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Toric degenerations of weight varieties and applications

by Philip Foth and Yi Hu

Abstract

We show that a weight variety, which is a quotient of a flag variety
by the maximal torus, admits a flat degeneration to a toric variety. In
particular, we show that the moduli spaces of spatial polygons degenerate to
polarized toric varieties with the moment polytopes defined by the lengths of
their diagonals. We extend these results to more general Flaschka-Millson
hamiltonians on the quotients of products of projective spaces. We also
study boundary toric divisors and certain real loci.

1 Introduction

Let G be a complex connected semisimple Lie group and let X be a flag variety of
G, parameterizing parabolic subgroups of a given type. Several authors studied
flat degenerations of X to a toric variety, starting with the work of Gonciulea and
Lakshmibai [9]. Caldero [3] used Kashiwara-Lusztig’s canonical bases and their
string parameterization in his construction, which was later extended by Alexeev-
Brion [1] to the case of spherical varieties. In this paper we use their methods
to construct flat degenerations of weight varieties, which are, by definition [21],
quotients of the flag varieties by the action of the maximal torus. The resulting
polytopes are certain “slices” of the string polytopes.

Interesting examples of weight varieties are the quotients of complex grass-
mannians. For example, the quotients of GrC(2, n) can be identified [11] with the
moduli spaces of spatial n-gons studied by Klyachko [20], Kapovich-Millson [16],
and many other authors. There are remarkable integrable systems on these spaces,
where the action variables are given by the lengths of diagonals emanating from a
fixed vertex and the angle variables define the so-called bending flows, which have
a transparent geometric meaning [16]. As an application, we show that there ex-
ist flat degenerations of the moduli spaces of polygons to polarized toric varieties,
toric polygon spaces, whose moment polytopes are defined by the action variables.
These action variables can be computed using the Gelfand-Tsetlin functions and
the Gelfand-MacPherson correspondence [11]. Our results can also be generalized
for other grassmannians and the bending flows defined by the Flaschka-Millson
hamiltonians [5].
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We show that there are some real cycles of codimension 2 on the moduli
spaces of polygons which degenerate to the toric subvarieties corresponding to the
facets of the polytopes. We also extend the work of Kamiyama-Yoshida [15] and
construct topological spaces with compact torus action, which conjecturally are
homeomorphic to the central fibers of the flat families.

In the last section of the paper we consider real loci of the aforementioned
spaces and show that they map surjectively to the moment polytopes and compute
the cardinality of the fibers of these maps.

Let M0,n be the moduli space of stable n-pointed rational curves. It can be
realized [17] as the Chow quotient of the Grassmannian GrC(2, n). For an al-
ternative construction using stable polygons, see [14]. Then M0,n can be flatly
degenerated to a toric moduli space whose associated fan is the common refine-
ment of the fans of all the toric polygon spaces. This and related topics will
appear in a forthcoming paper.

2 Toric degenerations of weight varieties.

In this section we use toric degenerations of flag varieties constructed by Caldero
[3] to construct toric degenerations of weight varieties [21], which are defined as
GIT quotients of flag varieties by the action of the maximal torus.

Let G be a connected complex semisimple group, B a Borel subgroup, U
its unipotent radical, and H a Cartan subgroup such that B = HU . Let also
Φ = Φ(G,H) be the system of roots, Φ+ = Φ+(B,H) the subset of positive roots,
and {α1, ..., αr} the basis of simple roots, where r is the rank of G. Let Λ be
the weight lattice of G and Λ+ the subset of dominant weights. For λ ∈ Λ+ we
denote by V (λ) the irreducible G-module with highest weight λ. Let Pλ ⊃ B
be the parabolic subgroup of G which stabilizes a highest weight vector in V (λ).
Also denote by Lλ = G ×Pλ

C the G-linearized line bundle on Xλ := G/Pλ

corresponding to the character λ extended to Pλ.
Let W be the Weyl group and w0 ∈ W the longest element of length `. Choose

a reduced decomposition
w0 = si1si2 · · · si`

into a product of simple reflections. Recall that the space A := C[G]U of regular,
right U -invariant functions on G, has a so-called dual canonical basis (bλ,φ), where
each bλ,φ is an eigenvector for both left and right H-action. For the right H-action
it has weight λ and for the left H-action the weight is given by the formula 2.1
below. Also recall the definition of the cone Cw0 ⊂ ΛR × R`, a rational convex
polyhedral cone, given e.g. in [2]. If we look at those points in Cw0 that have
a fixed λ ∈ Λ+, then we will obtain the string polytope Q(λ), whose integral
points correspond to the elements of the (dual) canonical basis (for the chosen
string parameterization) (bλ,φ) for that particular λ ∈ Λ+. For a fixed λ, we may



Toric degenerations of weight varieties 89

identify Q(λ) with its image in R` via the projection ΛR ×R` → R`. If we denote
the string parameterization by

bλ,φ 7→ (λ, t1, ..., t`) ∈ Λ+ × N`,

then the projection

(2.1) πλ : R` → ΛR, (t1, ..., t`) 7→ −λ+ t1αi1 + · · ·+ t`αi`

maps the string polytope Q(λ) onto the convex hull of the Weyl group orbit of
the dual weight λ∗ = −w0λ:

πλ(Q(λ)) = Conv(W.λ∗) = −Conv(W.λ) := ∆(λ)

Caldero [3] (see also [1]) has constructed a flat deformation of the polarized
flag variety (Xλ, Lλ) to a polarized toric variety (Xλ;0, Lλ;0) such that the corre-
sponding moment polytope is exactly the string polytope Q(λ). His construction
is based on the key multiplicative property of the (dual) canonical basis:

bλ1,φ1bλ2,φ2 = bλ1+λ2,φ1+φ2 +
∑

φ<φ1+φ2

coeff.bλ1+λ2,φ,

which allowed him to put a filtration on the algebra A by H × H submodules
such that the associated graded ring was the algebra of the semigroup of integral
points in a rational convex polyhedral cone, see [3], [1] for details.

Let Φλ : Xλ;0 → Q(λ) ⊂ R` be the moment map for T-action, where T is the
compact part of (C∗)`. Then the composition πλ ◦ Φλ : Xλ;0 → ∆λ ⊂ ΛR is the
moment map for the torus T ⊂ H.

Recall that a weight variety Mλ;µ is a GIT quotient of Xλ by the action of
H associated with an integral point µ ∈ ∆(λ). More precisely, let µ ∈ ∆(λ) be
a character of H, and Lλ(−µ) be the linearized line bundle Lλ twisted by −µ.
Then Mλ;µ = Xss

λ (Lλ(−µ))//G. In symplectic terms, the H- moment map for
the polarized variety (Xλ, Lλ(−µ)) is πλ ◦Φλ − µ, and Mλ;µ is identified with the
reduction of Xλ at the level µ. The line bundle Lλ(−µ) descends to the quotient
Mλ;µ. Let us denote the descended line bundle by Lλ;µ. The following theorem
shows that every Caldero toric degeneration of a flag variety descends to a toric
degeneration of any of weight variety

Theorem 2.1. Every Caldero toric degeneration of Xλ descends to a toric degen-
eration of Mλ;µ. In particular, there exists a flat degeneration of the weight variety
Mλ;µ to a projective toric variety Nλ;µ with a polarization Lλ;µ;0 such that the defor-
mation carries Ln

λ;µ to Ln
λ;µ;0 for sufficiently large positive integer n. The moment

polytope of the polarized toric variety (Nλ;µ, Lλ;µ;0) is Qλ;µ = π−1
λ (µ) ∩Q(λ).
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Proof. By the Borel-Weil Theorem, we have the following identification of the
section ring

Rλ =
∞⊕

n=0

H0(Xλ, L
n
λ) =

∞⊕
n=0

V (nλ∗).

H acts on Rλ via the induced action twisted by −µ. Let R
H(−µ)
λ denote the set of

invariants of this twisted H-action. Using the canonical bases, we have

Rλ =
∞⊕

n=0

⊕
φ

C.bnλ,φ.

Since bnλ,φ is an eigenvector of eigenvalue −nλ +
∑

k tikαik with respect to the
left H-action, we see that after twisting the H action on C.bnλ,φ by −nµ, the
eigenvalue becomes zero if

∑
k tikαik = n(λ+ µ). Hence,

R
H(−µ)
λ =

∞⊕
n=0

⊕
P

tikαik
=n(λ+µ)

C.bλ,φ.

Observe that the filtration on Rλ induces a filtration on R
H(−µ)
λ . Let Gr(R

H(−µ)
λ )

be the associated graded algebra of R
H(−µ)
λ . Then the weight variety Mλ;µ =

Proj(RH
λ (−µ)) degenerates flatly to Nλ;µ = Proj(GrR

H(−µ)
λ ), and the degeneration

carries the set of ample line bundles Ln
λ;µ to the set of ample line bundles Ln

λ;µ;0

on Nλ,µ for sufficiently large n ([1]). Since in general, the moment map of a
polarization L is the moment map of Ln divided by n, it follows from [18] that the
moment polytope of the polarized toric variety (Nλ;µ, Lλ;µ;0) is π−1

λ (µ)∩Q(λ).

The first part of the above theorem can also be deduced from the fact that the
action of H ×H on G/U extends to the total space of the Caldero degeneration
and the total space of our degeneration is just a quotient of the total space of the
Caldero toric degeneration of Xλ by the left action of H.

Definition 2.1. We may call the central toric fiber Nλ,µ the toric weight variety
of type (λ, µ), and call the polytope Qλ;µ = π−1

λ (µ)∩Q(λ) the weight polytope of
type (λ, µ). Note that the polytope Qλ;µ is rational but need not be integral in
general.

Remark 2.1. Unlike the isomorphic type of the quotient Mλ;µ which only depends
on the GIT chamber of µ, the degeneration depends on the choice of individual µ,
in particular, the topological type of the central fiber Nλ;µ can change even when
µ varies within its GIT chamber. See Example 3.1.

Question 2.1. Is there a chamber structure on ∆λ so that Nλ;µ, as (unpolarized)
toric variety, remain the same within a chamber?



Toric degenerations of weight varieties 91

Remark 2.2. As noted in [1, Section 5], the Ehrhart polynomial of the polytope
Qλ;µ is given by

n 7→ dimV (nλ∗)nµ,

the multiplicity of the weight nµ for the right H-action in the irreducible G-module
with highest weight nλ∗. See also discussion on Pieri’s formula in [5].

3 Degeneration of polygon spaces

Let us recall the generalities about the polygon spaces. We will start with spatial
polygons in Euclidean 3-space. Given an n-tuple of positive real numbers r =
(r1, ..., rn) we consider the moduli spaceMr of n-gons with consecutive side lengths
r1, ..., rn. This space can be viewed as the symplectic quotient at the zero level of
the product of two-dimensional spheres (S2)n by the diagonal action of the group
SO(3). The symplectic structure on the j-th multiple is taken to be rj times the
standard unit sphere volume form. On the algebraic geometry side, the space Mr

can be realized as the GIT quotient of the n-fold product of the projective line
CP1 by the diagonal action of the group SL(2,C). The choice of linearization is
given by ri’s (which we assume to be integers here). These spaces were studied by
Klyachko [20], Kapovich-Millson [16], Hausmann-Knutson [11], and many others.

Let us now recall the Gelfand-MacPherson correspondence [8] in the form of
Theorem 2.4.7 of [17]. It states that for any n-tuple of positive integers r =
(r1, ..., rn), there is an isomorphism of GIT quotients

(Gr(k, n)//H1)O(1),r ' ((CPk−1)n//SL(k,C))O(r),ζ ,

where the line bundle O(1) on the grassmannian is linearized to correspond to the
action of H1 = {(t1, ..., tn) ∈ (C∗)n :

∏
ti = 1} on Cn given by

(t1, ..., tn) 7→ diag(trt1, ..., t
rtn),

and tr = tr1
1 · · · trn

n is the character of H1 corresponding to r. On the other side, the
line bundle O(r) on (CPk−1)n is the tensor product of pull-backs of line bundles
O(ri) from the i-th multiple. This bundle has exactly one SL(k,C)-linearization,
which is denoted by ζ.

Now, let us apply this correspondence to Mr using the language of hermitian
matrices as was first done in [11]. Let us start with the complex vector space C2n

with coordinates (z1, ..., zn, w1, ..., wn). For convenience, we arrange zi’s and wj’s
in a matrix form

A =

(
z1 z2 · · · zn

w1 w2 · · · wn

)
If we let P =

∑n
i=1 ri/2 stand for half the perimeter, then the moduli space Mr

can be realized as the quotient of the grassmannian Gr(2, n) by the action of
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the maximal torus. The proof goes via the so-called reduction in stages. The
grassmannian Gr(2, n) can be realized as the symplectic quotient of the space C2n

with the standard Darboux symplectic form by the action of the group U(2) by
left multiplication on the matrix A. The corresponding moment map takes values
in 2× 2 hermitian matrices and is given by

AA
t
=

 ∑n
i=1 |zi|2

∑n
i=1 ziw̄i∑n

i=1wiz̄i

∑n
i=1 |wi|2

 .

And we reduce at the level diag(P, P ). Alternatively, we can reduce the space C2n

by the action of (S1)n on the columns of the matrix A at the level (r1, ..., rn) to get
the n-fold product of two-dimensional spheres with the aforementioned symplectic
structure.

Using the 2× 2 hermitian matrices, we see that the moduli space of polygons
can be identified with the space of solutions of matrix equation

A1 + · · ·+ An =

(
P 0
0 P

)
,

where each matrix Aj has the prescribed spectrum (0, rj) and in the language of
the above correspondence:

Aj =

 |zj|2 zjw̄j

z̄jwj |wj|2

 .

Let dj stand for the length of the diagonal of the polygon connecting vertices 1
and j. There is a remarkable integrable system [16] on Mr whose action variables
are these functions dj for 3 ≤ j ≤ n − 1. The corresponding flows are the so-
called bending flows and have a simple geometric description by rotating the last
n− j edges about the axis defined by the diagonal dj. This integrable system was
shown [11] to be the reduction of the so-called Gelfand-Tsetlin integrable system
on Gr(2, n) [10], which we recall now briefly.

Consider the n × n hermitian matrix A∗A of rank 2. The two non-trivial
eigenvalues of the k × k upper-left submatrix denote by aj and bj, aj ≤ bj. (For
completeness, we let a1 = 0.) The value bn−1 = P is predetermined by the fact
that the two non-zero eigenvalues of A∗A are both equal to P . Thus we have
2(n− 2) independent commuting hamiltonians on Gr(2, n), which are also called
the Gelfand-Tsetlin variables and commonly written in a triangular form:

0 0 · · · 0 P P
0 0 · · · 0 an−1 P

· · · · · · · · ·
0 a3 b3

a2 b2
b1
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which also satisfy the interlacing inequalities.
The reduction of this system corresponds to choosing the diagonal values of the

matrix A∗A to ensure the compatibility with chosen side length, which amounts to
fixing the sums in rows of the Gelfand-Tsetlin diagram: b1 = r1, a2 + b2 = r1 + r2,
..., aj + bj =

∑j
i=1 ri, ... , an−1 = P − rn. Note that the lengths of the diagonals

can also easily be expressed in terms of the variables (ai, bi), namely:

dj+1 = bj − aj.

These variable diagonal lengths dj’s, 3 ≤ j ≤ n−1, which are the action variables
define a polytope Πr in Rn−3. This polytope is cut by 3(n − 2) hyperplanes
corresponding to the triangle inequalities, some of which are redundant, for the
triangulation of the polygon by all these diagonals emanating from the first vertex.
The j-th triangle has the side lengths dj, dj+1, and rj+1 so it contributes three
inequalities:

dj + dj+1 ≤ rj+1, dj + rj+1 ≤ dj+1, dj+1 + rj+1 ≤ dj.

The weight polytope Πr is the polytope in Rn−3 defined by these triangle inequal-
ities.

Kogan-Miller [22] and Alexeev-Brion [1] have explicitly constructed degenera-
tions of complex flag varieties X of type An to polarized toric varieties which have
the Gelfand-Tsetlin polytopes (denoted by GT(λ), λ ∈ Λ+) as their moment poly-
topes. In the case of Alexeev-Brion degeneration, they used the simplest reduced
decomposition of the longest Weyl group element in W = Sn+1

wstd
0 = s1s2s1s3s2s1 · · · snsn−1 · · · s1.

As before, we denote by πλ : GT(λ) → ∆(λ) ⊂ ΛR the projection of the Gelfand-
Tsetlin polytope onto the moment polytope of the flag variety X with respect to
the hamiltonian SU(n)-action and the invariant symplectic form ω on X = G/Pλ

such that [ω] = c1(Lλ). From Theorem 2.1 we immediately conclude

Theorem 3.1. There exists a flat degeneration of the moduli space of polygons Mr

with integral side lengths r = (r1, ..., rn) together with a polarizing line bundle Lr

on it to a polarized toric variety Nr whose moment polytope is the weight polytope
Πr.

The toric variety Nr, even its topological type, depends on the choice of r. In
fact, the combinatorial type of the weight polytope Πr may also change when r
changes, as shown in the following examples.

Example 3.1. Consider the case of pentagons. Already here we will see how
the degeneration depends on the choice of the linearized line bundle, which in
terms of the polygons corresponds to choosing not only side lengths, but also the
order in which they appear. Let us consider the following three quintuples of
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integers: r1 = (3, 3, 3, 3, 3), r2 = (3, 3, 3, 3, 4), and r3 = (3, 4, 3, 4, 3). For all these
choices, the moduli spaces Mr1 , Mr2 , and Mr3 are biholomorphically isomorphic
to the same space M0,5, the canonically compactified moduli space of projective
lines marked at 5 distinct points. This surface is also isomorphic to the Del Pezzo
surface of degree 5 (blow-up of CP2 at 4 generic points). The corresponding weight
polytopes are 2-dimensional polygons. The coordinates (x, y) correspond to the
lengths of the first and the second diagonals respectively.

In the case of r1 we have a pentagon with vertices at the points (0, 3), (3, 0),
(6, 3), (6, 6), and (3, 6). This corresponds to a toric surface with two isolated
singular points (local quotient singularities of C2 by the action of Z/2).

In the case of r2 we have a hexagon with vertices at the points (0, 3), (2, 1),
(4, 1), (6, 3), (6, 7), and (4, 7). This corresponds to a toric surface with one isolated
singular point (over (3, 0)).

In the case of r3 we get a heptagon with vertices at the points (1, 4), (1, 2),
(2, 1), (4, 1), (7, 4), (7, 7), and (4, 7). The corresponding toric variety is smooth
(and diffeomorphic to M0,n). This toric variety is a blow up of each of the previous
ones at one or two singular points. Notice that we would get a different polytope
with five vertices should the same side lengths be arranged as (3, 3, 3, 4, 4).

Example 3.2. In the equilateral case when n = 4, 5, 6, or 7 and r = (1, 1, ..., 1),
the polytopes Πr were considered in [15, Section 4] and their virtual Poincaré
polynomials were computed.

Example 3.3. Now consider an example when r = (2, 2, 2, ..., 2, 2n − 3), when
there is one “very long” side. In this case r lies in a favorable chamber [14, Section
3]. One can see that the polytope Πr is defined by the following set of inequalities:

3 ≤ d3 ≤ 4, 5 ≤ d4 ≤ d3 + 2, ..., 2i− 3 ≤ di ≤ di−1 + 2, for 4 ≤ i ≤ n− 1.

This polytope is actually a simplex, and the corresponding polarized toric variety
is (CPn−3, O(1)). This is not surprising, because for any element r from the
interior of a favorable chamber, the moduli space Mr is itself isomorphic to CPn−3,
and thus our flat family is trivial in this case.

Example 3.4. Let us consider the case when we have three “very long” sides.
More precisely, let r1 = r2 = · · · = rn−3 = 1 and rn−2 = rn−1 = rn = n. So the
perimeter is equal to 4n − 3 and no two long sides can ever be parallel. We will
show that the moduli space Mr is isomorphic to (CP1)n−3 in a natural way. Let us
treat the moduli space Mr as the moduli space of weighted configurations of points
on CP1. Denote these points by z1, ..., zn respectively, where we coordinatize, as
usual, by C the complement of a point (the “North pole” or ∞) in CP1. Consider
the cross-ratios

wi =
zn−2 − zn

zn − zn−1

· zi − zn−1

zn − zi

, where 1 ≤ i ≤ n− 3.
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Since the points zn−2, zn−1 and zn never collide on the subset of semi-stable
configurations, these cross-ratios define a global map from the moduli space Mr

to (CP1)n−3, which is an isomorphism. It is important to notice that the bending
flows are not the standard circle actions on this space.

This example also shows that the toric variety Nr and the polytope Πr depends
on the order of side-lengths. If we had switched the first and the (n− 2)-nd sides,
so that r = (n, 1, 1, ..., 1, n, n), then none of the diagonals emanating from the
first vertex would ever vanish, because it would not be allowed by the triangle
inequalities, and the central fiber would be isomorphic to (CP1)n−3. But if we
stick with the original choice of order on the side-lengths, then the resulting toric
variety will be singular, in general. This can be seen already for n = 5, when the
resulting toric variety has an isolated quotient singularity.

In fact, since all the inequalities on the lengths of the diagonals emanating from
a given vertex come from the triangles which these diagonals break the polygon
into, we immediately have the following result:

Proposition 3.1. The weight polytope Πr is the compact intersection of the half
spaces defined by affine hyperplanes of the following forms: x1 = |r1 ± r2|, xn−3 =
|rn ± rn−1| or |xi ± xi+1| = ri+2. In particular, let {ei} be the coordinate basis
vectors, then any facet is perpendicular to one of the following: e1, en−3, i.e., the
first or the last coordinate line; ei ± ei+1, i.e., the diagonal or anti-diagonal line
in the two dimensional coordinate plane spanned by {ei, ei+1}.

In the above Proposition xk corresponds to dk+2.
Let Ur be the (non-moduli) space of polygons with side length vector r such

that the first vertex is at the origin. Note that Mr = Ur/SO(3). We construct
a new quotient space by defining a new equivalence relation on Ur. For each
3 ≤ i ≤ n − 1, let Di be the set of polygons with di = 0. Let D◦ be the set of
polygons where none of the diagonals vanish. Then

Ur = D◦ ∪I DI ,

where I ⊂ {3, . . . , n − 1} and DI is the set of polygons with vanishing diagonals
di, i ∈ I but the rest of the diagonals do not vanish. For any I, every polygon in
DI can be decomposed as polygons P1, . . . , P` mutually joining at a point, where
` = |I|+ 1. In this case, set

SI = DI/(SO(3))`

where (SO(3))` acts on each factor component-wise. Let S◦ = D◦/SO(3). We
then obtain a new topological space

Vr = S◦ ∪I SI .
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There is an obvious continuous collapsing map

f : Mr → Vr.

There is also a continuous map

Φr : Vr → Πr.

The map f passes the action-angle coordinates on Mr to Vr.

Conjecture. The space Vr is homeomorphic to Nr.

We were able to verify this conjecture in some particular cases, however the
rigorous proof evades us, because the explicit nature of the deformation family is
evasive.

Remark 3.1. Our construction of the space Vr follows Kamiyama-Yoshida [15],
where a similar space, which only had a structure of a topological space stratified
into a finite union of orbifolds, was constructed in the equal side length case. The
bending hamiltonians descend to their space and are everywhere defined.

3.1 Boundary toric divisors

Corresponding to each facet, there is a toric subvariety of Nr of codimension 1.
Corresponding to the set of all facets perpendicular to a given vector is the union
of subvarieties whose isotropy subgroup is generated by a prime vector in that
direction. By the above proposition, the one dimensional isotropy subgroups are
listed as below:

1. T1 = {t ∈ (C∗)n−3|t2 = . . . = tn−3 = 1}.

2. Tn−3 = {t ∈ (C∗)n−3|t1 = . . . = tn−4 = 1}.

3. T+
i = {t ∈ (C∗)n−3|ti = ti+1, tk = 1 for k 6= i, i+ 1}.

4. T−i = {t ∈ (C∗)n−3|ti+1 = t−1
i , tk = 1 for k 6= i, i+ 1}. .

Corresponding to the list, we have toric divisors (in parentheses the equations
of the corresponding facets of Πr are given):

• (1) N1
2 (x1 = r1 + r2) and N2

2 (x1 = r2 − r1) or N3
2 (x1 = r1 − r2)

• (2) N3
n−1 (xn−3 = rn−1 + rn) and N1

n−1 (xn−3 = rn − rn−1) or N2
n−1 (xn−3 =

rn−1 − rn)

• (3) N1
i (xi−1 − xi−2 = ri) and N3

i (xi−2 − xi−1 = ri)

• (4) N2
i (xi−1 + xi−2 = ri)
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These are all the toric divisors, some of which are reducible. In the next section,
we will show that they are the deformation images of certain subspaces of Mr.

The Chow ring A∗(Mr) is generated, as a ring, by degree 1 cycles correspond-
ing to divisors Zij, i < j defined by the condition that the i-th side of the polygon
points in the same direction as the j-th side. We call such sides “positively
parallel” (or strongly parallel), which is a stronger condition than just being par-
allel. This statement can be verified by considering the cycles DS defined in [19]
and which generate A∗(M0,n) together with the proper surjective birational mor-
phism M0,n → Mr, and its properties [6]. It is then well-known that the map
A∗(Mr) → H2∗(Mr,Z) is an isomorphism. There are some natural linear rela-
tions among the cycles Zij, which again can be deduced from the linear relations
on the cycles DS studied in [19] and [23]. However, these cycles are not stable
under the bending flows, and will not degenerate to toric subvarieties.

Instead, let us consider subsets of the space Mr which are defined by the
condition that the i-th diagonal is parallel to the (i+ 1)-st diagonal, and thus to
the i-th side (we also think that a zero vector is parallel to any other vector). Let
us introduce a notation for these subsets.

• denote by Y 1
i the subset where di + ri = di+1

• denote by Y 2
i the subset where di + di+1 = ri

• denote by Y 3
i the subset where di − di+1 = ri

• denote by Yi = Y 1
i ∪ Y 2

i ∪ Y 3
i their union

Here we have 2 ≤ i ≤ n− 1 as we think of the first and last sides as 2-nd and
n-th diagonals respectively. The number of such we get this way is bounded from
above by 3n − 8. However, depending on the choice of r some of these subsets
might be empty.

One can easily see that Y 1
i and Y 3

i always have empty intersection. However,
if di can attain zero, then Y 1

i and Y 2
i do intersect and when the side lengths are

generic, and 3 < i < n − 1, this intersection is homeomorphic to an S1-bundle
over an S2-bundle over the space Mr(1) × Mr(2) , where r(1) = (r1, ..., ri−1) and
r(2) = (ri, ..., rn).

Similarly, if di+1 can attain the value of zero, then then Y 2
i and Y 3

i do inter-
sect and when side lengths are generic, and 2 < i < n − 2, this intersection is
homeomorphic to an S1-bundle over an S2-bundle over the space Mr(1) ×Mr(2) ,
where r(1) = (r1, ..., ri) and r(2) = (ri+1, ..., rn).

Note that when r1 = r2 then the subsets Y 2
2 and Y 3

2 coincide and are equiva-
lently defined by d3 = 0. The same goes for the case rn−1 = rn, subsets Y 1

n−1 and
Y 2

n−1 coincide and are defined by dn−1 = 0. Unless stated otherwise, we would like
to exclude these from consideration in what follows.

We denote by M0
r the “toric” open submanifold of Mr, where none of the

diagonals vanishes. We say that a subset Q ⊂ Mr degenerates to Q0 ⊂ Nr if
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Q∩M0
r (resp Q0) is preserved by the bending flows (resp. compact torus action),

and they have the same image in Πr.

Lemma 3.1. 1. If Mr is smooth, then Yi ∩M0
r , for 2 ≤ i ≤ n− 1, is a smooth

closed submanifold of M0
r of real codimension 2.

2. Each Yi degenerates to the union of the toric divisors N1
i , N2

i , and N3
i of

Nr. All toric divisors of Nr arise this way.

Proof. (1) The intersections
Yi ∩M0

r

are clearly non-empty. Each connected components of these intersections is also
a connected component of the fixed point set of some one-dimensional torus (see
the remark after Proposition 3.1), so it is smooth.

(2) is clear.

Remark 3.2. The intersection N1
i ∩ N2

i is a toric subvariety which is isomor-
phic to the product of the toric degenerations of polygon spaces with side lengths
(r1, ...., ri−1) and (ri, ..., rn) respectively. Analogously, the intersection N2

i and N3
i ,

if non-empty, is a toric subvariety which is isomorphic to the product of the toric
degenerations of polygon spaces with side lengths (r1, ...., ri) and (ri+1, ..., rn) re-
spectively. It is clear that these divisors {N j

i } for j = 1, 2, and 3 and 2 ≤ i ≤ n−1
generate A∗(Nr). Although the additive structure on homology of Mr can readily
be understood if we work with divisors {Zij}, there are too many generators and
linear relations between these cycles. Using the real cycles represented by con-
nected components of the Yi’s, the homology of Mr can be understood with more
ease, as we can see explicitly the toric subvarieties that these cycles degenerate to
in Nr.

Question 3.1. Do the cycles of the (connected components of) subspaces Yi for
2 ≤ i ≤ n− 1, generate H∗(Mr,Z)?

In some examples that we were able to compute, this indeed was the case.
However, in general due to the fact that some of the Yi’s degenerate to the sum
of two or three irreducible toric divisors, the answer to this question might not be
entirely obvious.

As follows from [1, Proposition 2.2(ii)], our family is isomorphic to the trivial
family over C∗ = C \ {0}. In the future we hope to establish an explicit trivial-
ization, so the degeneration of the aforementioned cycles will be transparent.
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4 Degeneration of Flaschka-Millson integrable

systems

In [5] the authors considered moduli spaces of weighted configurations on CPm.
Given an n-tuple of positive integers r = (r1, ..., rn) their moduli space is, again,
identified with the GIT quotient of (CPm)n by the diagonal action of SL(m+1,C),
with the linearizing line bundle O(r) is given by the tensor product of pull-backs of
the bundles O(ri) from the i-th factor. It has a unique SL(m+1,C) linearization.
In order for this moduli space to be nonempty, we need to impose, in addition to
the obvious condition n > m+1, the so-called strong triangle inequalities, one for
each 1 ≤ i ≤ n:

ri ≤ P, where P :=
1

m+ 1

n∑
j=1

rj.

Note that when m = 2, these are just the usual triangle inequalities. On the
symplectic side, this moduli space is identified with the moduli space of solution
to the matrix equation:

A1 + · · ·+ An = P.Id,

where each Ai is a rank one (m+ 1)× (m+ 1) hermitian symmetric matrix, with
spectrum {ri, 0, 0, ..., 0}, and we mod out by the diagonal action of the group
U(m + 1). Then the Flaschka-Millson bending hamiltonians, by definition, are
the non-trivial eigenvalues of the partial sums

k∑
i=1

Ai.

Using the Gelfand-MacPherson correspondence [17], the above moduli space Mr

can be identified with a GIT quotient of the grassmannian Gr(m + 1, n) with
respect to the torus action. The choice of the linearized line bundle is analogous
to the case m = 1.

These hamiltonians also appear if we take the Gelfand-Tsetlin integrable sys-
tem on the grassmannian and consider its reduction. More precisely, consider the
Gelfand-Tsetlin triangle for this case. The top line consists of (n−m− 1) zeroes
and (m + 1) P ’s. (For the purposes of drawing the diagram we assumed that
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m < n/2, but we don’t hold this assumption in general):

0 0 · · · 0 0 P P · · · P P
0 0 · · · 0 0 a1 P P · · · P P

0 · · · 0 a2 b2 P · · · P
· · · · · · · · ·
· · · 0 an−2m · · · pn−2m P

· · · · · ·
0 am+1 · · · qm+1

· · · · · · · · ·
o3 p3 q3

p2 q2
q1

There are a total of (m + 1) × (n − m − 1) indeterminants a1, ..., qm+1 in the
diagram. The reduction at the level r = (r1, ..., rn) means that there are the
following condition imposed, analogous to Section 3, where we considered the
case m = 1:

q1 = r1, p2 + q2 = r1 + r2, ..., am+1 + · · ·+ qm+1 = r1 + · · ·+ rm+1, ... etc.

meaning that the sum of all elements in row k from the bottom equals
∑k

i=1 ri. The
Flaschka-Millson hamiltonians in this presentation are the differences of adjacent
elements in each row:

b2 − a2, b3 − a3, c3 − b3, , ...., q2 − p2.

There are precisely

(m+ 1)(n−m− 1)− (n− 1) = mn− 2m−m2

of them, which is exactly the complex dimension of the moduli space. The polygon
defined by the natural inequalities on these hamiltonians is, as before, denoted by
Πr.

Proceeding in a completely analogous way to Section 3, we can see that there
exists a flat degeneration of the moduli space Mr to a polarized toric variety with
the moment polytope Πr.

Remark 4.1. If we denote by P−r the n-tuple of weights (P−r1, P−r2, ..., P−rn),
then Howard-Millson [13] showed that the GIT quotients

((CPm)n//SL(m+ 1,C))O(r) and ((CPn−m−2)n//SL(n−m− 1,C))O(P−r)

are isomorphic. Applying the Gelfand-MacPherson correspondence, this duality
translates to the isomorphism of GIT quotients

(Gr(m+ 1, n)//H1)O(1),r and (Gr(n−m− 1, n)//H1)O(1),P−r ,

which they established by using the complex Hodge * operator. This duality clearly
induces an isomorphism between polytopes Πr and ΠP−r and the toric varieties Nr

and NP−r.
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5 Real loci

First, let us have a brief discussion on real loci in general weight varieties. Let τ
be an involution of G (group automorphism of order 2, and we treat G as a real
Lie group with the Iwasawa decomposition G = KAU) satisfying the following
conditions:

• τ commutes with the Cartan involution θ

• τ maps H to H

• τ is anti-holomorphic

• if Gτ , Kτ , and Aτ stand for the subgroups of G, K, and A respectively fixed
by τ and U τ is the subset of elements in U fixed by τ , then Gτ = KτAτU τ .
(Note that we do not require that τ maps U to U .)

In fact, given a conjugacy class of real forms ofG, one can always find an involution
τ as above so this conjugacy class is represented by Gτ . Alternatively, given a
Satake diagram Σ [12], we can always find an involution τ such that Σ corresponds
to the real form Gτ .

Now let us take a subset of simple roots J such that it contains all the black
simple roots in the Satake diagram Σ and perhaps some white roots. If there
are white roots connected by an arrow, then we either include both of them in
J or neither. Let PJ be the corresponding parabolic subgroup containing B (the
minimal among all parabolics containing B and all the root vectors E−α, α ∈ J).
The following is straightforward:

Lemma 5.1. The parabolic subgroup PJ is τ -stable.

This immediately implies that there is an induced involution, also denoted
by τ , on the flag manifold X = G/P , and its fixed point set is the real flag
manifold Xτ ' Gτ/P τ . In fact there exists an integral symplectic structure [7] ω
(corresponding to a polarizing line bundle Lλ) such that τ is anti-symplectic with
respect to ω and Xτ is a lagrangian submanifold in X.

In what follows we denote by T ⊂ H the connected component of the maximal
torus containing the identity element. The involution τ maps T to T and let us
denote by T+ the connected subgroup of T on which τ acts identically and by T−

- where it acts by inverting all elements, so that T = T+×T−. Let us also denote
by Q a (not necessarily connected) subgroup of T consisting of all elements on
which τ acts by τ(t) = t−1. If the dimension of T+ is denoted by a, then

Q ' (Z/2)a × T−,

and has 2a connected components. Let us also denote by T τ the subgroup of T
fixed by τ . If the dimension of T− is b, then

T τ ' T+ × (Z/2)b.
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Note that the involution τ on X satisfies the following property with respect
to K-action:

τ(k.x) = τ(k)τ(x).

We can choose the moment map Φ for the T -action in such a way that Φ(τ(x)) =
−τ(Φ(x)), where in the left hand side the involution on t∗ is the one induced from
τ on T , and also denoted by τ . According to a theorem of O’Shea-Sjamaar [24]
which generalizes Duistermaat’s [4], the image of Xτ under the moment map Φ for
the T -action is the same as the intersection of X with the annihilator (t−)⊥ ⊂ t∗

of t−. Let us choose a regular value µ of Φ such that µ ∈ (t−)⊥. Then the fixed
point set of τ in Φ−1(µ), which is the same as Φ−1(µ) ∩ Xτ is non-empty and
T τ -stable. If we reduce at µ, and denote the induced involution on X//T also by
τ , then the natural map

ψ : Xτ//T τ := (Φ−1(µ) ∩Xτ )/T τ → (X//T )τ

has the following properties. The map ψ is surjective onto a (finite number of)
connected component of (X//T )τ . The map ψ is a finite map, and is injective if T
acts freely on Φ−1(µ). Replacing the involution τ acting on X by sτ , where s ∈ Q
we can get all other connected components of (X//T )τ be in the image of maps
analogous to ψ. The induced involution on X//T will still be the same, yet if s
acts non-trivially on X and belongs to a different connected component of Q than
the identity, then the T τ -orbits on Xsτ are actually disjoint from those on Xτ

and if Xsτ is non-empty, then Xsτ ∩Φ−1(µ)/T τ will map onto different connected
components of (X//T )τ . To get all the connected components of (X//T )τ , it is
enough to choose one s from each connected component of Q, see details in [7].

When the Satake diagram Σ does not contain any black roots (when Gτ is
so-called quasi-split), then B itself is τ -stable and the action of τ descends to the
full flag manifold G/B. And when Gτ is actually a split real form (no arrows in
Σ), then each P ⊃ B is τ -stable and, moreover, T = Q = T− and T τ is finite and
isomorphic to (Z/2)r, where r = rank(G).

We will postpone a more detailed treatment of real loci in general weight
varieties and their degenerations to a future paper, and now will concentrate
on the case when G = SL(n,C), τ is the standard complex conjugation and X
is a complex grassmannian. First, let us consider the case of spatial polygons.
Then the real quotient Xτ//T τ is the moduli space of planar polygons (more

precisely, its quotient by the mirror reflections), which we denote by M
(2)
r . If we,

in addition, fix admissible non-zero values of diagonals, then a polygon can have
only finitely many shapes. Their number generically equals 2n−3, because we can
do a 180o “bending” about each of the diagonals. Thus we have shown that the
map M

(2)
r → Πr is surjective, and generically 2n−3-to-one. However, this map

is not globally finite, and only becomes such at the special fiber Nr. It is easy
to see that the involution τ on general fiber Mr extends to a complex conjugate
involution on the special fiber, where its fixed point set is a lagrangian locus
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N
(2)
r which maps surjectively and finitely onto Πr. This statement has a natural

generalization to the moduli spaces Mr = (CPm)n//SL(m + 1,C) considered in
[5]:

Proposition 5.1. Let r = (r1, ..., rn) be an admissible n-tuple of positive numbers.
Let τ be a complex conjugate involution, with fixed point set SL(n,R) in SL(n,C)
and GrR(m + 1, n) in GrC(m + 1, n). Then τ extends to the special fiber Nr of
the flat family and the fixed point set N τ

r maps finitely and surjectively under the
moment map to the polytope Πr, and the generic fiber has cardinality 2mn−2m−m2

.
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