevance in string theory. We also relate our results based on CP1 ×CPp−1

to superpotentials discussed in [12]. Section 4 concerns the extension to general toric varieties,
and we find that our key observation still holds. The family {F̃ m} of three-dimensional toric
varieties generalizing the projective spaces are used as an illustration. A conclusion is presented
in section 5.

2. T-duality of fermionic fields

In this section we review T-duality for fermionic coordinates (fields), and we do this by first
recalling the bosonic case [13].
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To this end, we consider a linear sigma model described in terms of the chiral fields
�i, i = 1, . . . , p, with charges qi under a U(1) gauge symmetry [14]. The requirement of
conformal invariance of this system is equivalent to the CY condition of the target space,∑

i

qi = 0. (1)

The vanishing condition for the potential energy density for the scalar fields reads∑
i

qi |�i |2 = r, (2)

where r is a Fayet–Iliopoulos (FI) coupling constant which, combined with the U(1) θ -angle,
defines the complexified Kähler parameter t = r + iθ . Note in passing that equation (2)
corresponds to a local CY manifold.

Following [13, 15, 16], the mirror model is obtained by introducing a set of fields {Yi}
dual to the set {�i}, such that

�(Yi) = |�i |2, (3)

where �(Yi) denotes the real part of Yi . The mirror version of (2) is∑
i

qiYi = t (4)

and the corresponding superpotential in the associated LG model reads

W =
∑

i

e−Yi . (5)

Using the following field redefinitions:

ŷi = e−Yi , (6)

the superpotential becomes

W =
∑

i

ŷi , (7)

subject to ∏
i

ŷ
qi

i = e−t . (8)

With multiple toric actions, U(1)⊗n, this extends readily to∏
i

ŷ
qa

i

i = e−ta , a = 1, . . . , n. (9)

Here ta is the complexified Kähler parameter associated with the ath U(1) factor, while qa is
the charge vector with respect to the same U(1) factor.

It has been shown recently that a similar analysis can be carried out for fermionic fields
as well, though with a different rule for ‘dualizing’ the fields [6]. For a system with fermionic
fields {�α} with charges Qα , and bosonic fields {�i} as above, the extended D-term constraint
of equation (2) reads∑

i

qi |�i |2 +
∑

α

Qα|�α|2 = �(t). (10)

The condition for the associated super-variety to be a CY supermanifold is given by∑
i

qi =
∑

α

Qα. (11)
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Under T-duality, the bosonic superfield �i of the linear sigma model is still replaced by a
dual superfield Yi . The fermionic superfield �α , on the other hand, is dualized by the triplet
(Xα, ηα, χα) [6], where the bosonic field Xα satisfies

�(Xα) = −|�α|2. (12)

The accompanying pair of fields, ηα and χα , are fermionic and are required to preserve the
superdimension and hence the total central charge under the symmetry. The corresponding
mirror super-LG model is given by the path integral

Z =
∫ (∏

i

dYi

) (∏
α

dXα dηα dχα

)
δ

(∑
i

qiYi −
∑

α

QαXα − t

)

× exp

(∑
i

e−Yi +
∑

α

e−Xα (1 + ηαχα)

)
. (13)

The objective in the following is to extend this analysis to a linear sigma A-model with
product gauge group U(1)⊗n and f fermionic fields, and study the resulting mirror B-model
as defined by a generalization of (13). One may in this case supplement the field redefinitions
in (6) with

x̂α = e−Xα , α = 1, . . . , f. (14)

The associated conditions (9) on the bosonic part of the B-model superpotential then read∏
i

ŷ
qa

i

i = e−ta
∏
α

x̂Qa
α , a = 1, . . . , n. (15)

Focus will be on the toric data of the bosonic structure obtained after eliminating the n delta
functions and integrating out the 2f fermionic fields in the B-model path integral. We shall
find that this bosonic structure is described in terms of the set of fermion charges in the
A-model. In particular, the super-CY conditions of the A-model extending (11) turn out to be
related to quasi-homogeneity of the bosonic structure of the B-model.

3. Mirrors of super-projective spaces

We recall that a general complex p-dimensional toric variety can be expressed in the following
form:

Vp = C
p+n\S
C

∗n , (16)

where the n C
∗ actions are given by

C
∗n : zi → λqa

i zi , i = 1, . . . , p + n, a = 1, . . . , n. (17)

In these expressions, the exponents qa
i are referred to as charges and are assumed to be integers.

For each fixed a, they define a Mori vector in toric geometry. These vectors thus generalize
the weight vector w of the weighted projective space WCPp

(w1,...,wp+1)
. The subtracted part S

is a subset of C
p+n chosen by triangulation. The variety Vp can be represented by a toric

diagram 	(Vp) spanned by k = p + n vertices vi in a Z
p lattice satisfying

p+n∑
i=1

qa
i vi = 0, a = 1, . . . , n. (18)

It may be realized in terms of an N = 2 linear sigma model, where one considers a two-
dimensional supersymmetric N = 2 gauge system with U(1)⊗n gauge group and p + n chiral
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fields �i with a charge matrix whose entries are qa
i [14]. In this way, and up to U(1)⊗n gauge

transformations, the Kähler manifold Vp corresponds to the minimum of the D-term potential
(Da=0). That is,

p+n∑
i=1

qa
i |�i |2 = ra, (19)

where the ra are FI coupling parameters.
Here we consider the complex p-dimensional toric variety defined by the following trivial

fibration:

WCPp1−1
(w1

1 ,...,w
1
p1

)
× WCPp2−1

(w2
1 ,...,w

2
p2

)
× · · · × WCPpn−1

(wn
1 ,...,wn

pn
), (20)

where p = ∑n
a=1(pa − 1). It admits a U(1)⊗n sigma-model description in terms of the p + n

bosonic fields {
�1

1, . . . , �
1
p1

;�2
1, . . . , �

2
p2

; . . . ;�n
1, . . . , �

n
pn

}
, (21)

with charge vectors

q1 = (
w1

1, . . . , w
1
p1

; 0, . . . , 0; . . . ; 0, . . . , 0
)
,

q2 = (
0, . . . , 0;w2

1, . . . , w
2
p2

; 0, . . . , 0; . . . ; 0, . . . , 0
)
,

...

qn = (
0, . . . , 0; . . . ; 0, . . . , 0;wn

1 , . . . , wn
pn

)
.

(22)

A toric variety like (20) is compact if all the charges (22) are positive (or negative) integers.
Its associated sigma model is a solution of the D-term constraints

pa∑
i=1

wa
i

∣∣�a
i

∣∣2 = �(ta), a = 1, . . . , n, (23)

where ta is the complexified Kähler parameter associated with the ath factor in (20). All
weights wa

i are assumed non-vanishing. By convention for weighted projective spaces, the
greatest common divisor of the weights wa

i for a given a is 1.
The objective now is to consider a fermionic extension of the manifold (20), thus turning

it into a (weighted) super-projective space and discuss its mirror companion. Our approach
may be seen as an illustration and an extension of the previous section by taking into account
the product structure of (20) with its enlarged symmetry.

Adding f Grassmann coordinates to (20) corresponds to supplementing the bosonic sigma
model, described by (21), by f fermionic fields,

{�α, α = 1, . . . , f }, (24)

with charges Qa
α . The full spectrum of U(1)⊗n charge vectors thus becomes

q ′1 = (
q1

∣∣Q1
1, . . . , Q

1
f

)
,

q ′2 = (
q2

∣∣Q2
1, . . . , Q

2
f

)
,

...

q ′n = (
qn

∣∣Qn
1, . . . ,Q

n
f

)
,

(25)

while the extended D-term constraints of this A-model (cf (23)) read
pa∑
i=1

wa
i

∣∣�a
i

∣∣2
+

f∑
α=1

Qa
α|�α|2 = �(ta), a = 1, . . . , n. (26)
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There is an abundance of possible fermionic extensions following this prescription. It
may be limited, though, by imposing the super-CY conditions (11):

0 =
∑

i

qa
i −

∑
α

Qa
α =

pa∑
i=1

wa
i −

f∑
α=1

Qa
α, a = 1, . . . , n. (27)

We shall initially refrain from doing this since one of our key observations will be that these
conditions are related to quasi-homogeneity of a bosonic structure of the B-model geometry.
This new correspondence between two mirror supermanifolds will be addressed below.

Before proceeding, we recall that the charge vectors (22) and D-term constraints (23) of
the bosonic A-model correspond to a sigma-model realization of the toric variety (20). This
extends readily to general toric varieties as defined by (16), and we shall have more to say
about this in section 4. Here we wish to point out that in a similar fashion the expressions (25)
and (26) may be seen as corresponding to an N = 2 sigma-model realization of a fermionic
extension of a toric variety. A super-variety

Vp|f = C
p+n|f \S
C

∗n (28)

is thereby represented by a toric super-diagram spanned by (p + n) vertices vi and f vertices
vα in a superlattice Z

p|f , and constrained as

p+n∑
i=1

qa
i vi −

f∑
α=1

Qa
αvα = 0, a = 1, . . . , n. (29)

Here we have used the notation C
p+n|f to indicate a fermionic extension of C

p+n. We suggest
to refer to this fermionic extension of toric geometry as toric super-geometry. It is seen that
CY supermanifolds are defined naturally in toric super-geometry.

According to the T-duality outlined in the previous section, the mirror B-model is now
obtained by replacing the field �a

i by a superfield Y a
i , while the fermionic field �α is dualized

by the triplet (Xα, ηα, χα). Applying the mirror symmetry transformation to the A-model
above thus results in a B-model in terms of a super-LG mirror model given by the path integral

Z =
∫ (

p1∏
i=1

dY 1
i

)
· · ·

(
pn∏
i=1

dYn
i

)(
f∏

α=1

dXα dηα dχα

)
δ

(
p1∑
i=1

w1
i Y

1
i −

f∑
α=1

Q1
αXα − t1

)

× · · · × δ

(
pn∑
i=1

wn
i Y

n
i −

f∑
α=1

Qn
αXα − tn

)

× exp

(
n∑

a=1

pa∑
i=1

e−Y a
i +

f∑
α=1

e−Xα (1 + ηαχα)

)
. (30)

To extract information on the B-model (super-)geometry, one would naturally wish to
integrate out the n delta functions. In this paper, we shall focus on the ‘quadratic’ case where
n = f and subsequently choose to integrate out the bosonic fields Xα , α = 1, . . . , f = n.
We intend to address elsewhere the situations where f �= n or where the elimination of the
delta functions may involve integrating out some of the fields Yi . As already mentioned, we
are here interested in the bosonic structure arising after integrating out all the 2f fermionic
fields.

To illustrate the construction, focus here will be on the situation where n = 2, p1 = 2 and
p2 = 3, while in section 4 we shall report on the case based on a general toric variety with
f = n. For now, our chosen A-model scenario thus corresponds to a fermionic extension of
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the complex three-dimensional variety WCP1
(w1

1 ,w
1
2)

× WCP2
(w2

1 ,w
2
2 ,w

2
3)

which we shall assume

is compact. A particular example is provided by CP1 × CP2 and corresponds to a trivial
fibration of CP1 over the base space CP2. This manifold is sometimes denoted by F̃ 0 and has
been used in the construction of real four-dimensional N = 1 models obtained from F-theory
compactification on elliptic CY fourfolds [17]. We shall have more to say about the infinite
family of complex three-dimensional manifolds F̃ m, as it appears as a particular subclass of
the general study in section 4.

3.1. Mirrors of fermionic extensions of WCP1
(w1

1 ,w
1
2)

× WCP2
(w2

1 ,w
2
2 ,w

2
3)

We are here considering the case with f = n = 2. The integral over the four fermionic fields
η1, η2, χ1 and χ2 appearing in the super-LG B-model (30) produces a simple expression in X1

and X2:∫ (
2∏

α=1

dηα dχα

)
exp(e−X1(1 + η1χ1) + e−X2(1 + η2χ2)) = e−X1 e−X2 exp(e−X1 + e−X2).

(31)

Solving the delta-function constraints amounts to solving the two linear equations

Q1
1X1 + Q1

2X2 = w1
1Y

1
1 + w1

2Y
1
2 − t1,

Q2
1X1 + Q2

2X2 = w2
1Y

2
1 + w2

2Y
2
2 + w2

3Y
2
3 − t2.

(32)

There is a unique solution for X1 and X2, provided the determinant

D = Q1
1Q

2
2 − Q1

2Q
2
1 (33)

is non-vanishing. For vanishing determinant, the equations (32) would impose linear relations
among the fields {Y a

i }. We shall assume that D �= 0, in which case the path integral (30)
reduces to

Z ∝
∫ (

2∏
i=1

dY 1
i

)(
3∏

i=1

dY 2
i

)
e

Q2
1−Q2

2
D

∑2
i=1 w1

i Y
1
i − Q1

1−Q1
2

D

∑3
i=1 w2

i Y
2
i

× exp

(
2∑

i=1

e−Y 1
i +

3∑
i=1

e−Y 2
i

)
exp

(
e− Q2

2
D

[
∑2

i=1 w1
i Y

1
i −t1]+

Q1
2

D
[
∑3

i=1 w2
i Y

2
i −t2]

)

× exp

(
e

Q2
1

D
[
∑2

i=1 w1
i Y

1
i −t1]− Q1

1
D

[
∑3

i=1 w2
i Y

2
i −t2]

)
. (34)

Our current objective is to extract information on the geometry associated with the path
integral (34). This may be achieved naively if one can make field redefinitions turning the
path integral into the form

Z �
∫ (


∏
k

dϕk

)
e−W({ϕk}). (35)

The functional expression W is then referred to as the superpotential, and its vanishing
condition, W = 0, provides an algebraic equation in terms of {ϕk}. For it to correspond to a
conventional LG theory, it should be quasi-homogeneous in the sense that

W({λwkϕk}) = λdW({ϕk}), (36)

where the integers wk, k = 1, . . . , 
, indicate the scaling property of the fields {ϕk}, while d
denotes the degree of the superpotential. The vanishing condition W = 0 thus corresponds to
a hypersurface in the weighted projective space WCP 
−1

(w1,...,w
)
.
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Motivated by this and with reference to (34), we thus introduce the new fields
{
ya

i

}
,

related to
{
Y a

i

}
by

y1
i = e

Q2
1−Q2

2
D

w1
i Y

1
i , i = 1, 2,

y2
i = e

Q1
2−Q1

1
D

w2
i Y

2
i , i = 1, 2, 3.

(37)

For these mappings to be sensible and do the intended job, we must assume that Q1
1 �= Q1

2 and
Q2

1 �= Q2
2. These assumptions may therefore be interpreted as an initial requirement for (34)

to correspond to a super-LG model. It is noted that they are neither necessary nor sufficient
conditions for the non-vanishing of the determinant D. The path integral now reads

Z ∝
∫ (

2∏
i=1

dy1
i

)(
3∏

i=1

dy2
i

)
exp

(
2∑

i=1

(
y1

i

) D

w1
i
(Q2

2−Q2
1) +

3∑
i=1

(
y2

i

) D

w2
i
(Q1

1−Q1
2)

+ e
Q2

2 t1−Q1
2 t2

D

(
y1

1y1
2

) Q2
2

Q2
2−Q2

1
(
y2

1y2
2y2

3

) Q1
2

Q1
2−Q1

1 + e
Q1

1 t2−Q2
1 t1

D

(
y1

1y1
2

) Q2
1

Q2
1−Q2

2
(
y2

1y2
2y2

3

) Q1
1

Q1
1−Q1

2

)
,

(38)

and the vanishing of the superpotential turns into the algebraic equation

0 =
2∑

i=1

(
y1

i

) D

w1
i
(Q2

2−Q2
1) +

3∑
i=1

(
y2

i

) D

w2
i
(Q1

1−Q1
2) + e

Q2
2 t1−Q1

2 t2

D

(
y1

1y1
2

) Q2
2

Q2
2−Q2

1
(
y2

1y2
2y2

3

) Q1
2

Q1
2−Q1

1

+ e
Q1

1 t2−Q2
1 t1

D

(
y1

1y
1
2

) Q2
1

Q2
1−Q2

2
(
y2

1y2
2y

2
3

) Q1
1

Q1
1−Q1

2 . (39)

In order to determine the appropriately associated weighted projective space, we consider the
exponents of y1

i and y2
i in the two sums. Let

g = gcd
(
w1

1

(
Q2

2 − Q2
1

)
, w1

2

(
Q2

2 − Q2
1

)
, w2

1

(
Q1

1 − Q1
2

)
, w2

2

(
Q1

1 − Q1
2

)
, w2

3

(
Q1

1 − Q1
2

))
(40)

denote the greatest common divisor of the denominators of these five exponents. The weighted
projective space is then given by

WCP4(
w1

1 (Q2
2−Q2

1)

g
,

w1
2 (Q2

2−Q2
1)

g
,

w2
1 (Q1

1−Q1
2)

g
,

w2
2 (Q1

1−Q1
2)

g
,

w2
3 (Q1

1−Q1
2)

g

)(y1
1 , y

1
2 , y2

1 , y2
2 , y2

3

)
. (41)

The superpotential (39) is now quasi-homogeneous, provided the remaining Kähler-dependent
terms also have degree D/g, where D is the determinant (33). This is the case exactly provided
the super-CY conditions (27) are satisfied, which in the present example, reduce to

w1
1 + w1

2 = Q1
1 + Q1

2, w2
1 + w2

2 + w2
3 = Q2

1 + Q2
2. (42)

This illustrates the announced correspondence between the super-CY conditions of the
A-model and quasi-homogeneity of the B-model, and that the degree of the associated
superpotential is given in terms of the determinant of the fermion charge matrix of the A-
model. This is a new relation between a pair of mirror supermanifolds.

It is noted that the LG superpotential given by (39) is in general not polynomial
and may include non-integer powers of the coordinates y. Let us examine when it does
correspond to a polynomial for generic t1 and t2. That is, the two terms multiplied by the
exponential expressions in the Kähler parameters are present. Particular correlated limits of
these parameters could eliminate these terms and the conditions for polynomial behaviour
accompanying them. The strong correlation with the super-CY condition, which has been
derived for generic Kähler parameters, may therefore be lost in certain limits.
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For (39) to be polynomial, we must require that all powers be non-negative integers. It
follows from a comparison of the powers of

(
y1

1y1
2

)
in the two Kähler-dependent terms that

either Q2
2 or Q2

1 must vanish. Likewise, from the powers of
(
y2

1y2
2y2

3

)
we find that either Q1

1
or Q1

2 vanishes. Since D �= 0, we then have the two possibilities: (I) Q2
1 = Q1

2 = 0 or (II)
Q1

1 = Q2
2 = 0. From the Kähler-independent terms, it then follows that (I) Q1

1

/
w1

i ∈ Z> and
Q2

2

/
w2

i ∈ Z> or (II) Q1
2

/
w1

i ∈ Z> and Q2
1

/
w2

i ∈ Z>. By imposing the super-CY condition
(or quasi-homogeneity) as well, it follows in both cases, (I) and (II), that w1

1 = w1
2 and(

w2
1, w

2
2, w

2
3

) ∈ {P(k, k, k), P (k, k, 2k), P (k, 2k, 3k)}, where P denotes a permutation and k
is a non-vanishing integer. As discussed above, the greatest common divisor is conventionally
one, limiting the possible values to k = ±1. Note that in these considerations, the sign of
the determinant is related to the signs of the weight vectors

(
w1

1, w
1
2

)
and

(
w2

1, w
2
2, w

2
3

)
in

the A-model. A homogeneous and polynomial structure thus arises in the B-model when the
A-model is based on CP1 × WCP2

(−1,−3,−2), for example, provided the fermionic extension
is governed by Q1

1 = Q2
2 = 0, Q1

2 = 2 and Q2
1 = −6. The degree of the polynomial

is then D/2 = 6, and it describes a hypersurface in the compact, weighted projective
space WCP4

(3,3,1,3,2)

(
y1

1 , y1
2 , y2

1 , y2
2 , y2

3

)
. A simpler example arises when choosing to base the

A-model on CP1×CP2 with fermionic extension given by Q1
1 = 2,Q2

2 = 3 and Q2
1 = Q1

2 = 0.
The bosonic structure of the B-model is then described by a polynomial hypersurface of
degree 6 in WCP4

(3,3,2,2,2)

(
y1

1 , y1
2 , y2

1 , y2
2 , y2

3

)
.

There are several possible generalizations of the above analysis. We shall discuss some
of them below, while others will be addressed elsewhere.

3.2. Mirrors of fermionic extensions of CP1 × CPp−1

A first and simple generalization is to consider a sigma model whose target space is a fermionic
extension of CP1 × CPp−1, p � 2. This corresponds to a U(1) ⊗ U(1) gauge theory with
p + 2 bosonic fields �i and (in the quadratic case where n = f ) two fermionic fields �α with
charges

q ′1 = (
1, 1, 0, 0, . . . , 0

∣∣ Q1
1,Q

1
2

)
, q ′2 = (

0, 0, 1, 1, . . . , 1
∣∣ Q2

1,Q
2
2

)
. (43)

The D-term constraints of this A-model are given by

|�1|2 + |�2|2 + Q1
1|�1|2 + Q1

2|�2|2 = �(t1),

p+2∑
i=3

|�i |2 + Q2
1|�1|2 + Q2

2|�2|2 = �(t2),
(44)

while the super-CY conditions read

Q1
1 + Q1

2 = 2, Q2
1 + Q2

2 = p. (45)

Now, following the prescription above, we introduce the field redefinitions

yi = e
Q2

1−Q2
2

D
Yi , i = 1, 2,

yi = e
Q1

2−Q1
1

D
Yi , i = 3, . . . , p + 2,

(46)

resulting in a B-model superpotential whose vanishing condition is given by

0 = y

D

Q2
2−Q2

1
1 + y

D

Q2
2−Q2

1
2 +

p+2∑
i=3

y

D

Q1
1−Q1

2
i + e

Q2
2 t1−Q1

2 t2

D (y1y2)

Q2
2

Q2
2−Q2

1 (y3 · · · yp+2)

Q1
2

Q1
2−Q1

1

+ e
Q1

1 t2−Q2
1 t1

D (y1y2)

Q2
1

Q2
1−Q2

2 (y3 · · · yp+2)

Q1
1

Q1
1−Q1

2 . (47)
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With

D = Q1
1Q

2
2 − Q2

1Q
1
2, g = gcd

(
Q2

2 − Q2
1,Q

1
1 − Q1

2

)
(48)

and the super-CY conditions (45) imposed, we find that (47) corresponds to a hypersurface of
degree D/g in the weighted projective space WCPp+1(

Q2
2−Q2

1
g

,
Q2

2−Q2
1

g
,

Q1
1−Q1

2
g

,...,
Q1

1−Q1
2

g

)(y1, . . . , yp+2).

The conditions for the superpotential to be polynomial are (I) Q2
1 = Q1

2 = 0 or (II)
Q1

1 = Q2
2 = 0. It is noted that with the super-CY conditions imposed, g = 1 for p odd,

while g = 2 for p even.
Let us analyse the two options for a polynomial superpotential, namely (I) or (II). It turns

out that in either case, the polynomial and quasi-homogeneous superpotential reads

0 = y2
1 + y2

2 +
p+2∑
i=3

y
p

i + et1/2y1y2 + et2/py3 · · · yp+2 (49)

and describes a hypersurface of degree 2p/g in

WCPp+1
(p,p,2,...,2)(y1, . . . , yp+2), p odd,

WCPp+1
(

p

2 ,
p

2 ,1,...,1)
(y1, . . . , yp+2), p even.

(50)

That is, the degree is 2p for p odd and p for p even. This infinite family of weighted
projective spaces has already appeared in the literature [12]. There4 it is discussed that a
quasi-homogeneous hypersurface of degree 2p (for p odd) or p (for p even) in the space
(50) should be of relevance to mirror symmetry of higher dimensional manifolds. This is
confirmed here since we have found that such hypersurfaces correspond to bosonic structures
of supermanifolds which are mirror partners to fermionic extensions of CP1 × CPp−1.

4. Mirrors of fermionic extensions of toric varieties

Now we extend our study of super-projective spaces to fermionic extensions of general toric
varieties. With reference to the description at the beginning of section 3, in particular, the
A-model is based on the p + n bosonic fields �i and the f fermionic fields �α with U(1)⊗n

charges

q ′a = (qa | Qa) = (
qa

1 , . . . , qa
p+n

∣∣Qa
1, . . . ,Q

a
f

)
, a = 1, . . . , n. (51)

The extended D-term constraint equations of the present A-model read
p+n∑
i=1

qa
i |�i |2 +

f∑
α=1

Qa
α|�α|2 = �(ta), a = 1, . . . , n. (52)

The associated mirror B-model is obtained in the same way as above, and the super-LG
path integral becomes

Z =
∫ (

p+n∏
i=1

dYi

) (
f∏

α=1

dXα dηα dχα

)
δ

(
p+n∑
i=1

q1
i Yi −

f∑
α=1

Q1
αXα − t1

)

× · · · × δ

(
p+n∑
i=1

qn
i Yi −

f∑
α=1

Qn
αXα − tn

)

× exp

(
p+n∑
i=1

e−Yi +
f∑

α=1

e−Xα (1 + ηαχα)

)
. (53)

4 Here the family is labelled by p, p � 2, which in [12] is denoted by n + 1.
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Following the same procedure as before, we integrate out the 2f fermionic fields yielding

∫ (
f∏

α=1

dηα dχα

)
exp

(
f∑

α=1

e−Xα (1 + ηαχα)

)
=

(
f∏

α=1

e−Xα

)
exp

(
f∑

α=1

e−Xα

)
. (54)

Focusing on the interesting situation where n = f and where the delta functions appearing in
(53) are eliminated by integrating out the fields Xα , the set of linear equations expressing the
X fields in terms of the Y fields is given by

f∑
α=1

Qa
αXα =

p+f∑
i=1

qa
i Yi − ta, a = 1, . . . , f. (55)

There is a unique solution for this system of equations, provided the determinant of the
quadratic f × f matrix of fermion charges Q,

D = det(Q), (56)

is non-vanishing. We shall assume this. The solution to (55) is then given in terms of the
inverse matrix Q−1 as it may be written

Xα =
f∑

a=1

(Q−1)aα

(
p+f∑
i=1

qa
i Yi − ta

)
. (57)

Note that if a is interpreted as the row index in Qa
α , as in (25), it corresponds to the column

index in (Q−1)aα . After integrating out these fields, the path integral (53) is free of delta
functions:

Z ∝
∫ (

p+f∏
i=1

dYi

)
exp

(
−

f∑
α=1

f∑
a=1

p+f∑
i=1

(Q−1)aαqa
i Yi

)

× exp

(
p+f∑
i=1

e−Yi +
f∑

α=1

exp

(
−

f∑
a=1

(Q−1)aα

(
p+f∑
i=1

qa
i Yi − ta

)))
. (58)

In order to extract information on the underlying geometry, we again follow the
prescription outlined in section 3. We therefore introduce the field redefinitions

yi = exp

(
−

f∑
α=1

f∑
a=1

(Q−1)aαqa
i Yi

)
, (59)

and require that

f∑
α=1

f∑
a=1

(Q−1)aαqa
i �= 0, i = 1, . . . , p + f. (60)

This ensures, in particular, that the superpotential may be written as a finite sum of products
of powers of the fields. The path integral (58) now reads

Z ∝
∫ (

p+f∏
i=1

dyi

)
exp

(
p+f∑
i=1

y
1/{∑f

α=1

∑f

a=1(Q
−1)aαqa

i }
i

+
f∑

α=1

e
∑f

c=1(Q
−1)cα tc

p+f∏
i=1

y
{∑f

a=1(Q
−1)aαqa

i }/{∑f

β=1

∑f

b=1(Q
−1)bβqb

i }
i

)
. (61)
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The vanishing of the superpotential thus defined may be characterized by a hypersurface in
the weighted projective space

WCPp+n−1(
D

∑f
α=1

∑f
a=1(Q−1)aαqa

1
g

,...,
D

∑f
α=1

∑f
a=1(Q−1)aαqa

p+n

g

)(y1, . . . , yp+n), (62)

where we have introduced the parameter

g = gcd

(
D

f∑
α=1

f∑
a=1

(Q−1)aαqa
1 , . . . , D

f∑
α=1

f∑
a=1

(Q−1)aαqa
p+n

)
. (63)

The hypersurface is given by the algebraic equation

0 =
p+f∑
i=1

y
1/{∑f

α=1

∑f

a=1(Q
−1)aαqa

i }
i +

f∑
α=1

e
∑f

c=1(Q
−1)cα tc

p+f∏
i=1

y
{∑f

a=1(Q
−1)aαqa

i }/{∑f

β=1

∑f

b=1(Q
−1)bβqb

i }
i . (64)

Note that the factors of the determinant D (56) in the definition of the weights in (62) are
required, in general, to ensure that the weights are integers. The expression (64) is seen to be
quasi-homogeneous provided

p+f∑
i=1

qa
i =

f∑
α=1

Qa
α, a = 1, . . . , f, (65)

which are the super-CY conditions of the original fermionic extension of the projective variety
in the A-model. The degree of the superpotential is then given by D/g. This provides the
most general version presented here of the new correspondence between two supermanifolds
paired by mirror symmetry.

The question of when the superpotential is polynomial is more complicated in this general
case than in the projective example in section 3. It is beyond the scope of the present work to
attempt such a classification, though we intend to address it elsewhere.

Instead, let us point out that the family of complex three-dimensional toric varieties
F̃ m,m � 0, is covered by our analysis. That is, one may start with an A-model constructed
as a fermionic extension of the toric variety F̃ m. It is characterized by the charge vectors

q ′1 = (
1, 1, 0, 0,m

∣∣ Q1
1,Q

1
2

)
, q ′2 = (

0, 0, 1, 1, 1
∣∣ Q2

1,Q
2
2

)
, (66)

with respect to the gauge group U(1)⊗2. Imposing the super-CY conditions yields

Q1
1 + Q1

2 = m + 2, Q2
1 + Q2

2 = 3. (67)

The superpotential (64) reduces to

0 = y

D

Q2
2−Q2

1
1 + y

D

Q2
2−Q2

1
2 + y

D

Q1
1−Q1

2
3 + y

D

Q1
1−Q1

2
4 + y

D

Q1
1−Q1

2+m(Q2
2−Q2

1)

5

+ e
Q2

2 t1−Q1
2 t2

D (y1y2)

Q2
2

Q2
2−Q2

1 (y3y4)

Q1
2

Q1
2−Q1

1 y

Q1
2−mQ2

2
Q1

2−Q1
1−m(Q2

2−Q2
1)

5

+ e
Q1

1 t2−Q2
1 t1

D (y1y2)

Q2
1

Q2
1−Q2

2 (y3y4)

Q1
1

Q1
1−Q1

2 y

Q1
1−mQ2

1
Q1

1−Q1
2+m(Q2

2−Q2
1)

5 (68)

and corresponds to a hypersurface in (62) which now reads

WCP4(
Q2

2−Q2
1

g
,

Q2
2−Q2

1
g

,
Q1

1−Q1
2

g
,

Q1
1−Q1

2
g

,
Q1

1−Q1
2+m(Q2

2−Q2
1)

g

)(y1, y2, y3, y4, y5), (69)

where

g = gcd
(
Q2

2 − Q2
1,Q

1
1 − Q1

2,Q
1
1 − Q1

2 + m
(
Q2

2 − Q2
1

) = gcd
(
Q2

2 − Q2
1,Q

1
1 − Q1

2

)
. (70)



Toric Calabi–Yau supermanifolds and mirror symmetry 6417

The degree of the superpotential is D/g. A simple adaptation of the discussion of the
polynomial behaviour of the superpotential (39) reveals that in order for (68) to be a
homogeneous polynomial, we again have the two cases (I) and (II). In case (I), for example,
where Q2

1 = Q1
2 = 0, it follows from a comparison of the powers of y5 in the two Kähler-

dependent terms that one of the three entities Q1
1,Q

2
2 or m must vanish. Since D �= 0, we see

that m = 0. A similar argument applies to case (II). We may thus conclude that the only F̃ m

which can result in a homogeneous polynomial (68) is F̃ 0.

5. Conclusion

We have discussed mirror symmetry of supermanifolds constructed as fermionic extensions
of toric varieties. This has been achieved by studying fermionic extensions of linear sigma
A-models and their T-dual super-LG B-models. The present work primarily concerns the
quadratic case where n = f (i.e., equal numbers of U(1) factors and fermionic fields in the
A-model), and focus has been on the bosonic structure arising after integrating out the fields
in the B-model obtained by dualizing the fermionic fields in the A-model. We have found
that quasi-homogeneity of the resulting toric data of the B-model is related to the super-CY
conditions of the A-model supermanifold. Furthermore, the degree of the associated B-model
superpotential is given in terms of the determinant of the A-model fermion charge matrix.
Several special cases have been used as illustrations of our general results.

Natural extensions of the present work include the non-quadratic case where n �= f . It is
also of interest to understand the different patches of the bosonic B-model structure that would
result after integrating out different bosonic fields than the ones introduced by the dualization
of the fermionic fields in the A-model. One should also try to extract geometric information
on the full supermanifold in the B-model, and not just the bosonic structure of it obtained after
integrating out the fermionic fields. We hope to discuss all of these interesting problems in
the future.
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