
TORIC DEGENERATIONS IN SYMPLECTIC GEOMETRY

MILENA PABINIAK

Abstract. A toric degeneration in algebraic geometry is a process where a given pro-
jective variety is being degenerated into a toric one. Then one can obtain information
about the original variety via analyzing the toric one, which is a much easier object to
study. Harada and Kaveh described how one incorporates a symplectic structure into this
process, providing a very useful tool for solving certain problems in symplectic geometry.
Below we present applications of this method to questions about the Gromov width, and
cohomological rigidity problems.

1. Introduction

Manifolds and algebraic varieties equipped with a group action are usually better un-
derstood as a presence of an action is a sign of certain symmetries. In particular, toric
varieties form a very well understood class of varieties. These are varieties which contain
an algebraic torus T nC := (C∗)n as a dense open subset and are equipped with an action
of T nC which extends the usual action of T nC on itself. (For more about toric varieties see,
for example, [CLS] and [F].) To understand a given projective variety X one can try to
“degenerate” it to a toric one, i.e., form a family of varieties with generic member X and
one special member some toric variety X0. The varieties X and X0 are closely related and
thus one can obtain information about X by studying X0. Moreover, such a degeneration
gives a map from X to X0 which, in certain situations, is preserving some special structures
X and X0 might be equipped with (for example: a symplectic structure).

One can use the method of toric degenerations to solve problems in symplectic geometry.
In this work we discuss the following two applications:

• calculating lower bounds for the Gromov width, i.e., trying to find the largest ball
which can be symplectically embedded into a given symplectic manifold;
• constructing symplectomorphisms needed for a cohomological rigidity problem for

symplectic toric manifolds, that is, the question of whether any two symplectic
toric manifolds with isomorphic integral cohomology rings (via an isomorphism
preserving the class of the symplectic form) are symplectomorphic.

Recall that a 2n-dimensional symplectic manifold (M,ω) equipped with an effective Hamil-
tonian action of an n-dimensional torus T = (S1)n is called a symplectic toric manifold.
The action being Hamiltonian means that there exists a moment map, that is, a T -invariant
map µ : M → Lie(T )∗ ∼= Rn such that for every X ∈ Lie(T ) it holds that ιX]ω = dµX
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where X] denotes the vector field on M induced by X and µX : M → R is defined by
µX(p) = 〈µ(p), X〉. Such a manifold can be given a complex structure interacting well with
the symplectic one so that ω is a Kähler form and (M,ω) a Kähler manifold. In particular,
symplectic toric manifolds are toric varieties in the sense of algebraic geometry. A theorem
of Delzant states that we have a bijection

{2n-dim compact symplectic toric manifolds} {rational, smooth polytopes in Rn}
up to equivariant ⇔ up to translations and

symplectomorphisms GL(n,Z) transformations

(A polytope in Rn is called rational if the directions of its edges are in Zn. It is called
smooth if for every vertex the primitive vectors in the directions of edges meeting at that
vertex form a Z-basis for Zn.) In this bijection, a manifold corresponds to the image of
its moment map, therefore the associated polytope is often called a moment polytope or a
moment image. Not much is known about a classification of symplectic toric manifolds up
to symplectomorphisms. The cohomological rigidity mentioned in the second bullet above
asks if such classification might be given by the integral cohomology rings.

In Sections 3 and 4 respectively we describe the above problems in detail and explain
how one can use toric degenerations to solve problems of this type. In particular we
prove (rather, outline the proofs of) the following two results, obtained in projects joint
respectively with I. Halacheva, X. Fang and P. Littelmann, and S. Tolman.

Theorem 1.1. [HP],[FLP] Let K be a compact connected simple Lie group. The Gromov
width of a coadjoint orbit Oλ through a point λ lying on some rational line in (LieK)∗,
equipped with the Kostant–Kirillov–Souriau symplectic form, is at least

(1.2) min{ |〈λ, α∨〉| ; α∨ a coroot and 〈λ, α∨〉 6= 0}.
Theorem 1.3. [PT] Let M and N be Bott manifolds such that H∗(M ;Q) and H∗(N ;Q)
are isomorphic to Q[x1, . . . , xn]/〈x2

1, . . . , x
2
n〉. For any ring isomorphism F : H∗(M ;Z) →

H∗(N ;Z) sending the class [ωM ] of the symplectic form on M to the class [ωN ] of the
symplectic form on N , there exists a symplectomorphism f : (N,ωN)→ (M,ωM) such that
the map H∗(f) : H∗(M ;Z)→ H∗(N ;Z) induced by f on integral cohomology rings is F .

There are other applications of toric degenerations in symplectic geometry. For example,
one can obtain information about the Ginzburg–Landau potential function on X from that
of X0 and thus detect some non-displaceable Lagrangians of X (see [NNU]).

Acknowledgements. First of all, the author would like to thank her collaborators: Xin
Fang, Iva Halacheva, Peter Littelmann, and Sue Tolman. Results contained in this manu-
script were obtained in collaboration with the above mathematicians ([HP], [FLP], [PT])
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remaining mistakes are due to me.) The author also thanks the organizers of the work-
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and present her results at these workshops.
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2. Toric degenerations

A toric degeneration of a projective variety X is a flat family π : X → C with generic
fiber X and one special fiber X0 = π−1(0), a (not necessarily normal) toric variety. A
construction of such a degeneration of a projective variety X, equipped with a very ample
line bundle satisfying certain conditions, can be found in Anderson ([A, Theorem 2]).

Example 2.1. Using the Plücker embedding,1 view X = Gr(2,C4), the Grassmannian of
2-planes in C4, as a subset of CP5 with coordinates {xij; 1 ≤ i < j ≤ 4}, consisting of
points satisfying

x12x34 − x13x24 + x14x23 = 0.

Consider the subset X ⊂ CP5 × C consisting of points satisfying

x12x34 − x13x24 + tx14x23 = 0,

where t denotes the coordinate in C. Let π : X → C be the restriction to X of the pro-
jection onto the second factor. This family constitutes a toric degeneration of Gr(2,C4).
Clearly π−1(1) is Gr(2,C4). Moreover, performing a change of coordinates, one can show
that π−1(t) for t 6= 0 is also bihomolomorphic to Gr(2,C4). The central fiber, π−1(0), is
described by the binomial ideal 〈x12x34 − x13x24〉 and thus is a toric variety.

Harada and Kaveh in [HK] enriched the construction of Anderson by incorporating a
symplectic structure. They start with a smooth projective variety X, of complex dimension
n, equipped with a very ample line bundle L, with some fixed Hermitian structure. Let
L := H0(X,L) denote the vector space of holomorphic sections, ΦL : X → P(L∗) the
Kodaira embedding and ω = Φ∗L(ωFS) the pull back of the Fubini–Study form, i.e., of
the standard symplectic structure on complex projective spaces. Then (X,ω) is a Kähler
manifold. With this data they construct (under certain assumptions) not only a flat family
π : X→ C but also a Kähler structure ω̃ on (the smooth part of) X so that (π−1(1), ω̃|π−1(1))
is symplectomorphic to (X,ω). Moreover, the special fiber X0 = π−1(0) inherits a 2-form,
the restriction of ω̃, defined on its smooth part U0 := (X0)smooth, and thus it also obtains a
divisor. If X0 is normal, then the polytope associated to X0 and this divisor by the usual
procedure of toric algebraic geometry (see, for example, Chapter 4 of [CLS]) is the closure
of the moment image of the (non-compact) symplectic toric manifold (U0, ω̃|U0). As we will
see, this polytope can be computed by analyzing the behaviour of the holomorphic sections
of L. Here are more details about this procedure.

Denote by Lm the image of the span 〈f1 · . . . · fm ; fi ∈ L〉 in H0(X,L⊗m) and by R =
C[X] = ⊕m≥0 L

m the homogeneous coordinate ring of X with respect to the embedding ΦL.

1Recall that the Plücker embedding sends a Grassmannian spanned by vectors v, w ∈ C4 to a point
[x12 : . . . : x34] ∈ CP5 with xij equal to the determinant of the 2× 2 minor of [vT , wT ] spanned by rows i
and j.
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An important ingredient of the construction is a choice of a valuation with one dimensional
leaves, ν : C(X) \ {0} → Zn, from the ring C(X) of rational functions on X. A precise
definition of a general valuation can be found, for example, in [HK, Definition 3.1]. In this
paper we only use valuations induced by a flag of subvarieties and a special case of these,
called lowest/highest term valuations associated to a coordinate system.

Example 2.2 (Lowest/highest term valuations of a coordinate system). [HK, Example 3.2]
Fix a (smooth) point p ∈ X and let (u1, . . . , un) be a system of coordinates in a neighborhood
of p, meaning that u1, . . . , un are regular functions at p, vanishing at p, and such that their
differentials du1, . . . , dun are linearly independent at p. Then any regular function at p can
be represented as a power series

∑
α∈Zn≥0

cαu
α. Here by uα, with α = (α1, . . . , αn) ∈ Zn≥0,

we mean uα1
1 · . . . · uαnn . Choose and fix a total order > on Zn respecting the addition, for

example the lexicographic order. Define a map ν from the set of functions regular at p to
Zn by

ν
( ∑
α∈Zn≥0

cαu
α
)

= min{α; cα 6= 0},

and extend it to C(X) \ {0} by setting ν(f/g) = ν(f) − ν(g). Then ν is a valuation with
one dimensional leaves, called a lowest term valuation. If one uses max instead of min in
the definition of ν, one obtains a highest term valuation.

Example 2.3 (Valuations induced by a flag of subvarieties). [HK, Example 3.3] Take a
flag of normal subvarieties (called a Parshin point) of X

{p} = Yn ⊂ . . . ⊂ Y0 = X,

with dimC(Yk) = n−k and Yk non-singular along Yk+1. By the non-singularity assumption
there exists a collection of rational functions u1, . . . , un on X such that uk|Yk−1

is a rational
function on Yk−1 which is not identically zero and which has a zero of first order on Yk.
Then the lowest term valuation with respect to the lexicographic order can alternatively be
described in the following way: for any f ∈ C(X), f 6= 0, the valuation v(f) = (k1, . . . , kn)
where k1 is the order of vanishing of f on Y1, k2 is the order of vanishing of f1 := (u−k11 f)|Y1
on Y2, etc.

Given such X, L, and ν we form a semigroup S = S(ν,L), in the following way. Fix a
non-zero element h ∈ L and use it to identify L with a subspace of C(X) by mapping
f ∈ L to f/h ∈ C(X). Similarly identify Lm with a subspace of C(X) by sending f ∈ Lm
to f/hm ∈ C(X). As any valuation satisfies ν(fg) = ν(f) + ν(g), the set

S = S(ν,L) =
⋃
m≥0

{(m, ν(f/hm)) | f ∈ Lm \ {0} }

is a semigroup with identity (i.e. a monoid). If S is finitely generated, one can construct
a toric degeneration whose special fiber is a toric variety ProjC[S] (which is normal if S
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is saturated). Moreover we obtain an Okounkov body

∆ = ∆(S) = conv
( ⋃
m>0

{x/m | (m,x) ∈ S}
)
⊂ Rn.

Note that if S is finitely generated, then ∆ is a rational convex polytope. The toric variety
corresponding to ∆ is the normalization of ProjC[S].

In the following theorem we rephrase several results from [HK].

Theorem 2.4. [HK] Let L be a very ample Hermitian line bundle on a smooth n-dimensional
projective variety X and ω = Φ∗L(ωFS) the induced symplectic form. Let ν : C(X) \ {0} →
Zn be a valuation with one dimensional leaves, and such that the associated semigroup S
is finitely generated. Then

• There exists a toric degeneration π : X → C with generic fiber X and special fiber
X0 := ProjC[S], and a Kähler structure ω̃ on (the smooth part of) X such that
(π−1(1), ω̃|π−1(1)) is symplectomorphic to (X,ω) and the closure of the moment im-
age of symplectic toric manifold (U0, ω̃|U0), where U0 := (X0)smooth, is the Okounkov
body ∆(S). The set U0 contains the preimage of the interior of ∆(S).
• Moreover, there exists a surjective continuous map φ : X → X0 that restricts to a

symplectomorphism from (φ−1(U0), ω) to (U0, ω̃|U0).

In particular, if X0 = ProjC[S] is smooth (thus also normal), then φ−1(U0) = X and
therefore φ provides a symplectomorphism between (X,ω) and the symplectic toric manifold
(X∆(S), ω∆(S)) associated to ∆(S) via Delzant’s construction.

Checking whether S is finitely generated is a very difficult problem. However, it was
observed by Kaveh in [K2] that even if S is not finitely generated one can still form a (not
flat) family with generic fiber X and special fiber (C∗)n. Even though such a construction
provides much less information about X, it still suffices for the purpose of finding lower
bounds on the Gromov width. We describe this idea in Section 3.

3. Gromov width

The Gromov width of a 2n-dimensional symplectic manifold (X,ω) is the supremum of
the set of the positive real numbers a such that the ball of capacity a (or, equivalently, of
radius

√
a
π
),

B2n
a = B2n

(√a

π

)
=
{

(x1, y1, . . . , xn, yn) ∈ R2n
∣∣∣ π n∑

i=1

(x2
i + y2

i ) < a
}
⊂ (R2n, ωst),

can be symplectically embedded in (X,ω). Here ωst =
∑

j dxj ∧ dyj denotes the standard

symplectic form on R2n. This question was motivated by the Gromov non-squeezing the-
orem which states that a ball B2n(r) ⊂ (R2n, ωst) cannot be symplectically embedded into
B2(R)× R2n−2 ⊂ (R2n, ωst) unless r ≤ R.



6 MILENA PABINIAK

J-holomorphic curves give obstructions to ball embeddings, while Hamiltonian torus ac-
tions can lead to constructions of such embeddings (by extending a Darboux chart using
the flow of the vector field induced by the action).

This is why toric degenerations provide a useful tool for finding lower bounds on the
Gromov width. Given a toric degeneration of (X,ω), as described in Theorem 2.4, one
can use the toric action on X0 to construct embeddings of balls into a smooth symplectic
toric manifold (U0, ω̃|U0), where U0 = (X0)smooth. Postcomposing such embedding with the
symplectomorphism φ−1 produces a symplectic embedding into (X,ω).

Moreover, many embeddings of balls into symplectic toric manifolds can be read off from
the associated (by the Delzant classification theorem) polytope. Identify the dual of the
Lie algebra of the compact torus T with the Euclidean space using the convention that
S1 = R/Z, i.e., the lattice of t∗ is mapped to ZdimT ⊂ RdimT . With this convention, the
moment map for the standard (S1)n action on (R2n, ωst) maps B2n

a onto an n-dimensional
simplex of size a, closed on n sides

(3.1) Sn(a) := {(x1, . . . , xn) ∈ Rn| 0 ≤ xj < a,
n∑
j=1

xj < a}.

Moreover, if the moment image contains an open simplex of size a, then for any ε > 0 a
ball of capacity a− ε can be embedded into the given symplectic toric manifold.

Proposition 3.2. [L2, Proposition 1.3][P, Proposition 2.5] For any connected, proper (not
necessarily compact) symplectic toric manifold U of dimension 2n, with a moment map µ,
the Gromov width of U is at least

sup{a > 0 | ∃ Ψ ∈ GL(n,Z), x ∈ Rn, such that Ψ(IntSn(a)) + x ⊂ µ(U)}.

The appearance of Ψ and x comes from the facts that the identification t∗ ∼= Rdim T

depends on a splitting of T into (dim T ) circles, and that a translation of a moment map
also provides a moment map.

The above results lead to the following method for finding lower bounds on the Gromov
width.

Corollary 3.3. Let X be a smooth projective variety of complex dimension n, L an ample
line bundle on X, and ω = Φ∗L(ωFS) ∈ H2(X;Z) an integral Kähler form obtained using
the Kodaira embedding ΦL : X → P(L∗). Suppose that there exists a valuation ν giving a
finitely generated and saturated semigroup S = S(ν,L). Let ∆ be the associated Okounkov
body. The Gromov width of (X,ω) is at least

sup{a > 0 | ∃ Ψ ∈ GL(n,Z), x ∈ Rn, such that Ψ(IntSn(a)) + x ⊂ ∆}.

Proof. By the result of [HK] cited above as Theorem 2.4, there exists a toric degeneration
of (X,ω) to a normal toric variety X0 = ProjC[S]. The subset U := φ−1(U0) of X inherits
a toric action whose moment image contains Int ∆, the interior of ∆ (recall that a moment
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map sends singular points of a toric variety to the boundary of the moment polytope).
The corollary follows from Proposition 3.2. �

In fact one does not need S to be saturated. The same corollary holds even if X0 is not a
normal toric variety. This is because a normalization map for X0 induces a biholomorphism
between (X0)smooth and an appropriate subset of the normalization of X0.

It is, however, necessary that S is finitely generated for a toric degeneration to exist.
Otherwise one can still form a family of manifolds, but one cannot guarantee for this family
to be flat, and thus X and X0 are no longer so strongly related. As we already mentioned,
Kaveh in [K2] observed that such a (not necessarily flat) family, with X0 = (C∗)n, still
provides information about the Gromov width of (X,ω). To state this result we need
additional notation. In the notation of Section 2, for any m ∈ Z>0 let

Am := {ν(f/hm) | f ∈ Lm \ {0} } ⊂ Zn, ∆m =
1

m
conv(Am).

Note that ∆ = ∪m>0∆m. Fix m and let r = rm denote the number of elements in
Am = {β1, . . . , βr}. From these data we form a symplectic form, ωm, on (C∗)n using a
standard procedure: ωm is the pull back of the Fubini–Study form on CPr−1 via the map
Ψm : (C∗)n → CPr−1, u 7→ (uβ1c1, . . . , u

βrcr), where c = [(c1, . . . , cr)] is some element in
CPr−1 with all ci 6= 0. (In [K2] the elements ci come from coefficients of leading terms
of elements in an appropriately chosen basis of Lm. One also needs that the differences
of elements in Am span Zn which, by [K2, Remark 5.6], is always true for lowest term
valuations.)

Kaveh proved that

• For every m > 0 there exists an open subset U ⊂ X such that (U, ω) is symplecto-
morphic to ((C∗)n, 1

m
ωm) ([K2, Theorem 10.5]).

• The Gromov width of ((C∗)n, 1
m
ωm) is at least Rm, where Rm is the size of the

largest open simplex that fits in the interior of ∆m = 1
m

conv (Am)([K2, Corollary
12.3]).

This leads to the following corollary.

Corollary 3.4. [K2, Corollary 12.4] Let X be a smooth projective variety of dimension n,
L an ample line bundle on X, and ω = Φ∗L(ωFS) ∈ H2(X;Z) an integral Kähler form. Let
ν be a lowest term valuation on C(X), with values in Zn, and ∆ the associated Okounkov
body. The Gromov width of (X,ω) is at least R, where R is the size of the largest open
simplex that fits in the interior of ∆.

3.1. Results about coadjoint orbits. The methods for finding the Gromov width de-
scribed in Corollaries 3.3 and 3.4 have been used in [HP] and [FLP] for coadjoint orbits of
compact Lie groups.

Recall that given a compact Lie group K each orbit O ⊂ k∗ := (LieK)∗ of the coadjoint
action of K on k∗ is naturally a symplectic manifold. Namely it can be equipped with the
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Kostant–Kirillov–Souriau symplectic form ωKKS defined by:

ωKKSξ (X#, Y #) = 〈ξ, [X, Y ]〉, ξ ∈ O ⊂ k∗, X, Y ∈ k,

where X#, Y # are the vector fields on k∗ induced by X, Y ∈ k via the coadjoint action
of K. Coadjoint orbits are in bijection with points in a positive Weyl chamber as every
coadjoint orbit intersects such a chamber in a single point. An orbit is called generic (resp.
degenerate) if this intersection point is an interior point of the chamber (resp. a boundary
point). An orbit passing through a point λ in a positive Weyl chamber will be denoted
by Oλ. For example, when K = U(n,C) is the unitary group, a coadjoint orbit can be
identified with the set of Hermitian matrices with a fixed set of eigenvalues. The orbit is
generic if all eigenvalues are different, and in this case it is diffeomorphic to the manifold
of complete flags in Cn.

It has been conjectured that the Gromov width of (Oλ, ωKKS) should be given by the
following neat formula, expressed entirely in the Lie-theoretical language

min{ |〈λ, α∨〉| ; α∨ a coroot and 〈λ, α∨〉 6= 0}.
For example, as {eii − ejj; i 6= j} forms a root system for the unitary group U(n,C), the
Gromov width of its coadjoint orbit Oλ passing through a point λ = diag (λ1, . . . , λn) ∈
u(n)∗, lying on some rational line, is equal to

min{|λi − λj|; i, j ∈ {1, . . . , n}, λi 6= λj}.
Here we identified both u(n) and u(n)∗ with the set of n× n Hermitian matrices.

This conjecture was motivated by the computation of the Gromov width of complex Grass-
mannians, i.e., degenerate coadjoint orbits of U(n,C), done by Karshon and Tolman in
[KT], and independently by Lu in [L1]. Later, using holomorphic techniques, Zoghi (for
generic indecomposable2 orbits of U(n,C), [Z]) and Caviedes (for any coadjoint orbit, [C])
showed that the above formula provides an upper bound for the Gromov width. The fact
that this formula also provides a lower bound was proved using explicit Hamiltonian torus
actions by Zoghi (for generic indecomposable orbits of U(n,C) using the standard action
of the maximal torus, [Z]), Lane (for generic orbits of the exceptional group G2, [La]), and
the author (for U(n,C), SO(2n,C) and SO(2n + 1,C) orbits 3 using the Gelfand–Tsetlin
torus action, [P]).

3.2. A sketch of the proof of Theorem 1.1. The first usage of toric degenerations in
Gromov width problems appeared in the work [HP] of Halacheva and the author, where
the generic orbits of the symplectic group Sp(n) = U(n,H) are considered. Then it was
used in [FLP] to prove that the formula (1.2) is a lower bound for the Gromov width of

2A coadjoint orbit through a point λ in the interior of a chosen positive Weyl chamber is called inde-
composable in [Z] if there exists a simple positive root α such that for any positive root α′ there exists a
positive integer k such that 〈λ, α′〉 = k〈λ, α〉.

3The result about SO(2n+ 1,C) holds only for orbits satisfying a mild technical condition: the point λ
of intersection of the orbit and a chosen positive Weyl chamber should not belong to a certain subset of
one wall of the chamber; see [P] for more details. In particular, all generic orbits satisfy this condition.
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any coadjoint orbit of any compact connected simple Lie group K, passing through a point
in the Weyl chamber lying on some rational line, i.e., to prove Theorem 1.1.

The rationality assumption comes from the fact that the toric degeneration method can be
applied only to the orbits passing through an integral point λ of a positive Weyl chamber,
i.e., in the language of representation theory, through a dominant weight.

Let G be a simply connected simple complex algebraic group and K ⊂ G be its maximal
compact subgroup. With a dominant weight λ one can associate an irreducible represen-
tation V (λ) of G of highest weight λ. Let Cvλ be the highest weight line and P = Pλ be
the normalizer in G of this line. Then the coadjoint orbit Oλ of K is diffeomorphic to G/P
(and to K/K ∩P ) and there exists a very ample line bundle Lλ on G/P such that the pull
back of the Fubini–Study form on the projective space P(H0(G/P,Lλ)∗) = P(V (λ)) via
the Kodaira embedding G/P → P(H0(G/P,Lλ)∗) is exactly the Kostant–Kirillov–Souriau
symplectic form ωKKS on Oλ (see for example [C, Remark 5.5]). Thus for integral λ’s one
can try to construct toric degenerations of projective variety G/P with line bundle Lλ and
obtain some lower bounds for the Gromov width of the orbit Oλ. Rescaling of symplectic
forms allows to extend such a result to orbits Oaλ, for any a ∈ R>0.

It remains to discuss how one can construct desired toric degenerations.

A great advantage of working with coadjoint orbits of a complex algebraic group G is that
a lot of information can be obtained from studying representations of G. This leads to
a beautiful interplay between symplectic geometry and representation theory. A reduced
decomposition of the longest word in the Weyl group, w0 = siα1 · . . . · siαN provides the
following items (defined below) related in an interesting way:

• a valuation νw0
,

• a string parameterization of a crystal basis of V ∗λ .

We continue to denote by λ a dominant weight and by Vλ the finite dimensional irreducible
representation of G with highest weight λ. Let V ∗λ denote the dual representation. One
often seeks for a basis of V ∗λ consisting of elements which behave nicely under the action
of Kashiwara operators. A crystal basis is a basis whose elements are permuted under
the Kashiwara operators. Given a crystal basis one can form a crystal graph of a given
representation: vertices are elements of the crystal basis and {0}, and edges are labelled by
simple roots and correspond to the action of Kashiwara operators. There are (noncanon-
ical) ways of embedding such graph into RN , N = dimCG/P . A reduced decomposition
of the longest word in the Weyl group (into a composition of reflections with respect to
simple roots), w0 = sα1 · . . . · sαN , provides a way of assigning to each vertex of the crystal
graph a string of N integers (string parametrization), and thus gives such an embedding.
A convex hull of the image of string parametrization is called a string polytope. It depends
on λ and also on the chosen decomposition w0. String polytopes have been extensively
studied in representation theory.
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Moreover, a reduced decomposition w0 = siα1 · . . . · siαN defines a sequence of Schubert
subvarieties

[P ] = YN ⊂ . . . ⊂ Y0 = G/P,

where Yj denotes the Schubert variety corresponding to the element siαj+1
· . . . · siαN of

the Weyl group. We denote by νw0
the highest term valuation associated with this flag of

subvarieties.

A theorem of Kaveh relates these two objects.

Theorem 3.5. [K1] The string parametrization for V ∗λ = H0(G/P,Lλ) obtained using the
reduced decomposition w0 is the restriction of the valuation νw0

and thus the corresponding
string polytope is the Okounkov body ∆(νw0

).

Explicit descriptions of string polytopes for classical Lie groups and some well-chosen
reduced decompositions of the longest words were presented in the work of Littelmann
[Li]. With a bit of work, one can show that the string polytope for V ∗λ with G = Sp(2n,C)
the symplectic group (with maximal compact subgroup K = Sp(n) = U(n,H)), described
in [Li], contains a simplex of size prescribed by (1.2). Then, the result of Kaveh, [K1],
quoted above together with Corollary 3.3 prove that the Gromov width of Sp(n) coadjoint
orbit (Oλ, ωKKS) is at least equal to the value prescribed by (1.2), i.e., proves Theorem
1.1 for the case of the symplectic group. This is exactly the argument used in [HP].

Similar method could be applied for other classical Lie groups. However, one would need
to consider each type separately, as the descriptions of string polytopes contained in [Li]
depend on reduced decompositions which are different for different group types.

To obtain a unified proof which works for all group types, in [FLP] we use lowest term
valuations arising from a system of parameters induced by an enumeration {β1, . . . , βN}
of certain positive roots. In [FFL] the authors gave a representation-theoretic description
of the associated semigroup, also in the cases where this enumeration does not come from
a reduced decomposition of the longest word. Unfortunately it might be very difficult to
show that this semigroup is finitely generated and to find an explicit description of the
associated Okounkov body. However, in the case when the enumeration is a good ordering
in the sense of [FFL], building on the results from [FFL] one can at least show that the
associated Okounkov body contains a simplex of size prescribed by (1.2). Then, using the
result of Kaveh [K2] cited here as Corollary 3.4 (which does not require the semigroup to
be finitely generated), one proves Theorem 1.1. The details of this argument are presented
in [FLP].

4. Cohomological rigidity

The following section is based on a project joint with Sue Tolman, [PT].

Cohomological rigidity problems are problems where one tries to determine whether inte-
gral cohomology ring can distinguish between manifolds of a certain family, and whether all
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isomorphisms between integral cohomology rings are induced by maps (homeomorphisms
or diffeomorphisms, depending on the setting) between manifolds. Integral cohomology
ring is too weak to distinguish a homeomorphism type of a manifold. However, by a result
of Freedman, it classifies (up to a homeomorphism) all closed, smooth, simply connected
4-manifolds. Masuda and Suh posed question of whether the cohomological rigidity holds
for the family of symplectic toric manifolds. The question was studied by its authors, Choi,
and Panov. No counterexample was found and partial positive results were proved. (Inter-
ested readers are encouraged to consult the nice survey [CMS11] and references therein.)
Due to the presence of symplectic structure, it seems natural to consider the following
symplectic variant of the above question.

Question 4.1. (Symplectic cohomological rigidity for symplectic toric manifolds)

• (weak) Are any two symplectic toric manifolds (M,ωM) and (N,ωN) necessarily
symplectomorphic whenever there exists an isomorphism F : H∗(M ;Z)→ H∗(N ;Z)
sending the class [ωM ] to [ωN ]?
• (strong) Is any such isomorphism F : H∗(M ;Z)→ H∗(N ;Z) induced by a symplec-

tomorphism?

Sue Tolman and the author, in [PT], prove that weak and strong symplectic cohomological
rigidity hold for the family of Bott manifolds with rational cohomology ring isomorphic to
that of a product of copies of CP1. Bott manifolds can be viewed as higher dimensional
generalizations of Hirzebruch surfaces discussed in the example below. For definition see
Section 4.2.

Remark 4.2. Strong (not symplectic) cohomological rigidity, with diffeomorphisms, was
already proved for this family by Choi and Masuda in [CM]. Their diffeomorphisms usually
do not preserve the complex structure. If they had, then our result would be an immediate
consequence of theirs. Indeed, if f : N →M is a biholomorphism inducing F , then ωN and
f ∗(ωM) are both Kähler forms on N , defining the same cohomology class in H∗(N ;Z), and
thus in this case (N,ωN) and (N, f ∗(ωM)) are symplectomorphic by Moser’s trick.

Example 4.3. (Hirzebruch surfaces) Hirzebruch surfaces are CP1 bundles over CP1. As
complex manifolds they are classified by integers (encoding the twisting of the bundle):
for each A ∈ Z we denote by H−A the bundle P(O(A) ⊕ O(0)) → CP1. In particular,
H0 = CP1 × CP1. They can be equipped with a symplectic (even Kähler) structure and a
toric action. A polytope corresponding to H−A in Delzant’s classification is (up to GL(2,Z)
action) a trapezoid with outward normals (−1, 0),(0,−1),(1, 0),(A, 1). The lengths of the
edges of this trapezoid depend on the chosen symplectic structure and can be encoded as
λ = (λ1, λ2) ∈ (R>0)2. We denote by (H−A, ωλ) the symplectic toric manifold corresponding
to the trapezoid ∆(A, λ) := conv((0, 0), (λ1, 0), (λ1, λ2−Aλ1), (0, λ2)). For example, Figure
1 presents (H0, ω(1,3)) and (H−2, ω(1,5)).

It was observed by Hirzebruch that H−A and H−Ã are diffeomorphic if and only if A ∼=
Ã mod 2. Moreover, the symplectic toric manifolds (H−A, ωλ) and (H−Ã, ωλ̃) are (not
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1 1

3

5

Figure 1. Hirzebruch surfaces (H0, ω(1,3)) and (H−2, ω(1,5)).

equivariantly) symplectomorphic if and only if A ∼= Ã mod 2 and the widths and the areas

of the associated polytopes agree, i.e., λ1 = λ̃1 and λ2 − 1
2
Aλ1 = λ̃2 − 1

2
Ãλ̃1. For example,

the manifolds presented on Figure 1 are symplectomorphic. The cohomology ring can be
presented as

H∗(H−A;Z) = Z[x1, x2]/〈x2
2, x

2
1 + Ax1x2〉,

with [ωλ] = λ1x1 + λ2x2. If A ∼= Ã mod 2, then the isomorphism Z[x1, x2] → Z[x̃1, x̃2]

defined by x1 7→ x̃1 + 1
2
(Ã−A)x̃2, x2 7→ x̃2 descends to an isomorphism between H∗(H−A;Z)

and H∗(H−Ã;Z). Note that this isomorphism sends [ωλ] = λ1x1 + λ2x2 to λ1x̃1 + (λ2 +
Ã−A

2
λ1) x̃2 which is equal to [ωλ̃] if and only if λ1 = λ̃1 and λ2− A

2
λ1 = λ̃2− Ã

2
λ̃1. Therefore,

for Hirzebruch surfaces (weak) symplectic cohomological rigidity holds.

To approach the symplectic cohomological rigidity problem one needs a good method
of constructing symplectomorphisms. Here is where toric degenerations come into play.
By Theorem 2.4 a toric degeneration whose central fiber Proj C[S] is smooth produces
a symplectomorphism between the symplectic manifold one started with and the central
fiber. The main difficulty in this method of constructing symplectomorphisms lies in finding
toric degenerations with smooth central fibers.

A great advantage of working with toric manifolds is that the sections of their line bundles
are well understood and one can form very concrete constructions of toric degenerations.

4.1. Toric degenerations for symplectic toric manifolds. Let (XP , ωP ) be a symplec-
tic toric manifold with ωP ∈ H2(M ;Z), corresponding to a polytope P ⊂ Rn via Delzant’s
construction. Then P is an integral polytope (i.e. with vertices in Zn) and there exists a
very ample line bundle L over XP inducing ωP . In this situation a basis of the space of
holomorphic sections of L can be identified with the integral points of P ([D], see also [H]).
Without loss of generality we can assume that in a neighborhood of some vertex P looks
like (R≥0)n in a neighborhood of the origin in Rn. Then we can identify L = H0(XP ,L)
with a subset of the ring of rational functions, C(XP ), as described on page 4, using the
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section corresponding to the origin as the fixed element h:

f 7→ f

section corresponding to the origin
.

Notation. For simplicity of notation, given a valuation ν we will write ν(L) to denote

ν(L) := {ν(f/h); f ∈ L \ {0}}.
Similarly, let ν(Lm) := {ν(f/hm); f ∈ Lm \ {0}} for any m > 1.

We denote by fj ∈ C(XP ) the rational function coming from the section corresponding to
the j-th basis vector, j = 1, . . . , n. Note that f1, . . . , fn form a coordinate system around
the fixed point of XP corresponding to the origin via the moment map. (To see this, one
can, for example, use the description of XP and fj’s from [H].)

Choose and fix a non-negative integer c and two elements k < l ∈ {1, . . . , n}. Then

u1 = f1,

. . . ,

uk−1 = fk−1,

uk = fk − f cl ,
uk+1 = fk+1,

. . . ,

un = fn,

(4.4)

also forms a coordinate system. Let ν be the associated lowest term valuation (as in
Example 2.2). The image ν(L) can be obtained by using a “sliding” operator F−ek+cel ,
defined as follows. For each affine line ` in Rn in the direction of −ek+cel, with P ∩`∩Zn 6=
∅, translate the set {P ∩ `∩Zn} by a(−ek + cel) with a ≥ 0 maximal non-negative number
for which a(−ek + cel) + {P ∩ ` ∩ Zn} ⊂ (R≥0)n.

Lemma 4.5. One obtains ν(L) by sliding the integral points of P in the direction −ek+cel,
inside (R≥0)n, i.e.,

ν(L) = F−ek+cel(P ∩ Zn).

Instead of the proof, which can be found in [PT], we give the following example which
illustrates the main idea.

Example 4.6. Let (XP , ωP ) be the symplectic toric manifold corresponding to the polytope
P = conv {(0, 0), (1, 0), (1, 3), (0, 3)} ⊂ R2. That is, XP is diffeomorphic to CP1×CP1 with
product symplectic structure (with different rescaling of the Fubini–Study symplectic form
on each factor). Let ν be the lowest term valuation associated to the coordinate system

u1 = f1 − f 2
2 , u2 = f2.

One can easily compute that ν(f1) = (0, 2), ν(f2) = (0, 1), ν(f1f
3
2 ) = (0, 5), and in general

ν(fa1 f
b
2) = (0, 2a+ b), a, b ∈ Z≥0.
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Futhermore, ν(f1 − f 2
2 ) = (1, 0), ν(f1f2 − f 3

2 ) = (1, 1), and one can observe that

ν(L) = F(−1,2)(P ∩ Z2).

The polytopes P and conv(ν(L)) are presented on Figure 1.

Understanding ν(L) is not enough for constructing and understanding a toric degeneration.
First of all, to construct a flat family with toric fiber π−1(0) one needs the associated semi-
group S = S(ν) to be finitely generated. Additionally, the toric fiber π−1(0) = ProjC[S]
is the toric variety associated to the Okounkov body ∆ if ProjC[S] is normal, that is, if
S is saturated. Moreover, to describe the Okounkov body one also needs to find ν(Lm)
for m > 1. Note that in general Lm differs from H0(X,L⊗m). The following proposition
describes an especially nice situation where all these conditions simplify.

Proposition 4.7. Let (X,ω = Φ∗L(ωFS)) be a 2n-dimensional projective symplectic toric
manifold associated to a smooth polytope P , with the projective embedding induced by a very
ample line bundle L. Let ν be a lowest term valuation associated to a coordinate system
(4.4), and S the induced semigroup. Assume that there exists a smooth integral polytope ∆
such that

S = (cone ∆) ∩ (Z× Zn).

Then (X,ω) is symplectomorphic to the symplectic toric manifold (X∆, ω∆) associated to
∆ via Delzant’s construction.

Sketch of a proof. The assumptions imply that the semigroup S is saturated and (by Gor-
dan’s Lemma) finitely generated. Therefore there is a toric degeneration (X, ω̃) with generic
fiber (X,ω) and the special fiber π−1(0) = ProjC[S] which is a normal toric variety.
Moreover, the Okounkov body associated to the semigroup S is precisely ∆ and therefore
ProjC[S], equipped with the restriction of ω̃, is the symplectic toric manifold (X∆, ω∆)
associated to ∆ via Delzant’s construction. �

Note that S = (cone ∆) ∩ (Z × Zn) implies, in particular, that ν(Lm) contains “enough”
of integral points, namely that

∀m≥1 ν(Lm) = m∆ ∩ Zn = conv(ν(Lm)) ∩ Zn.

To understand better the requirement conv (ν(Lm)) ∩ Zn = ν(Lm), consider the following
example.

Example 4.8. (“Enough” of integral points and saturation.) Let (XP , ωP ) be the symplec-
tic toric manifold corresponding to the polytope P = conv {(0, 0), (2, 0), (2, 2), (0, 2)} ⊂ R2,
that is, XP is diffeomorphic to CP1 ×CP1 as in the previous example, but with a different
symplectic form. As before, let ν be the lowest term valuation associated to the coordinate
system

u1 = f1 − f 2
2 , u2 = f2.

Then

ν(L) = F(−1,2)(P ∩ Z2) = {(0, j); j = 0, . . . , 6} ∪ {(1, 0), (1, 3)} ( conv (ν(L)) ∩ Z2.
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The figure below presents the integral points P ∩ Z2 and ν(L) = F(−1,2)(P ∩ Z2). The
semigroup S is not saturated: we have that (1, 1, 1) /∈ S even though (2, 2, 2) ∈ S, as
(2, 2, 2) = ν(f1(f1 − f 2

2 ) · (f1 − f 2
2 )) ∈ {2} × ν(L2).

Integral points of P ν(L)

The following condition is sufficient, though not necessary, to guarantee that we have
enough of integral points.

Corollary 4.9. Let

∆ =
{
p ∈ R2

∣∣ 0 ≤ 〈p, e1〉 ≤ λ1, 0 ≤ 〈p, e2〉 and
〈
p, e2 + Ae1

〉
≤ λ2

}
and c ∈ Z>0.

If
λ2 − cλ1 > 0,

then
(conv F(−1,c)(∆ ∩ Z2)) ∩ Z2 = F(−1,c)(∆ ∩ Z2).

Note that in that case the polytope conv F(−1,c)(∆ ∩ Z2) is also a trapezoid, namely:{
p ∈ R2

∣∣ 0 ≤ 〈p, e1〉 ≤ λ1, 0 ≤ 〈p, e2〉 and
〈
p, e2 + (2c− A)e1

〉
≤ λ2 + (c− A)λ1)

}
,

if c > A (see Figure 2), or ∆ if c ≤ A.

λ1

λ2

(λ1, λ2 − Aλ1)

(A, 1) (2c− A, 1)

λ1

λ2 + (c− A)λ1

(λ1, λ2 − cλ1)

(−1, c)

(−1, c)

(λ1, λ2 − cλ1)

degeneration

Figure 2. Toric degeneration of a Hirzebruch surface.
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4.2. Cohomological rigidity for Bott manifolds. A Bott manifold is a manifold ob-
tained as the total space of a tower of iterated bundles with fiber CP1 and first base space
CP1. Such manifold naturally carries an algebraic torus action, and can be viewed as a
toric manifold. Note that 4-dimensional Bott manifolds are exactly the Hirzebruch surfaces
discussed in Example 4.3. For more information about Bott manifolds see, for example,
[GK].

The simplest example of a 2n-dimensional Bott manifold is the product of n copies of CP1.
Equipped with a product symplectic structure ω = π∗1(a1ωFS) + . . .+ π∗n(anωFS), for some
aj ∈ R>0, and the standard toric action4 it becomes a symplectic toric manifold, whose
Delzant polytope is a product of intervals, with lengths depending on aj’s. In particular,
if all aj’s are equal, then the moment image is a hypercube.

A moment image for a general 2n-dimensional Bott manifold is combinatorially an n-
dimensional hypercube. By applying a translation and a GL(n,Z) transformation one can
always arrange for the moment image to be a polytope of the form

∆ = ∆(A, λ) =
{
p ∈ Rn

∣∣ 〈p, ej〉 ≥ 0 and
〈
p, ej +

∑
i

Aijei
〉
≤ λj for all 1 ≤ j ≤ n

}
,

where λ ∈ (R>0)n and the parameters Aij satisfy that Aij = 0 unless i < j and thus can
be arranged in an n × n strictly upper-triangular integral matrix A ∈ Mn(Z). Certain
relation between A and λ must be satisfied in order for ∆(A, λ) to have 2n facets and be
combinatorially equivalent to a hypercube (see [PT]). In that case we say that (A, λ) defines
a symplectic toric Bott manifold (MA, ωλ) corresponding to the Delzant polytope ∆(A, λ).
The matrix A encodes the twisting of consecutive CP1 bundles, and thus determines a
diffeomorphism type of MA, while λ determines the symplectic structure. By a classical
result of Danilov [D]

(4.10) H∗(MA;Z) = Z[x1, . . . , xn]/
(
x2
i +

∑
j

Aijxjxi
)
,

with [ωλ] =
∑

i λixi. Note that this particular presentation of H∗(MA;Z) depends on A.
(The element xj is the Poincaré dual to the preimage of the facet ∆(A, λ) ∩ {

〈
p, ej +∑

iA
i
jei
〉

= λj}.) Using the above presentation we define the following special elements

(4.11) αk = −
∑
j

Akjxj ∈ H∗(MA;Z), yk = xk −
1

2
αk ∈ H∗(MA;Q)

for all k. We say xk is of even (respectively odd) exceptional type if αk = cy` for some ` > k,
where c is an even (respectively odd) integer. In “coordinates”, this means that Akj = 0

for j < ` and Akj = 1
2
Ak`A

`
j for j > `.

4 In the description of the symplectic structure, πj : CP1× . . .×CP1 → CP1 denotes the projection onto
the j-th factor, and ωFS stands for the Fubini–Study symplectic form. The standard action of (S1)n on
(CP1)n is the one where each S1 acts on the respective copy of CP1 by eit · [(z0, z1)] = [(z0, e

itz1)].
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We say that a Bott manifold is Q-trivial if H∗(M ;Q) ' H∗((CP1)n;Q). For example,
observe that all Hirzebruch surfaces are Q-trivial Bott manifolds.

Using toric degenerations one can prove the following result, which is the key ingredient of
the proof of Theorem 1.3.

Proposition 4.12. [PT] Let (M,ω) and (M̃, ω̃) be symplectic Bott manifolds associated

to strictly upper triangular A and Ã in Mn(Z) and λ and λ̃ in Zn, respectively. Assume

that there exist integers 1 ≤ k < ` ≤ n so that Ak` and Ãk` are of the same parity and the

isomorphism from Z[x1, . . . , xn] to Z[x̃1, . . . , x̃n] that sends xk to x̃k +
Ãk`−A

k
`

2
x̃` and xi to

x̃i for all i 6= k descends to an isomorphism from H∗(M ;Z) to H∗(M̃ ;Z) and takes
∑
λixi

to
∑
λ̃ix̃i. If Ak` + Ãk` ≥ 0, then M and M̃ are symplectomorphic.

Sketch of a proof. Without loss of generality we can assume that the polytope ∆(A, λ)
associated to (A, λ) is normal, that is, any integral point of m∆(A, λ) can be expressed as
a sum of m integral points of ∆(A, λ):

∀m∈Z>0 ∀x∈m∆(A,λ)∩Zn ∃x1,...,xm∈∆(A,λ)∩Zn such that x = x1 + . . .+ xm.

Indeed, if ∆(A, λ) is not a normal polytope, replace (M,ω) and (M̃, ω̃) by (M, (n− 1)ω)

and (M̃, (n− 1) ω̃). This dialates the corresponding polytopes by (n− 1). For any integral
polytope P ⊂ Rn its dialate mP with m ≥ n − 1 is normal (see, for example, [CLS,

Theorem 2.2.12]). Obviously if (M, (n − 1)ω) and (M̃, (n − 1) ω̃) are symplectomorphic,

then so are (M,ω) and (M̃, ω̃). As usually, let L denote the very ample line bundle over
M corresponding to ω, and L the space of its holomorphic sections. Note that normality
implies that Lm can be identified with H0(M,L⊗m) as a basis for both of these vector
spaces is given by the integral points m∆(A, λ) ∩ Zn.

Also without loss of generality we can assume that Ãk` ≥ Ak` . Let c = 1
2
(Ak` + Ãk` ) ≥ 0. We

will work with a lowest term valuation ν associated to the coordinate system (4.4). From
Lemma 4.5 and the normality assumption, for all m ≥ 1 we have that

ν(Lm) = F−ek+cel(m∆(A, λ) ∩ Zn).

To understand ν(Lm) consider the action of F−ek+cel on 2-dimensional “slices”, that is, the
intersections of m∆(A, λ) with affine subspaces which are translations of (ek, el)-planes.
Such slices are either empty or are trapezoids like in Example 4.6 and Corollary 4.9, possibly
with a cut. A slightly tedious computation shows that

∀m≥1 conv(ν(Lm)) = m∆(Ã, λ̃).

For that computation one uses relations between A, λ, Ã and λ̃ which are implied by the

facts that ∆(A, λ) and ∆(Ã, λ̃) are combinatorially hypercubes, and by the existence of the
isomorphism described in the statement of the proposition. These relations also allow to
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generalize Corollary 4.9 (precisely: to show that the appropriate generalization of condition
λ2 − cλ1 > 0 holds) and show that

ν(Lm) = m∆(Ã, λ̃) ∩ Zn.
This means that the semigroup S associated to the valuation ν of (M,ω) is exactly S =

(cone ∆(Ã, λ̃)) ∩ (Z× Zn). Then the claim follows from Proposition 4.7. �

Note that if xk is even (resp. odd) exceptional, say αk = myl, then one can construct

an isomoprhism as in Proposition 4.12 from H∗(MA;Z) to H∗(MÃ;Z) for some Ã with Ãk`
equal to 0 (resp. −1). For example if xk is of even exceptional type, i.e., αk = 2myl for
some m and `, implying that Ak` = −2m and Akj = −mA`j for j 6= `, then one should put

Ãkl = 0, Ãij = Aij for all i and all j 6= `, and Ãil = Ai` + mAik for all i 6= k. Therefore,
consecutive applications of the above proposition lead to simplifying the description of a
given Bott manifold.

Corollary 4.13. Any symplectic toric Bott manifold is symplectomorphic to one for which
Aij = 0 (resp. Aij = −1) whenever xi has even (resp. odd) exceptional type and αi = myj.

In the case of Q-trivial Bott manifolds all xi have exceptional type as shown in [CM,
Proposition 3.1]. Therefore, such symplectic toric Bott manifold must be a product of the
following standard models of Q-trivial Bott manifolds.

Example 4.14. (Q-trivial Bott manifolds) Take n ∈ Z>0. Let Ain = −1 for all 1 ≤ i < n,
and Aij = 0 otherwise. For such upper triangular matrix A = [Aij] and any λ ∈ (R>0)n,
the polytope ∆(A, λ) is combinatorially a hypercube, thus it defines a symplectic toric Bott
manifold, which we will denote by H = H(λ1, . . . , λn). Observe that

H∗(H;Z) = Z[x1, . . . , xn]/
(
x2

1 − x1xn, . . . , x
2
n−1 − xn−1xn, x

2
n

)
.

Consider elements yi ∈ H∗(H;Q) defined by yi = xi − 1
2
xn for all i < n, and yn = xn,

and note that they form a basis for H∗(H;Q). Moreover, as y2
i = 0 for all i, we get that

H∗(H;Q) ' Q[y1, . . . , yn]/
(
y2

1, . . . , y
2
n), that is, H is Q-trivial.

More generally, any partition of n,
∑m

i=1 li = n together with λ ∈ (R>0)n, define a Q-trivial
Bott manifold

H(λ1, . . . , λl1) × . . .×H(λn−lm+1, . . . , λn).

Corollary 4.15. Each 2n-dimensional Q-trivial Bott manifold M with integral symplectic
form is symplectomorphic to

H(λ1, . . . , λl1) × · · · × H(λn−lm+1, . . . , λn),

for some partition n =
∑m

i=1 li of n and some λ1, . . . , λn ∈ Z>0.

The above standard model is easy enough, so that one can understand all possible ring
isomorphisms between cohomology rings and prove that they are induced by maps on
manifolds.
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Lemma 4.16. Fix n ∈ Z>0. Let
∑m

i=1 li =
∑m̃

i=1 l̃i = n be partitions of n, and let

λ, λ̃ ∈ (R>0)n. Consider symplectic Bott manifolds

(M,ω) = H(λ1, . . . , λl1)× · · · × H(λn−lm+1, . . . , λn);

(M̃, ω̃) = H(λ̃1, . . . , λ̃l̃1)× · · · × H(λ̃n−l̃m̃+1, . . . , λ̃n).

Given a ring isomorphism F : H∗(M ;Z) → H∗(M̃ ;Z) such that F [ω] = [ω̃], there exists a

symplectomorphism f from (M̃, ω̃) to (M,ω) so that H∗(f) = F .

Sketch of a proof. First consider the situation when

(M,ω) = H(λ1, . . . , λn) and (M̃, ω̃) = H(λ̃1, . . . , λ̃n).

The Q-triviality assumption implies that there are exactly 2n primitive classes in H2(M ;Z)
which square to 0. A short computation shows that these are ±z1, . . . ,±zn, where zn = xn
and zi = 2xi− xn for all i < n. Similarly for M̃ . Any ring isomorphism between H∗(M ;Z)

and H∗(M̃ ;Z) must restrict to a bijection on the set of such elements, that is, there exists
ε = (ε1, . . . , εn) ∈ {−1, 1}n and a permutation σ ∈ Sn such that F (zj) = εj z̃σ(j). Moreover,
presenting [ω] (resp. [ω̃]) in the basis {z1, . . . , zn} (resp. {z̃1, . . . , z̃n}) and recalling that
the isomorphism F maps [ω] to [ω̃], one can deduce that F acts by a permutation: F (zj) =

z̃σ(j) for some permutation σ ∈ Sn with σ(n) = n, and that λj = λ̃σ(j). Then F also

takes xi to xσ(i) and it holds that Aij = Ã
σ(i)
σ(j) for all i, j. If Λ ∈ GL(n,Z) denotes the

unimodular matrix taking ei to eσ(i), then ΛT (∆(Ã, λ̃)) = ∆(A, λ). Therefore, by the

Delzant theorem, the manifolds (M,ω) and (M̃, ω̃) are (equivariantly) symplectomorphic,

by some symplectomorphism f . Moreover, as ΛT maps the facet {〈p, eσ(j)〉 = 0} ∩∆(Ã, λ̃)

to the facet {〈p, ej〉 = 0} ∩ ∆(A, λ), and {〈p, eσ(j) +
∑

i Ã
i
σ(j)ei〉 = λ̃σ(j)} ∩ ∆(Ã, λ̃) to

{〈p, ej +
∑

iA
i
jei〉 = λj} ∩∆(A, λ), the map H∗(f) induced by f on cohomology maps the

Poincaré duals of preimages of these facets accordingly. That is, H∗(f) = F .

In the general case, denote by λls the ls-tuple of numbers (λl1+···+ls−1+1, . . . , λl1+···+ls), and

define λ̃l̃s similarly. Again, we look at primitive elements with trivial squares. In H∗(M ;Z)
these are precisely

±xls and ± (2xi − xls) for s = 1, . . . ,m and is−1 < i < is.

Note that each such element is contained in some subring H∗(H(λls);Z) ⊆ H∗(M ;Z),
and that all primitive elements in H∗(H(λls);Z) whose square is zero are equal modulo

2. Therefore F restricts to an isomorphism from H∗(H(λls);Z) to H∗(H(λ̃l̃r);Z) for some

r with ls = l̃r. This implies that both partitions of n must be equal up to permutation
of their factors. Repeating the arguments of the previous paragraph, one can construct a
symplectomorphism inducing the ring isomorphism F . �

Proof of Theorem 1.3 . Theorem 1.3 follows immediately from Corollary 4.15 and Lemma
4.16. �
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